1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
#![allow(
	unused_parens,
	clippy::excessive_precision,
	clippy::missing_safety_doc,
	clippy::not_unsafe_ptr_arg_deref,
	clippy::should_implement_trait,
	clippy::too_many_arguments,
	clippy::unused_unit,
)]
//! # Camera Calibration and 3D Reconstruction
//! 
//! The functions in this section use a so-called pinhole camera model. The view of a scene
//! is obtained by projecting a scene's 3D point ![inline formula](https://latex.codecogs.com/png.latex?P%5Fw) into the image plane using a perspective
//! transformation which forms the corresponding pixel ![inline formula](https://latex.codecogs.com/png.latex?p). Both ![inline formula](https://latex.codecogs.com/png.latex?P%5Fw) and ![inline formula](https://latex.codecogs.com/png.latex?p) are
//! represented in homogeneous coordinates, i.e. as 3D and 2D homogeneous vector respectively. You will
//! find a brief introduction to projective geometry, homogeneous vectors and homogeneous
//! transformations at the end of this section's introduction. For more succinct notation, we often drop
//! the 'homogeneous' and say vector instead of homogeneous vector.
//! 
//! The distortion-free projective transformation given by a  pinhole camera model is shown below.
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?s%20%5C%3B%20p%20%3D%20A%20%5Cbegin%7Bbmatrix%7D%20R%7Ct%20%5Cend%7Bbmatrix%7D%20P%5Fw%2C)
//! 
//! where ![inline formula](https://latex.codecogs.com/png.latex?P%5Fw) is a 3D point expressed with respect to the world coordinate system,
//! ![inline formula](https://latex.codecogs.com/png.latex?p) is a 2D pixel in the image plane, ![inline formula](https://latex.codecogs.com/png.latex?A) is the camera intrinsic matrix,
//! ![inline formula](https://latex.codecogs.com/png.latex?R) and ![inline formula](https://latex.codecogs.com/png.latex?t) are the rotation and translation that describe the change of coordinates from
//! world to camera coordinate systems (or camera frame) and ![inline formula](https://latex.codecogs.com/png.latex?s) is the projective transformation's
//! arbitrary scaling and not part of the camera model.
//! 
//! The camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?A) (notation used as in [Zhang2000](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Zhang2000) and also generally notated
//! as ![inline formula](https://latex.codecogs.com/png.latex?K)) projects 3D points given in the camera coordinate system to 2D pixel coordinates, i.e.
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?p%20%3D%20A%20P%5Fc%2E)
//! 
//! The camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?A) is composed of the focal lengths ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy), which are
//! expressed in pixel units, and the principal point ![inline formula](https://latex.codecogs.com/png.latex?%28c%5Fx%2C%20c%5Fy%29), that is usually close to the
//! image center:
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?A%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D%2C)
//! 
//! and thus
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?s%20%5Cbegin%7Bbmatrix%7D%20u%5C%5C%20v%5C%5C%201%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7D%20X%5Fc%5C%5C%20Y%5Fc%5C%5C%20Z%5Fc%20%5Cend%7Bbmatrix%7D%2E)
//! 
//! The matrix of intrinsic parameters does not depend on the scene viewed. So, once estimated, it can
//! be re-used as long as the focal length is fixed (in case of a zoom lens). Thus, if an image from the
//! camera is scaled by a factor, all of these parameters need to be scaled (multiplied/divided,
//! respectively) by the same factor.
//! 
//! The joint rotation-translation matrix ![inline formula](https://latex.codecogs.com/png.latex?%5BR%7Ct%5D) is the matrix product of a projective
//! transformation and a homogeneous transformation. The 3-by-4 projective transformation maps 3D points
//! represented in camera coordinates to 2D points in the image plane and represented in normalized
//! camera coordinates ![inline formula](https://latex.codecogs.com/png.latex?x%27%20%3D%20X%5Fc%20%2F%20Z%5Fc) and ![inline formula](https://latex.codecogs.com/png.latex?y%27%20%3D%20Y%5Fc%20%2F%20Z%5Fc):
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?Z%5Fc%20%5Cbegin%7Bbmatrix%7D%0Ax%27%20%5C%5C%0Ay%27%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0A1%20%26%200%20%26%200%20%26%200%20%5C%5C%0A0%20%26%201%20%26%200%20%26%200%20%5C%5C%0A0%20%26%200%20%26%201%20%26%200%0A%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7D%0AX%5Fc%20%5C%5C%0AY%5Fc%20%5C%5C%0AZ%5Fc%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2E)
//! 
//! The homogeneous transformation is encoded by the extrinsic parameters ![inline formula](https://latex.codecogs.com/png.latex?R) and ![inline formula](https://latex.codecogs.com/png.latex?t) and
//! represents the change of basis from world coordinate system ![inline formula](https://latex.codecogs.com/png.latex?w) to the camera coordinate sytem
//! ![inline formula](https://latex.codecogs.com/png.latex?c). Thus, given the representation of the point ![inline formula](https://latex.codecogs.com/png.latex?P) in world coordinates, ![inline formula](https://latex.codecogs.com/png.latex?P%5Fw), we
//! obtain ![inline formula](https://latex.codecogs.com/png.latex?P)'s representation in the camera coordinate system, ![inline formula](https://latex.codecogs.com/png.latex?P%5Fc), by
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?P%5Fc%20%3D%20%5Cbegin%7Bbmatrix%7D%0AR%20%26%20t%20%5C%5C%0A0%20%26%201%0A%5Cend%7Bbmatrix%7D%20P%5Fw%2C)
//! 
//! This homogeneous transformation is composed out of ![inline formula](https://latex.codecogs.com/png.latex?R), a 3-by-3 rotation matrix, and ![inline formula](https://latex.codecogs.com/png.latex?t), a
//! 3-by-1 translation vector:
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0AR%20%26%20t%20%5C%5C%0A0%20%26%201%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0Ar%5F%7B11%7D%20%26%20r%5F%7B12%7D%20%26%20r%5F%7B13%7D%20%26%20t%5Fx%20%5C%5C%0Ar%5F%7B21%7D%20%26%20r%5F%7B22%7D%20%26%20r%5F%7B23%7D%20%26%20t%5Fy%20%5C%5C%0Ar%5F%7B31%7D%20%26%20r%5F%7B32%7D%20%26%20r%5F%7B33%7D%20%26%20t%5Fz%20%5C%5C%0A0%20%26%200%20%26%200%20%26%201%0A%5Cend%7Bbmatrix%7D%2C%0A)
//! 
//! and therefore
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0AX%5Fc%20%5C%5C%0AY%5Fc%20%5C%5C%0AZ%5Fc%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0Ar%5F%7B11%7D%20%26%20r%5F%7B12%7D%20%26%20r%5F%7B13%7D%20%26%20t%5Fx%20%5C%5C%0Ar%5F%7B21%7D%20%26%20r%5F%7B22%7D%20%26%20r%5F%7B23%7D%20%26%20t%5Fy%20%5C%5C%0Ar%5F%7B31%7D%20%26%20r%5F%7B32%7D%20%26%20r%5F%7B33%7D%20%26%20t%5Fz%20%5C%5C%0A0%20%26%200%20%26%200%20%26%201%0A%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7D%0AX%5Fw%20%5C%5C%0AY%5Fw%20%5C%5C%0AZ%5Fw%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2E)
//! 
//! Combining the projective transformation and the homogeneous transformation, we obtain the projective
//! transformation that maps 3D points in world coordinates into 2D points in the image plane and in
//! normalized camera coordinates:
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?Z%5Fc%20%5Cbegin%7Bbmatrix%7D%0Ax%27%20%5C%5C%0Ay%27%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%20R%7Ct%20%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7D%0AX%5Fw%20%5C%5C%0AY%5Fw%20%5C%5C%0AZ%5Fw%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0Ar%5F%7B11%7D%20%26%20r%5F%7B12%7D%20%26%20r%5F%7B13%7D%20%26%20t%5Fx%20%5C%5C%0Ar%5F%7B21%7D%20%26%20r%5F%7B22%7D%20%26%20r%5F%7B23%7D%20%26%20t%5Fy%20%5C%5C%0Ar%5F%7B31%7D%20%26%20r%5F%7B32%7D%20%26%20r%5F%7B33%7D%20%26%20t%5Fz%0A%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7D%0AX%5Fw%20%5C%5C%0AY%5Fw%20%5C%5C%0AZ%5Fw%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2C)
//! 
