1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#[cfg(feature = "ffi")]
mod ffi;

use num::Zero;

use crate::{
    core::{Domain, Function, Measure, Measurement, Metric, MetricSpace, PrivacyMap},
    error::Fallible,
    interactive::wrap,
    measures::{FixedSmoothedMaxDivergence, MaxDivergence, ZeroConcentratedDivergence},
    traits::InfAdd,
};

/// Construct the DP composition [`measurement0`, `measurement1`, ...].
/// Returns a Measurement that when invoked, computes `[measurement0(x), measurement1(x), ...]`
///
/// Aside from sharing the same type, each output domain need not be equivalent.
/// This is useful when converting types to PolyDomain,
/// which can enable composition over non-homogeneous measurements.
///
/// # Arguments
/// * `measurements` - A vector of Measurements to compose. All DI, MI, MO must be equivalent.
///
/// # Generics
/// * `DI` - Input Domain.
/// * `TO` - Output Type.
/// * `MI` - Input Metric
/// * `MO` - Output Metric
pub fn make_basic_composition<DI, TO, MI, MO>(
    measurements: Vec<&Measurement<DI, TO, MI, MO>>,
) -> Fallible<Measurement<DI, Vec<TO>, MI, MO>>
where
    DI: 'static + Domain,
    TO: 'static,
    MI: 'static + Metric,
    MO: 'static + BasicCompositionMeasure,
    (DI, MI): MetricSpace,
{
    if measurements.is_empty() {
        return fallible!(MakeMeasurement, "Must have at least one measurement");
    }
    let input_domain = measurements[0].input_domain.clone();
    let input_metric = measurements[0].input_metric.clone();
    let output_measure = measurements[0].output_measure.clone();

    if !measurements.iter().all(|v| input_domain == v.input_domain) {
        return fallible!(DomainMismatch, "All input domains must be the same");
    }
    if !measurements.iter().all(|v| input_metric == v.input_metric) {
        return fallible!(MetricMismatch, "All input metrics must be the same");
    }
    if !measurements
        .iter()
        .all(|v| output_measure == v.output_measure)
    {
        return fallible!(MetricMismatch, "All output measures must be the same");
    }

    let functions = measurements
        .iter()
        .map(|m| m.function.clone())
        .collect::<Vec<_>>();

    let maps = measurements
        .iter()
        .map(|m| m.privacy_map.clone())
        .collect::<Vec<_>>();

    Measurement::new(
        input_domain,
        Function::new_fallible(move |arg: &DI::Carrier| {
            wrap(
                |_qbl| {
                    fallible!(
                        FailedFunction,
                        "cannot return queryables from a noninteractive compositor"
                    )
                },
                || {
                    functions
                        .iter()
                        .map(|f| f.eval(arg))
                        .collect::<Fallible<_>>()
                },
            )
        }),
        input_metric,
        output_measure.clone(),
        PrivacyMap::new_fallible(move |d_in: &MI::Distance| {
            output_measure.compose(
                maps.iter()
                    .map(|map| map.eval(d_in))
                    .collect::<Fallible<_>>()?,
            )
        }),
    )
}

pub trait BasicCompositionMeasure: Measure {
    fn compose(&self, d_i: Vec<Self::Distance>) -> Fallible<Self::Distance>;
}

impl<Q: InfAdd + Zero + Clone> BasicCompositionMeasure for MaxDivergence<Q> {
    fn compose(&self, d_i: Vec<Self::Distance>) -> Fallible<Self::Distance> {
        d_i.iter().try_fold(Q::zero(), |sum, d_i| sum.inf_add(d_i))
    }
}

impl<Q: InfAdd + Zero + Clone> BasicCompositionMeasure for FixedSmoothedMaxDivergence<Q> {
    fn compose(&self, d_i: Vec<Self::Distance>) -> Fallible<Self::Distance> {
        d_i.iter()
            .try_fold((Q::zero(), Q::zero()), |(e1, d1), (e2, d2)| {
                Ok((e1.inf_add(e2)?, d1.inf_add(d2)?))
            })
    }
}

impl<Q: InfAdd + Zero + Clone> BasicCompositionMeasure for ZeroConcentratedDivergence<Q> {
    fn compose(&self, d_i: Vec<Self::Distance>) -> Fallible<Self::Distance> {
        d_i.iter().try_fold(Q::zero(), |sum, d_i| sum.inf_add(d_i))
    }
}

// UNIT TESTS
#[cfg(test)]
mod tests {
    use crate::core::*;
    use crate::domains::AtomDomain;
    use crate::measurements::make_base_laplace;
    use crate::measures::MaxDivergence;
    use crate::metrics::AbsoluteDistance;

    use super::*;

    #[test]
    fn test_make_basic_composition() -> Fallible<()> {
        let input_domain0 = AtomDomain::<i32>::default();
        let function0 = Function::new(|arg: &i32| (arg + 1) as f64);
        let input_metric0 = AbsoluteDistance::<i32>::default();
        let output_measure0 = MaxDivergence::default();
        let privacy_map0 = PrivacyMap::new(|_d_in: &i32| f64::INFINITY);
        let measurement0 = Measurement::new(
            input_domain0,
            function0,
            input_metric0,
            output_measure0,
            privacy_map0,
        )?;
        let input_domain1 = AtomDomain::<i32>::default();
        let function1 = Function::new(|arg: &i32| (arg - 1) as f64);
        let input_metric1 = AbsoluteDistance::<i32>::default();
        let output_measure1 = MaxDivergence::default();
        let privacy_map1 = PrivacyMap::new(|_d_in: &i32| f64::INFINITY);
        let measurement1 = Measurement::new(
            input_domain1,
            function1,
            input_metric1,
            output_measure1,
            privacy_map1,
        )?;
        let composition = make_basic_composition(vec![&measurement0, &measurement1])?;
        let arg = 99;
        let ret = composition.invoke(&arg)?;
        assert_eq!(ret, vec![100_f64, 98_f64]);

        Ok(())
    }

    #[test]
    fn test_make_basic_composition_2() -> Fallible<()> {
        let laplace = make_base_laplace::<AtomDomain<_>>(1.0f64, None)?;
        let measurements = vec![&laplace; 2];
        let composition = make_basic_composition(measurements)?;
        let arg = 99.;
        let ret = composition.invoke(&arg)?;

        assert_eq!(ret.len(), 2);
        println!("return: {:?}", ret);

        assert!(composition.check(&1., &2.)?);
        assert!(!composition.check(&1., &1.9999)?);
        Ok(())
    }
}