//! with ![inline formula](https://latex.codecogs.com/png.latex?x%27%20%3D%20X%5Fc%20%2F%20Z%5Fc) and ![inline formula](https://latex.codecogs.com/png.latex?y%27%20%3D%20Y%5Fc%20%2F%20Z%5Fc). Putting the equations for instrincs and extrinsics together, we can write out
//! ![inline formula](https://latex.codecogs.com/png.latex?s%20%5C%3B%20p%20%3D%20A%20%5Cbegin%7Bbmatrix%7D%20R%7Ct%20%5Cend%7Bbmatrix%7D%20P%5Fw) as
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?s%20%5Cbegin%7Bbmatrix%7D%20u%5C%5C%20v%5C%5C%201%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7D%0Ar%5F%7B11%7D%20%26%20r%5F%7B12%7D%20%26%20r%5F%7B13%7D%20%26%20t%5Fx%20%5C%5C%0Ar%5F%7B21%7D%20%26%20r%5F%7B22%7D%20%26%20r%5F%7B23%7D%20%26%20t%5Fy%20%5C%5C%0Ar%5F%7B31%7D%20%26%20r%5F%7B32%7D%20%26%20r%5F%7B33%7D%20%26%20t%5Fz%0A%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7D%0AX%5Fw%20%5C%5C%0AY%5Fw%20%5C%5C%0AZ%5Fw%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2E)
//! 
//! If ![inline formula](https://latex.codecogs.com/png.latex?Z%5Fc%20%5Cne%200), the transformation above is equivalent to the following,
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0Au%20%5C%5C%0Av%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0Af%5Fx%20X%5Fc%2FZ%5Fc%20%2B%20c%5Fx%20%5C%5C%0Af%5Fy%20Y%5Fc%2FZ%5Fc%20%2B%20c%5Fy%0A%5Cend%7Bbmatrix%7D)
//! 
//! with
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20X%5Fc%5C%5C%20Y%5Fc%5C%5C%20Z%5Fc%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0AR%7Ct%0A%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7D%0AX%5Fw%20%5C%5C%0AY%5Fw%20%5C%5C%0AZ%5Fw%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2E)
//! 
//! The following figure illustrates the pinhole camera model.
//! 
//! ![Pinhole camera model](https://docs.opencv.org/4.3.0/pinhole_camera_model.png)
//! 
//! Real lenses usually have some distortion, mostly radial distortion, and slight tangential distortion.
//! So, the above model is extended as:
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0Au%20%5C%5C%0Av%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0Af%5Fx%20x%27%27%20%2B%20c%5Fx%20%5C%5C%0Af%5Fy%20y%27%27%20%2B%20c%5Fy%0A%5Cend%7Bbmatrix%7D)
//! 
//! where
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0Ax%27%27%20%5C%5C%0Ay%27%27%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0Ax%27%20%5Cfrac%7B1%20%2B%20k%5F1%20r%5E2%20%2B%20k%5F2%20r%5E4%20%2B%20k%5F3%20r%5E6%7D%7B1%20%2B%20k%5F4%20r%5E2%20%2B%20k%5F5%20r%5E4%20%2B%20k%5F6%20r%5E6%7D%20%2B%202%20p%5F1%20x%27%20y%27%20%2B%20p%5F2%28r%5E2%20%2B%202%20x%27%5E2%29%20%2B%20s%5F1%20r%5E2%20%2B%20s%5F2%20r%5E4%20%5C%5C%0Ay%27%20%5Cfrac%7B1%20%2B%20k%5F1%20r%5E2%20%2B%20k%5F2%20r%5E4%20%2B%20k%5F3%20r%5E6%7D%7B1%20%2B%20k%5F4%20r%5E2%20%2B%20k%5F5%20r%5E4%20%2B%20k%5F6%20r%5E6%7D%20%2B%20p%5F1%20%28r%5E2%20%2B%202%20y%27%5E2%29%20%2B%202%20p%5F2%20x%27%20y%27%20%2B%20s%5F3%20r%5E2%20%2B%20s%5F4%20r%5E4%20%5C%5C%0A%5Cend%7Bbmatrix%7D)
//! 
//! with
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?r%5E2%20%3D%20x%27%5E2%20%2B%20y%27%5E2)
//! 
//! and
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0Ax%27%5C%5C%0Ay%27%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0AX%5Fc%2FZ%5Fc%20%5C%5C%0AY%5Fc%2FZ%5Fc%0A%5Cend%7Bbmatrix%7D%2C)
//! 
//! if ![inline formula](https://latex.codecogs.com/png.latex?Z%5Fc%20%5Cne%200).
//! 
//! The distortion parameters are the radial coefficients ![inline formula](https://latex.codecogs.com/png.latex?k%5F1), ![inline formula](https://latex.codecogs.com/png.latex?k%5F2), ![inline formula](https://latex.codecogs.com/png.latex?k%5F3), ![inline formula](https://latex.codecogs.com/png.latex?k%5F4), ![inline formula](https://latex.codecogs.com/png.latex?k%5F5), and ![inline formula](https://latex.codecogs.com/png.latex?k%5F6)
//! ,![inline formula](https://latex.codecogs.com/png.latex?p%5F1) and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) are the tangential distortion coefficients, and ![inline formula](https://latex.codecogs.com/png.latex?s%5F1), ![inline formula](https://latex.codecogs.com/png.latex?s%5F2), ![inline formula](https://latex.codecogs.com/png.latex?s%5F3), and ![inline formula](https://latex.codecogs.com/png.latex?s%5F4),
//! are the thin prism distortion coefficients. Higher-order coefficients are not considered in OpenCV.
//! 
//! The next figures show two common types of radial distortion: barrel distortion
//! (![inline formula](https://latex.codecogs.com/png.latex?%201%20%2B%20k%5F1%20r%5E2%20%2B%20k%5F2%20r%5E4%20%2B%20k%5F3%20r%5E6%20) monotonically decreasing)
//! and pincushion distortion (![inline formula](https://latex.codecogs.com/png.latex?%201%20%2B%20k%5F1%20r%5E2%20%2B%20k%5F2%20r%5E4%20%2B%20k%5F3%20r%5E6%20) monotonically increasing).
//! Radial distortion is always monotonic for real lenses,
//! and if the estimator produces a non-monotonic result,
//! this should be considered a calibration failure.
//! More generally, radial distortion must be monotonic and the distortion function must be bijective.
//! A failed estimation result may look deceptively good near the image center
//! but will work poorly in e.g. AR/SFM applications.
//! The optimization method used in OpenCV camera calibration does not include these constraints as
//! the framework does not support the required integer programming and polynomial inequalities.
//! See [issue #15992](https://github.com/opencv/opencv/issues/15992) for additional information.
//! 
//! ![](https://docs.opencv.org/4.3.0/distortion_examples.png)
//! ![](https://docs.opencv.org/4.3.0/distortion_examples2.png)
//! 
//! In some cases, the image sensor may be tilted in order to focus an oblique plane in front of the
//! camera (Scheimpflug principle). This can be useful for particle image velocimetry (PIV) or
//! triangulation with a laser fan. The tilt causes a perspective distortion of ![inline formula](https://latex.codecogs.com/png.latex?x%27%27) and
//! ![inline formula](https://latex.codecogs.com/png.latex?y%27%27). This distortion can be modeled in the following way, see e.g. [Louhichi07](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Louhichi07).
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0Au%20%5C%5C%0Av%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0Af%5Fx%20x%27%27%27%20%2B%20c%5Fx%20%5C%5C%0Af%5Fy%20y%27%27%27%20%2B%20c%5Fy%0A%5Cend%7Bbmatrix%7D%2C)
//! 
//! where
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?s%5Cbegin%7Bbmatrix%7D%20x%27%27%27%5C%5C%20y%27%27%27%5C%5C%201%20%5Cend%7Bbmatrix%7D%20%3D%0A%5Cvecthreethree%7BR%5F%7B33%7D%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%7D%7B0%7D%7B%2DR%5F%7B13%7D%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%7D%0A%7B0%7D%7BR%5F%7B33%7D%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%7D%7B%2DR%5F%7B23%7D%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%7D%0A%7B0%7D%7B0%7D%7B1%7D%20R%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%20%5Cbegin%7Bbmatrix%7D%20x%27%27%5C%5C%20y%27%27%5C%5C%201%20%5Cend%7Bbmatrix%7D)
//! 
//! and the matrix ![inline formula](https://latex.codecogs.com/png.latex?R%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29) is defined by two rotations with angular parameter
//! ![inline formula](https://latex.codecogs.com/png.latex?%5Ctau%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?%5Ctau%5Fy), respectively,
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?%0AR%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%20%3D%0A%5Cbegin%7Bbmatrix%7D%20%5Ccos%28%5Ctau%5Fy%29%20%26%200%20%26%20%2D%5Csin%28%5Ctau%5Fy%29%5C%5C%200%20%26%201%20%26%200%5C%5C%20%5Csin%28%5Ctau%5Fy%29%20%26%200%20%26%20%5Ccos%28%5Ctau%5Fy%29%20%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7D%201%20%26%200%20%26%200%5C%5C%200%20%26%20%5Ccos%28%5Ctau%5Fx%29%20%26%20%5Csin%28%5Ctau%5Fx%29%5C%5C%200%20%26%20%2D%5Csin%28%5Ctau%5Fx%29%20%26%20%5Ccos%28%5Ctau%5Fx%29%20%5Cend%7Bbmatrix%7D%20%3D%0A%5Cbegin%7Bbmatrix%7D%20%5Ccos%28%5Ctau%5Fy%29%20%26%20%5Csin%28%5Ctau%5Fy%29%5Csin%28%5Ctau%5Fx%29%20%26%20%2D%5Csin%28%5Ctau%5Fy%29%5Ccos%28%5Ctau%5Fx%29%5C%5C%200%20%26%20%5Ccos%28%5Ctau%5Fx%29%20%26%20%5Csin%28%5Ctau%5Fx%29%5C%5C%20%5Csin%28%5Ctau%5Fy%29%20%26%20%2D%5Ccos%28%5Ctau%5Fy%29%5Csin%28%5Ctau%5Fx%29%20%26%20%5Ccos%28%5Ctau%5Fy%29%5Ccos%28%5Ctau%5Fx%29%20%5Cend%7Bbmatrix%7D%2E%0A)
//! 
//! In the functions below the coefficients are passed or returned as
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%20%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
//! 
//! vector. That is, if the vector contains four elements, it means that ![inline formula](https://latex.codecogs.com/png.latex?k%5F3%3D0) . The distortion
//! coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera
//! parameters. And they remain the same regardless of the captured image resolution. If, for example, a
//! camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion
//! coefficients can be used for 640 x 480 images from the same camera while ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx), ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy),
//! ![inline formula](https://latex.codecogs.com/png.latex?c%5Fx), and ![inline formula](https://latex.codecogs.com/png.latex?c%5Fy) need to be scaled appropriately.
//! 
//! The functions below use the above model to do the following:
//! 
//! *   Project 3D points to the image plane given intrinsic and extrinsic parameters.
//! *   Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their
//! projections.
//! *   Estimate intrinsic and extrinsic camera parameters from several views of a known calibration
//! pattern (every view is described by several 3D-2D point correspondences).
//! *   Estimate the relative position and orientation of the stereo camera "heads" and compute the
//! *rectification* transformation that makes the camera optical axes parallel.
//! 
//! <B> Homogeneous Coordinates </B><br>
//! Homogeneous Coordinates are a system of coordinates that are used in projective geometry. Their use
//! allows to represent points at infinity by finite coordinates and simplifies formulas when compared
//! to the cartesian counterparts, e.g. they have the advantage that affine transformations can be
//! expressed as linear homogeneous transformation.
//! 
//! One obtains the homogeneous vector ![inline formula](https://latex.codecogs.com/png.latex?P%5Fh) by appending a 1 along an n-dimensional cartesian
//! vector ![inline formula](https://latex.codecogs.com/png.latex?P) e.g. for a 3D cartesian vector the mapping ![inline formula](https://latex.codecogs.com/png.latex?P%20%5Crightarrow%20P%5Fh) is:
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0AX%20%5C%5C%0AY%20%5C%5C%0AZ%0A%5Cend%7Bbmatrix%7D%20%5Crightarrow%20%5Cbegin%7Bbmatrix%7D%0AX%20%5C%5C%0AY%20%5C%5C%0AZ%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2E)
//! 
//! For the inverse mapping ![inline formula](https://latex.codecogs.com/png.latex?P%5Fh%20%5Crightarrow%20P), one divides all elements of the homogeneous vector
//! by its last element, e.g. for a 3D homogeneous vector one gets its 2D cartesian counterpart by:
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0AX%20%5C%5C%0AY%20%5C%5C%0AW%0A%5Cend%7Bbmatrix%7D%20%5Crightarrow%20%5Cbegin%7Bbmatrix%7D%0AX%20%2F%20W%20%5C%5C%0AY%20%2F%20W%0A%5Cend%7Bbmatrix%7D%2C)
//! 
//! if ![inline formula](https://latex.codecogs.com/png.latex?W%20%5Cne%200).
//! 
//! Due to this mapping, all multiples ![inline formula](https://latex.codecogs.com/png.latex?k%20P%5Fh), for ![inline formula](https://latex.codecogs.com/png.latex?k%20%5Cne%200), of a homogeneous point represent
//! the same point ![inline formula](https://latex.codecogs.com/png.latex?P%5Fh). An intuitive understanding of this property is that under a projective
//! transformation, all multiples of ![inline formula](https://latex.codecogs.com/png.latex?P%5Fh) are mapped to the same point. This is the physical
//! observation one does for pinhole cameras, as all points along a ray through the camera's pinhole are
//! projected to the same image point, e.g. all points along the red ray in the image of the pinhole
//! camera model above would be mapped to the same image coordinate. This property is also the source
//! for the scale ambiguity s in the equation of the pinhole camera model.
//! 
//! As mentioned, by using homogeneous coordinates we can express any change of basis parameterized by
//! ![inline formula](https://latex.codecogs.com/png.latex?R) and ![inline formula](https://latex.codecogs.com/png.latex?t) as a linear transformation, e.g. for the change of basis from coordinate system
//! 0 to coordinate system 1 becomes:
//! 
//! ![block formula](https://latex.codecogs.com/png.latex?P%5F1%20%3D%20R%20P%5F0%20%2B%20t%20%5Crightarrow%20P%5F%7Bh%5F1%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0AR%20%26%20t%20%5C%5C%0A0%20%26%201%0A%5Cend%7Bbmatrix%7D%20P%5F%7Bh%5F0%7D%2E)
//! 
//! 
//! Note:
//!    *   Many functions in this module take a camera intrinsic matrix as an input parameter. Although all
//!        functions assume the same structure of this parameter, they may name it differently. The
//!        parameter's description, however, will be clear in that a camera intrinsic matrix with the structure
//!        shown above is required.
//!    *   A calibration sample for 3 cameras in a horizontal position can be found at
//!        opencv_source_code/samples/cpp/3calibration.cpp
//!    *   A calibration sample based on a sequence of images can be found at
//!        opencv_source_code/samples/cpp/calibration.cpp
//!    *   A calibration sample in order to do 3D reconstruction can be found at
//!        opencv_source_code/samples/cpp/build3dmodel.cpp
//!    *   A calibration example on stereo calibration can be found at
//!        opencv_source_code/samples/cpp/stereo_calib.cpp
//!    *   A calibration example on stereo matching can be found at
//!        opencv_source_code/samples/cpp/stereo_match.cpp
//!    *   (Python) A camera calibration sample can be found at
//!        opencv_source_code/samples/python/calibrate.py
//!    # Fisheye camera model
//! 
//!    Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the
//!    matrix X) The coordinate vector of P in the camera reference frame is:
//! 
//!    ![block formula](https://latex.codecogs.com/png.latex?Xc%20%3D%20R%20X%20%2B%20T)
//! 
//!    where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y
//!    and z the 3 coordinates of Xc:
//! 
//!    ![block formula](https://latex.codecogs.com/png.latex?x%20%3D%20Xc%5F1%20%5C%5C%20y%20%3D%20Xc%5F2%20%5C%5C%20z%20%3D%20Xc%5F3)
//! 
//!    The pinhole projection coordinates of P is [a; b] where
//! 
//!    ![block formula](https://latex.codecogs.com/png.latex?a%20%3D%20x%20%2F%20z%20%5C%20and%20%5C%20b%20%3D%20y%20%2F%20z%20%5C%5C%20r%5E2%20%3D%20a%5E2%20%2B%20b%5E2%20%5C%5C%20%5Ctheta%20%3D%20atan%28r%29)
//! 
//!    Fisheye distortion:
//! 
//!    ![block formula](https://latex.codecogs.com/png.latex?%5Ctheta%5Fd%20%3D%20%5Ctheta%20%281%20%2B%20k%5F1%20%5Ctheta%5E2%20%2B%20k%5F2%20%5Ctheta%5E4%20%2B%20k%5F3%20%5Ctheta%5E6%20%2B%20k%5F4%20%5Ctheta%5E8%29)
//! 
//!    The distorted point coordinates are [x'; y'] where
//! 
//!    ![block formula](https://latex.codecogs.com/png.latex?x%27%20%3D%20%28%5Ctheta%5Fd%20%2F%20r%29%20a%20%5C%5C%20y%27%20%3D%20%28%5Ctheta%5Fd%20%2F%20r%29%20b%20)
//! 
//!    Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where:
//! 
//!    ![block formula](https://latex.codecogs.com/png.latex?u%20%3D%20f%5Fx%20%28x%27%20%2B%20%5Calpha%20y%27%29%20%2B%20c%5Fx%20%5C%5C%0A%20%20%20%20v%20%3D%20f%5Fy%20y%27%20%2B%20c%5Fy)
//! 
//!    # C API
use crate::{mod_prelude::*, core, sys, types};
pub mod prelude {
	pub use { super::LMSolver_Callback, super::LMSolver, super::StereoMatcher, super::StereoBM, super::StereoSGBM };
}

pub const CALIB_CB_ACCURACY: i32 = 32;
pub const CALIB_CB_ADAPTIVE_THRESH: i32 = 1;
pub const CALIB_CB_ASYMMETRIC_GRID: i32 = 2;
pub const CALIB_CB_CLUSTERING: i32 = 4;
pub const CALIB_CB_EXHAUSTIVE: i32 = 16;
pub const CALIB_CB_FAST_CHECK: i32 = 8;
pub const CALIB_CB_FILTER_QUADS: i32 = 4;
pub const CALIB_CB_LARGER: i32 = 64;
pub const CALIB_CB_MARKER: i32 = 128;
pub const CALIB_CB_NORMALIZE_IMAGE: i32 = 2;
pub const CALIB_CB_SYMMETRIC_GRID: i32 = 1;
pub const CALIB_FIX_ASPECT_RATIO: i32 = 2;
pub const CALIB_FIX_FOCAL_LENGTH: i32 = 16;
pub const CALIB_FIX_INTRINSIC: i32 = 256;
pub const CALIB_FIX_K1: i32 = 32;
pub const CALIB_FIX_K2: i32 = 64;
pub const CALIB_FIX_K3: i32 = 128;
pub const CALIB_FIX_K4: i32 = 2048;
pub const CALIB_FIX_K5: i32 = 4096;
pub const CALIB_FIX_K6: i32 = 8192;
pub const CALIB_FIX_PRINCIPAL_POINT: i32 = 4;
pub const CALIB_FIX_S1_S2_S3_S4: i32 = 65536;
pub const CALIB_FIX_TANGENT_DIST: i32 = 2097152;
pub const CALIB_FIX_TAUX_TAUY: i32 = 524288;
/// On-line Hand-Eye Calibration [Andreff99](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Andreff99)
pub const CALIB_HAND_EYE_ANDREFF: i32 = 3;
/// Hand-Eye Calibration Using Dual Quaternions [Daniilidis98](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Daniilidis98)
pub const CALIB_HAND_EYE_DANIILIDIS: i32 = 4;
/// Hand-eye Calibration [Horaud95](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Horaud95)
pub const CALIB_HAND_EYE_HORAUD: i32 = 2;
/// Robot Sensor Calibration: Solving AX = XB on the Euclidean Group [Park94](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Park94)
pub const CALIB_HAND_EYE_PARK: i32 = 1;
/// A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration [Tsai89](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Tsai89)
pub const CALIB_HAND_EYE_TSAI: i32 = 0;
pub const CALIB_NINTRINSIC: i32 = 18;
pub const CALIB_RATIONAL_MODEL: i32 = 16384;
/// Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product [Li2010SimultaneousRA](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Li2010SimultaneousRA)
pub const CALIB_ROBOT_WORLD_HAND_EYE_LI: i32 = 1;
/// Solving the robot-world/hand-eye calibration problem using the kronecker product [Shah2013SolvingTR](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Shah2013SolvingTR)
pub const CALIB_ROBOT_WORLD_HAND_EYE_SHAH: i32 = 0;
pub const CALIB_SAME_FOCAL_LENGTH: i32 = 512;
pub const CALIB_THIN_PRISM_MODEL: i32 = 32768;
pub const CALIB_TILTED_MODEL: i32 = 262144;
/// for stereoCalibrate
pub const CALIB_USE_EXTRINSIC_GUESS: i32 = 4194304;
pub const CALIB_USE_INTRINSIC_GUESS: i32 = 1;
/// use LU instead of SVD decomposition for solving. much faster but potentially less precise
pub const CALIB_USE_LU: i32 = 131072;
/// use QR instead of SVD decomposition for solving. Faster but potentially less precise
pub const CALIB_USE_QR: i32 = 1048576;
pub const CALIB_ZERO_DISPARITY: i32 = 1024;
pub const CALIB_ZERO_TANGENT_DIST: i32 = 8;
/// 7-point algorithm
pub const FM_7POINT: i32 = 1;
/// 8-point algorithm
pub const FM_8POINT: i32 = 2;
/// least-median algorithm. 7-point algorithm is used.
pub const FM_LMEDS: i32 = 4;
/// RANSAC algorithm. It needs at least 15 points. 7-point algorithm is used.
pub const FM_RANSAC: i32 = 8;
pub const Fisheye_CALIB_CHECK_COND: i32 = 4;
pub const Fisheye_CALIB_FIX_INTRINSIC: i32 = 256;
pub const Fisheye_CALIB_FIX_K1: i32 = 16;
pub const Fisheye_CALIB_FIX_K2: i32 = 32;
pub const Fisheye_CALIB_FIX_K3: i32 = 64;
pub const Fisheye_CALIB_FIX_K4: i32 = 128;
pub const Fisheye_CALIB_FIX_PRINCIPAL_POINT: i32 = 512;
pub const Fisheye_CALIB_FIX_SKEW: i32 = 8;
pub const Fisheye_CALIB_RECOMPUTE_EXTRINSIC: i32 = 2;
pub const Fisheye_CALIB_USE_INTRINSIC_GUESS: i32 = 1;
pub const Fisheye_CALIB_ZERO_DISPARITY: i32 = 1024;
/// least-median of squares algorithm
pub const LMEDS: i32 = 4;
pub const LOCAL_OPTIM_GC: i32 = 3;
pub const LOCAL_OPTIM_INNER_AND_ITER_LO: i32 = 2;
pub const LOCAL_OPTIM_INNER_LO: i32 = 1;
pub const LOCAL_OPTIM_NULL: i32 = 0;
pub const LOCAL_OPTIM_SIGMA: i32 = 4;
pub const NEIGH_FLANN_KNN: i32 = 0;
pub const NEIGH_FLANN_RADIUS: i32 = 2;
pub const NEIGH_GRID: i32 = 1;
pub const PROJ_SPHERICAL_EQRECT: i32 = 1;
pub const PROJ_SPHERICAL_ORTHO: i32 = 0;
/// RANSAC algorithm
pub const RANSAC: i32 = 8;
/// RHO algorithm
pub const RHO: i32 = 16;
pub const SAMPLING_NAPSAC: i32 = 2;
pub const SAMPLING_PROGRESSIVE_NAPSAC: i32 = 1;
pub const SAMPLING_PROSAC: i32 = 3;
pub const SAMPLING_UNIFORM: i32 = 0;
pub const SCORE_METHOD_LMEDS: i32 = 3;
pub const SCORE_METHOD_MAGSAC: i32 = 2;
pub const SCORE_METHOD_MSAC: i32 = 1;
pub const SCORE_METHOD_RANSAC: i32 = 0;
/// An Efficient Algebraic Solution to the Perspective-Three-Point Problem [Ke17](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Ke17)
pub const SOLVEPNP_AP3P: i32 = 5;
/// **Broken implementation. Using this flag will fallback to EPnP.** 
/// 
/// A Direct Least-Squares (DLS) Method for PnP [hesch2011direct](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_hesch2011direct)
pub const SOLVEPNP_DLS: i32 = 3;
/// EPnP: Efficient Perspective-n-Point Camera Pose Estimation [lepetit2009epnp](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_lepetit2009epnp)
pub const SOLVEPNP_EPNP: i32 = 1;
/// Infinitesimal Plane-Based Pose Estimation [Collins14](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Collins14) 
/// 
/// Object points must be coplanar.
pub const SOLVEPNP_IPPE: i32 = 6;
/// Infinitesimal Plane-Based Pose Estimation [Collins14](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Collins14) 
/// 
/// This is a special case suitable for marker pose estimation.
/// 
/// 4 coplanar object points must be defined in the following order:
///   - point 0: [-squareLength / 2,  squareLength / 2, 0]
///   - point 1: [ squareLength / 2,  squareLength / 2, 0]
///   - point 2: [ squareLength / 2, -squareLength / 2, 0]
///   - point 3: [-squareLength / 2, -squareLength / 2, 0]
pub const SOLVEPNP_IPPE_SQUARE: i32 = 7;
pub const SOLVEPNP_ITERATIVE: i32 = 0;
/// Used for count
pub const SOLVEPNP_MAX_COUNT: i32 = 9;
/// Complete Solution Classification for the Perspective-Three-Point Problem [gao2003complete](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_gao2003complete)
pub const SOLVEPNP_P3P: i32 = 2;
/// SQPnP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem [Terzakis20](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Terzakis20)
pub const SOLVEPNP_SQPNP: i32 = 8;
/// **Broken implementation. Using this flag will fallback to EPnP.** 
/// 
/// Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation [penate2013exhaustive](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_penate2013exhaustive)
pub const SOLVEPNP_UPNP: i32 = 4;
pub const StereoBM_PREFILTER_NORMALIZED_RESPONSE: i32 = 0;
pub const StereoBM_PREFILTER_XSOBEL: i32 = 1;
pub const StereoMatcher_DISP_SCALE: i32 = 16;
pub const StereoMatcher_DISP_SHIFT: i32 = 4;
pub const StereoSGBM_MODE_HH: i32 = 1;
pub const StereoSGBM_MODE_HH4: i32 = 3;
pub const StereoSGBM_MODE_SGBM: i32 = 0;
pub const StereoSGBM_MODE_SGBM_3WAY: i32 = 2;
/// USAC, accurate settings
pub const USAC_ACCURATE: i32 = 36;
/// USAC algorithm, default settings
pub const USAC_DEFAULT: i32 = 32;
/// USAC, fast settings
pub const USAC_FAST: i32 = 35;
/// USAC, fundamental matrix 8 points
pub const USAC_FM_8PTS: i32 = 34;
/// USAC, runs MAGSAC++
pub const USAC_MAGSAC: i32 = 38;
/// USAC, parallel version
pub const USAC_PARALLEL: i32 = 33;
/// USAC, sorted points, runs PROSAC
pub const USAC_PROSAC: i32 = 37;
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum CirclesGridFinderParameters_GridType {
	SYMMETRIC_GRID = 0,
	ASYMMETRIC_GRID = 1,
}

opencv_type_enum! { crate::calib3d::CirclesGridFinderParameters_GridType }

#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum HandEyeCalibrationMethod {
	/// A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration [Tsai89](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Tsai89)
	CALIB_HAND_EYE_TSAI = 0,
	/// Robot Sensor Calibration: Solving AX = XB on the Euclidean Group [Park94](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Park94)
	CALIB_HAND_EYE_PARK = 1,
	/// Hand-eye Calibration [Horaud95](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Horaud95)
	CALIB_HAND_EYE_HORAUD = 2,
	/// On-line Hand-Eye Calibration [Andreff99](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Andreff99)
	CALIB_HAND_EYE_ANDREFF = 3,
	/// Hand-Eye Calibration Using Dual Quaternions [Daniilidis98](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Daniilidis98)
	CALIB_HAND_EYE_DANIILIDIS = 4,
}

opencv_type_enum! { crate::calib3d::HandEyeCalibrationMethod }

#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum LocalOptimMethod {
	LOCAL_OPTIM_NULL = 0,
	LOCAL_OPTIM_INNER_LO = 1,
	LOCAL_OPTIM_INNER_AND_ITER_LO = 2,
	LOCAL_OPTIM_GC = 3,
	LOCAL_OPTIM_SIGMA = 4,
}

opencv_type_enum! { crate::calib3d::LocalOptimMethod }

#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum NeighborSearchMethod {
	NEIGH_FLANN_KNN = 0,
	NEIGH_GRID = 1,
	NEIGH_FLANN_RADIUS = 2,
}

opencv_type_enum! { crate::calib3d::NeighborSearchMethod }

#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum RobotWorldHandEyeCalibrationMethod {
	/// Solving the robot-world/hand-eye calibration problem using the kronecker product [Shah2013SolvingTR](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Shah2013SolvingTR)
	CALIB_ROBOT_WORLD_HAND_EYE_SHAH = 0,
	/// Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product [Li2010SimultaneousRA](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Li2010SimultaneousRA)
	CALIB_ROBOT_WORLD_HAND_EYE_LI = 1,
}

opencv_type_enum! { crate::calib3d::RobotWorldHandEyeCalibrationMethod }

#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum SamplingMethod {
	SAMPLING_UNIFORM = 0,
	SAMPLING_PROGRESSIVE_NAPSAC = 1,
	SAMPLING_NAPSAC = 2,
	SAMPLING_PROSAC = 3,
}

opencv_type_enum! { crate::calib3d::SamplingMethod }

#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum ScoreMethod {
	SCORE_METHOD_RANSAC = 0,
	SCORE_METHOD_MSAC = 1,
	SCORE_METHOD_MAGSAC = 2,
	SCORE_METHOD_LMEDS = 3,
}

opencv_type_enum! { crate::calib3d::ScoreMethod }

#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum SolvePnPMethod {
	SOLVEPNP_ITERATIVE = 0,
	/// EPnP: Efficient Perspective-n-Point Camera Pose Estimation [lepetit2009epnp](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_lepetit2009epnp)
	SOLVEPNP_EPNP = 1,
	/// Complete Solution Classification for the Perspective-Three-Point Problem [gao2003complete](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_gao2003complete)
	SOLVEPNP_P3P = 2,
	/// **Broken implementation. Using this flag will fallback to EPnP.** 
	/// 
	/// A Direct Least-Squares (DLS) Method for PnP [hesch2011direct](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_hesch2011direct)
	SOLVEPNP_DLS = 3,
	/// **Broken implementation. Using this flag will fallback to EPnP.** 
	/// 
	/// Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation [penate2013exhaustive](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_penate2013exhaustive)
	SOLVEPNP_UPNP = 4,
	/// An Efficient Algebraic Solution to the Perspective-Three-Point Problem [Ke17](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Ke17)
	SOLVEPNP_AP3P = 5,
	/// Infinitesimal Plane-Based Pose Estimation [Collins14](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Collins14) 
	/// 
	/// Object points must be coplanar.
	SOLVEPNP_IPPE = 6,
	/// Infinitesimal Plane-Based Pose Estimation [Collins14](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Collins14) 
	/// 
	/// This is a special case suitable for marker pose estimation.
	/// 
	/// 4 coplanar object points must be defined in the following order:
	///   - point 0: [-squareLength / 2,  squareLength / 2, 0]
	///   - point 1: [ squareLength / 2,  squareLength / 2, 0]
	///   - point 2: [ squareLength / 2, -squareLength / 2, 0]
	///   - point 3: [-squareLength / 2, -squareLength / 2, 0]
	SOLVEPNP_IPPE_SQUARE = 7,
	/// SQPnP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem [Terzakis20](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Terzakis20)
	SOLVEPNP_SQPNP = 8,
	/// Used for count
	SOLVEPNP_MAX_COUNT = 9,
}

opencv_type_enum! { crate::calib3d::SolvePnPMethod }

/// cv::undistort mode
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum UndistortTypes {
	PROJ_SPHERICAL_ORTHO = 0,
	PROJ_SPHERICAL_EQRECT = 1,
}

opencv_type_enum! { crate::calib3d::UndistortTypes }

pub type CirclesGridFinderParameters2 = crate::calib3d::CirclesGridFinderParameters;
/// Computes an RQ decomposition of 3x3 matrices.
/// 
/// ## Parameters
/// * src: 3x3 input matrix.
/// * mtxR: Output 3x3 upper-triangular matrix.
/// * mtxQ: Output 3x3 orthogonal matrix.
/// * Qx: Optional output 3x3 rotation matrix around x-axis.
/// * Qy: Optional output 3x3 rotation matrix around y-axis.
/// * Qz: Optional output 3x3 rotation matrix around z-axis.
/// 
/// The function computes a RQ decomposition using the given rotations. This function is used in
/// decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
/// and a rotation matrix.
/// 
/// It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
/// degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
/// sequence of rotations about the three principal axes that results in the same orientation of an
/// object, e.g. see [Slabaugh](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Slabaugh) . Returned tree rotation matrices and corresponding three Euler angles
/// are only one of the possible solutions.
/// 
/// ## C++ default parameters
/// * qx: noArray()
/// * qy: noArray()
/// * qz: noArray()
pub fn rq_decomp3x3(src: &dyn core::ToInputArray, mtx_r: &mut dyn core::ToOutputArray, mtx_q: &mut dyn core::ToOutputArray, qx: &mut dyn core::ToOutputArray, qy: &mut dyn core::ToOutputArray, qz: &mut dyn core::ToOutputArray) -> Result<core::Vec3d> {
	input_array_arg!(src);
	output_array_arg!(mtx_r);
	output_array_arg!(mtx_q);
	output_array_arg!(qx);
	output_array_arg!(qy);
	output_array_arg!(qz);
	unsafe { sys::cv_RQDecomp3x3_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(src.as_raw__InputArray(), mtx_r.as_raw__OutputArray(), mtx_q.as_raw__OutputArray(), qx.as_raw__OutputArray(), qy.as_raw__OutputArray(), qz.as_raw__OutputArray()) }.into_result()
}

/// Converts a rotation matrix to a rotation vector or vice versa.
/// 
/// ## Parameters
/// * src: Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).
/// * dst: Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.
/// * jacobian: Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
/// derivatives of the output array components with respect to the input array components.
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Barray%7D%7Bl%7D%20%5Ctheta%20%5Cleftarrow%20norm%28r%29%20%5C%5C%20r%20%20%5Cleftarrow%20r%2F%20%5Ctheta%20%5C%5C%20R%20%3D%20%20%5Ccos%28%5Ctheta%29%20I%20%2B%20%281%2D%20%5Ccos%7B%5Ctheta%7D%20%29%20r%20r%5ET%20%2B%20%20%5Csin%28%5Ctheta%29%20%5Cbegin%7Bbmatrix%7D%200%20%26%20%2Dr%5Fz%20%26%20r%5Fy%5C%5C%20r%5Fz%20%26%200%20%26%20%2Dr%5Fx%5C%5C%20%2Dr%5Fy%20%26%20r%5Fx%20%26%200%20%5Cend%7Bbmatrix%7D%20%5Cend%7Barray%7D)
/// 
/// Inverse transformation can be also done easily, since
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%5Csin%20%28%20%5Ctheta%20%29%20%5Cbegin%7Bbmatrix%7D%200%20%26%20%2Dr%5Fz%20%26%20r%5Fy%5C%5C%20r%5Fz%20%26%200%20%26%20%2Dr%5Fx%5C%5C%20%2Dr%5Fy%20%26%20r%5Fx%20%26%200%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cfrac%7BR%20%2D%20R%5ET%7D%7B2%7D)
/// 
/// A rotation vector is a convenient and most compact representation of a rotation matrix (since any
/// rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
/// optimization procedures like @ref calibrateCamera, @ref stereoCalibrate, or @ref solvePnP .
/// 
/// 
/// Note: More information about the computation of the derivative of a 3D rotation matrix with respect to its exponential coordinate
/// can be found in:
///    - A Compact Formula for the Derivative of a 3-D Rotation in Exponential Coordinates, Guillermo Gallego, Anthony J. Yezzi [Gallego2014ACF](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Gallego2014ACF)
/// 
/// 
/// Note: Useful information on SE(3) and Lie Groups can be found in:
///    - A tutorial on SE(3) transformation parameterizations and on-manifold optimization, Jose-Luis Blanco [blanco2010tutorial](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_blanco2010tutorial)
///    - Lie Groups for 2D and 3D Transformation, Ethan Eade [Eade17](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Eade17)
///    - A micro Lie theory for state estimation in robotics, Joan Solà, Jérémie Deray, Dinesh Atchuthan [Sol2018AML](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Sol2018AML)
/// 
/// ## C++ default parameters
/// * jacobian: noArray()
pub fn rodrigues(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, jacobian: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	output_array_arg!(jacobian);
	unsafe { sys::cv_Rodrigues_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), jacobian.as_raw__OutputArray()) }.into_result()
}

/// Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
/// 
/// This function is an extension of calibrateCamera() with the method of releasing object which was
/// proposed in [strobl2011iccv](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_strobl2011iccv). In many common cases with inaccurate, unmeasured, roughly planar
/// targets (calibration plates), this method can dramatically improve the precision of the estimated
/// camera parameters. Both the object-releasing method and standard method are supported by this
/// function. Use the parameter **iFixedPoint** for method selection. In the internal implementation,
/// calibrateCamera() is a wrapper for this function.
/// 
/// ## Parameters
/// * objectPoints: Vector of vectors of calibration pattern points in the calibration pattern
/// coordinate space. See calibrateCamera() for details. If the method of releasing object to be used,
/// the identical calibration board must be used in each view and it must be fully visible, and all
/// objectPoints[i] must be the same and all points should be roughly close to a plane. **The calibration
/// target has to be rigid, or at least static if the camera (rather than the calibration target) is
/// shifted for grabbing images.**
/// * imagePoints: Vector of vectors of the projections of calibration pattern points. See
/// calibrateCamera() for details.
/// * imageSize: Size of the image used only to initialize the intrinsic camera matrix.
/// * iFixedPoint: The index of the 3D object point in objectPoints[0] to be fixed. It also acts as
/// a switch for calibration method selection. If object-releasing method to be used, pass in the
/// parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will
/// make standard calibration method selected. Usually the top-right corner point of the calibration
/// board grid is recommended to be fixed when object-releasing method being utilized. According to
/// \cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front
/// and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and
/// newObjPoints are only possible if coordinates of these three fixed points are accurate enough.
/// * cameraMatrix: Output 3x3 floating-point camera matrix. See calibrateCamera() for details.
/// * distCoeffs: Output vector of distortion coefficients. See calibrateCamera() for details.
/// * rvecs: Output vector of rotation vectors estimated for each pattern view. See calibrateCamera()
/// for details.
/// * tvecs: Output vector of translation vectors estimated for each pattern view.
/// * newObjPoints: The updated output vector of calibration pattern points. The coordinates might
/// be scaled based on three fixed points. The returned coordinates are accurate only if the above
/// mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter
/// is ignored with standard calibration method.
/// * stdDeviationsIntrinsics: Output vector of standard deviations estimated for intrinsic parameters.
/// See calibrateCamera() for details.
/// * stdDeviationsExtrinsics: Output vector of standard deviations estimated for extrinsic parameters.
/// See calibrateCamera() for details.
/// * stdDeviationsObjPoints: Output vector of standard deviations estimated for refined coordinates
/// of calibration pattern points. It has the same size and order as objectPoints[0] vector. This
/// parameter is ignored with standard calibration method.
/// * perViewErrors: Output vector of the RMS re-projection error estimated for each pattern view.
/// * flags: Different flags that may be zero or a combination of some predefined values. See
/// calibrateCamera() for details. If the method of releasing object is used, the calibration time may
/// be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially
/// less precise and less stable in some rare cases.
/// * criteria: Termination criteria for the iterative optimization algorithm.
/// 
/// ## Returns
/// the overall RMS re-projection error.
/// 
/// The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
/// views. The algorithm is based on [Zhang2000](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Zhang2000), [BouguetMCT](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_BouguetMCT) and [strobl2011iccv](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_strobl2011iccv). See
/// calibrateCamera() for other detailed explanations.
/// ## See also
/// calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
/// 
/// ## C++ default parameters
/// * flags: 0
/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,DBL_EPSILON)
pub fn calibrate_camera_ro_extended(object_points: &dyn core::ToInputArray, image_points: &dyn core::ToInputArray, image_size: core::Size, i_fixed_point: i32, camera_matrix: &mut dyn core::ToInputOutputArray, dist_coeffs: &mut dyn core::ToInputOutputArray, rvecs: &mut dyn core::ToOutputArray, tvecs: &mut dyn core::ToOutputArray, new_obj_points: &mut dyn core::ToOutputArray, std_deviations_intrinsics: &mut dyn core::ToOutputArray, std_deviations_extrinsics: &mut dyn core::ToOutputArray, std_deviations_obj_points: &mut dyn core::ToOutputArray, per_view_errors: &mut dyn core::ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
	input_array_arg!(object_points);
	input_array_arg!(image_points);
	input_output_array_arg!(camera_matrix);
	input_output_array_arg!(dist_coeffs);
	output_array_arg!(rvecs);
	output_array_arg!(tvecs);
	output_array_arg!(new_obj_points);
	output_array_arg!(std_deviations_intrinsics);
	output_array_arg!(std_deviations_extrinsics);
	output_array_arg!(std_deviations_obj_points);
	output_array_arg!(per_view_errors);
	unsafe { sys::cv_calibrateCameraRO_const__InputArrayR_const__InputArrayR_Size_int_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), image_size.opencv_as_extern(), i_fixed_point, camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), new_obj_points.as_raw__OutputArray(), std_deviations_intrinsics.as_raw__OutputArray(), std_deviations_extrinsics.as_raw__OutputArray(), std_deviations_obj_points.as_raw__OutputArray(), per_view_errors.as_raw__OutputArray(), flags, criteria.opencv_as_extern()) }.into_result()
}

/// Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
/// 
/// This function is an extension of calibrateCamera() with the method of releasing object which was
/// proposed in [strobl2011iccv](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_strobl2011iccv). In many common cases with inaccurate, unmeasured, roughly planar
/// targets (calibration plates), this method can dramatically improve the precision of the estimated
/// camera parameters. Both the object-releasing method and standard method are supported by this
/// function. Use the parameter **iFixedPoint** for method selection. In the internal implementation,
/// calibrateCamera() is a wrapper for this function.
/// 
/// ## Parameters
/// * objectPoints: Vector of vectors of calibration pattern points in the calibration pattern
/// coordinate space. See calibrateCamera() for details. If the method of releasing object to be used,
/// the identical calibration board must be used in each view and it must be fully visible, and all
/// objectPoints[i] must be the same and all points should be roughly close to a plane. **The calibration
/// target has to be rigid, or at least static if the camera (rather than the calibration target) is
/// shifted for grabbing images.**
/// * imagePoints: Vector of vectors of the projections of calibration pattern points. See
/// calibrateCamera() for details.
/// * imageSize: Size of the image used only to initialize the intrinsic camera matrix.
/// * iFixedPoint: The index of the 3D object point in objectPoints[0] to be fixed. It also acts as
/// a switch for calibration method selection. If object-releasing method to be used, pass in the
/// parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will
/// make standard calibration method selected. Usually the top-right corner point of the calibration
/// board grid is recommended to be fixed when object-releasing method being utilized. According to
/// \cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front
/// and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and
/// newObjPoints are only possible if coordinates of these three fixed points are accurate enough.
/// * cameraMatrix: Output 3x3 floating-point camera matrix. See calibrateCamera() for details.
/// * distCoeffs: Output vector of distortion coefficients. See calibrateCamera() for details.
/// * rvecs: Output vector of rotation vectors estimated for each pattern view. See calibrateCamera()
/// for details.
/// * tvecs: Output vector of translation vectors estimated for each pattern view.
/// * newObjPoints: The updated output vector of calibration pattern points. The coordinates might
/// be scaled based on three fixed points. The returned coordinates are accurate only if the above
/// mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter
/// is ignored with standard calibration method.
/// * stdDeviationsIntrinsics: Output vector of standard deviations estimated for intrinsic parameters.
/// See calibrateCamera() for details.
/// * stdDeviationsExtrinsics: Output vector of standard deviations estimated for extrinsic parameters.
/// See calibrateCamera() for details.
/// * stdDeviationsObjPoints: Output vector of standard deviations estimated for refined coordinates
/// of calibration pattern points. It has the same size and order as objectPoints[0] vector. This
/// parameter is ignored with standard calibration method.
/// * perViewErrors: Output vector of the RMS re-projection error estimated for each pattern view.
/// * flags: Different flags that may be zero or a combination of some predefined values. See
/// calibrateCamera() for details. If the method of releasing object is used, the calibration time may
/// be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially
/// less precise and less stable in some rare cases.
/// * criteria: Termination criteria for the iterative optimization algorithm.
/// 
/// ## Returns
/// the overall RMS re-projection error.
/// 
/// The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
/// views. The algorithm is based on [Zhang2000](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Zhang2000), [BouguetMCT](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_BouguetMCT) and [strobl2011iccv](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_strobl2011iccv). See
/// calibrateCamera() for other detailed explanations.
/// ## See also
/// calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
/// 
/// ## Overloaded parameters
/// 
/// ## C++ default parameters
/// * flags: 0
/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,DBL_EPSILON)
pub fn calibrate_camera_ro(object_points: &dyn core::ToInputArray, image_points: &dyn core::ToInputArray, image_size: core::Size, i_fixed_point: i32, camera_matrix: &mut dyn core::ToInputOutputArray, dist_coeffs: &mut dyn core::ToInputOutputArray, rvecs: &mut dyn core::ToOutputArray, tvecs: &mut dyn core::ToOutputArray, new_obj_points: &mut dyn core::ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
	input_array_arg!(object_points);
	input_array_arg!(image_points);
	input_output_array_arg!(camera_matrix);
	input_output_array_arg!(dist_coeffs);
	output_array_arg!(rvecs);
	output_array_arg!(tvecs);
	output_array_arg!(new_obj_points);
	unsafe { sys::cv_calibrateCameraRO_const__InputArrayR_const__InputArrayR_Size_int_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), image_size.opencv_as_extern(), i_fixed_point, camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), new_obj_points.as_raw__OutputArray(), flags, criteria.opencv_as_extern()) }.into_result()
}

/// Finds the camera intrinsic and extrinsic parameters from several views of a calibration
/// pattern.
/// 
/// ## Parameters
/// * objectPoints: In the new interface it is a vector of vectors of calibration pattern points in
/// the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
/// vector contains as many elements as the number of pattern views. If the same calibration pattern
/// is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
/// possible to use partially occluded patterns or even different patterns in different views. Then,
/// the vectors will be different. Although the points are 3D, they all lie in the calibration pattern's
/// XY coordinate plane (thus 0 in the Z-coordinate), if the used calibration pattern is a planar rig.
/// In the old interface all the vectors of object points from different views are concatenated
/// together.
/// * imagePoints: In the new interface it is a vector of vectors of the projections of calibration
/// pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
/// objectPoints.size(), and imagePoints[i].size() and objectPoints[i].size() for each i, must be equal,
/// respectively. In the old interface all the vectors of object points from different views are
/// concatenated together.
/// * imageSize: Size of the image used only to initialize the camera intrinsic matrix.
/// * cameraMatrix: Input/output 3x3 floating-point camera intrinsic matrix
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) . If @ref CALIB_USE_INTRINSIC_GUESS
/// and/or @ref CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
/// initialized before calling the function.
/// * distCoeffs: Input/output vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs).
/// * rvecs: Output vector of rotation vectors (@ref Rodrigues ) estimated for each pattern view
/// (e.g. std::vector<cv::Mat>>). That is, each i-th rotation vector together with the corresponding
/// i-th translation vector (see the next output parameter description) brings the calibration pattern
/// from the object coordinate space (in which object points are specified) to the camera coordinate
/// space. In more technical terms, the tuple of the i-th rotation and translation vector performs
/// a change of basis from object coordinate space to camera coordinate space. Due to its duality, this
/// tuple is equivalent to the position of the calibration pattern with respect to the camera coordinate
/// space.
/// * tvecs: Output vector of translation vectors estimated for each pattern view, see parameter
/// describtion above.
/// * stdDeviationsIntrinsics: Output vector of standard deviations estimated for intrinsic
/// parameters. Order of deviations values:
/// ![inline formula](https://latex.codecogs.com/png.latex?%28f%5Fx%2C%20f%5Fy%2C%20c%5Fx%2C%20c%5Fy%2C%20k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%2C%20k%5F3%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%20%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%0A%20s%5F4%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%29) If one of parameters is not estimated, it's deviation is equals to zero.
/// * stdDeviationsExtrinsics: Output vector of standard deviations estimated for extrinsic
/// parameters. Order of deviations values: ![inline formula](https://latex.codecogs.com/png.latex?%28R%5F0%2C%20T%5F0%2C%20%5Cdotsc%20%2C%20R%5F%7BM%20%2D%201%7D%2C%20T%5F%7BM%20%2D%201%7D%29) where M is
/// the number of pattern views. ![inline formula](https://latex.codecogs.com/png.latex?R%5Fi%2C%20T%5Fi) are concatenated 1x3 vectors.
/// * perViewErrors: Output vector of the RMS re-projection error estimated for each pattern view.
/// * flags: Different flags that may be zero or a combination of the following values:
/// *   @ref CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
/// fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
/// center ( imageSize is used), and focal distances are computed in a least-squares fashion.
/// Note, that if intrinsic parameters are known, there is no need to use this function just to
/// estimate extrinsic parameters. Use solvePnP instead.
/// *   @ref CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
/// optimization. It stays at the center or at a different location specified when
///  @ref CALIB_USE_INTRINSIC_GUESS is set too.
/// *   @ref CALIB_FIX_ASPECT_RATIO The functions consider only fy as a free parameter. The
/// ratio fx/fy stays the same as in the input cameraMatrix . When
///  @ref CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
/// ignored, only their ratio is computed and used further.
/// *   @ref CALIB_ZERO_TANGENT_DIST Tangential distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%28p%5F1%2C%20p%5F2%29) are set
/// to zeros and stay zero.
/// *   @ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 The corresponding radial distortion
/// coefficient is not changed during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is
/// set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
/// *   @ref CALIB_RATIONAL_MODEL Coefficients k4, k5, and k6 are enabled. To provide the
/// backward compatibility, this extra flag should be explicitly specified to make the
/// calibration function use the rational model and return 8 coefficients. If the flag is not
/// set, the function computes and returns only 5 distortion coefficients.
/// *   @ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
/// backward compatibility, this extra flag should be explicitly specified to make the
/// calibration function use the thin prism model and return 12 coefficients. If the flag is not
/// set, the function computes and returns only 5 distortion coefficients.
/// *   @ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
/// the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
/// *   @ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
/// backward compatibility, this extra flag should be explicitly specified to make the
/// calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
/// set, the function computes and returns only 5 distortion coefficients.
/// *   @ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
/// the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
/// * criteria: Termination criteria for the iterative optimization algorithm.
/// 
/// ## Returns
/// the overall RMS re-projection error.
/// 
/// The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
/// views. The algorithm is based on [Zhang2000](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Zhang2000) and [BouguetMCT](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_BouguetMCT) . The coordinates of 3D object
/// points and their corresponding 2D projections in each view must be specified. That may be achieved
/// by using an object with known geometry and easily detectable feature points. Such an object is
/// called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
/// a calibration rig (see @ref findChessboardCorners). Currently, initialization of intrinsic
/// parameters (when @ref CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
/// patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
/// be used as long as initial cameraMatrix is provided.
/// 
/// The algorithm performs the following steps:
/// 
/// *   Compute the initial intrinsic parameters (the option only available for planar calibration
///    patterns) or read them from the input parameters. The distortion coefficients are all set to
///    zeros initially unless some of CALIB_FIX_K? are specified.
/// 
/// *   Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
///    done using solvePnP .
/// 
/// *   Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
///    that is, the total sum of squared distances between the observed feature points imagePoints and
///    the projected (using the current estimates for camera parameters and the poses) object points
///    objectPoints. See projectPoints for details.
/// 
/// 
/// Note:
///    If you use a non-square (i.e. non-N-by-N) grid and @ref findChessboardCorners for calibration,
///    and @ref calibrateCamera returns bad values (zero distortion coefficients, ![inline formula](https://latex.codecogs.com/png.latex?c%5Fx) and
///    ![inline formula](https://latex.codecogs.com/png.latex?c%5Fy) very far from the image center, and/or large differences between ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx) and
///    ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy) (ratios of 10:1 or more)), then you are probably using patternSize=cvSize(rows,cols)
///    instead of using patternSize=cvSize(cols,rows) in @ref findChessboardCorners.
/// ## See also
/// calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate,
///    undistort
/// 
/// ## C++ default parameters
/// * flags: 0
/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,DBL_EPSILON)
pub fn calibrate_camera_extended(object_points: &dyn core::ToInputArray, image_points: &dyn core::ToInputArray, image_size: core::Size, camera_matrix: &mut dyn core::ToInputOutputArray, dist_coeffs: &mut dyn core::ToInputOutputArray, rvecs: &mut dyn core::ToOutputArray, tvecs: &mut dyn core::ToOutputArray, std_deviations_intrinsics: &mut dyn core::ToOutputArray, std_deviations_extrinsics: &mut dyn core::ToOutputArray, per_view_errors: &mut dyn core::ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
	input_array_arg!(object_points);
	input_array_arg!(image_points);
	input_output_array_arg!(camera_matrix);
	input_output_array_arg!(dist_coeffs);
	output_array_arg!(rvecs);
	output_array_arg!(tvecs);
	output_array_arg!(std_deviations_intrinsics);
	output_array_arg!(std_deviations_extrinsics);
	output_array_arg!(per_view_errors);
	unsafe { sys::cv_calibrateCamera_const__InputArrayR_const__InputArrayR_Size_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), image_size.opencv_as_extern(), camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), std_deviations_intrinsics.as_raw__OutputArray(), std_deviations_extrinsics.as_raw__OutputArray(), per_view_errors.as_raw__OutputArray(), flags, criteria.opencv_as_extern()) }.into_result()
}

/// Finds the camera intrinsic and extrinsic parameters from several views of a calibration
/// pattern.
/// 
/// ## Parameters
/// * objectPoints: In the new interface it is a vector of vectors of calibration pattern points in
/// the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
/// vector contains as many elements as the number of pattern views. If the same calibration pattern
/// is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
/// possible to use partially occluded patterns or even different patterns in different views. Then,
/// the vectors will be different. Although the points are 3D, they all lie in the calibration pattern's
/// XY coordinate plane (thus 0 in the Z-coordinate), if the used calibration pattern is a planar rig.
/// In the old interface all the vectors of object points from different views are concatenated
/// together.
/// * imagePoints: In the new interface it is a vector of vectors of the projections of calibration
/// pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
/// objectPoints.size(), and imagePoints[i].size() and objectPoints[i].size() for each i, must be equal,
/// respectively. In the old interface all the vectors of object points from different views are
/// concatenated together.
/// * imageSize: Size of the image used only to initialize the camera intrinsic matrix.
/// * cameraMatrix: Input/output 3x3 floating-point camera intrinsic matrix
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) . If @ref CALIB_USE_INTRINSIC_GUESS
/// and/or @ref CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
/// initialized before calling the function.
/// * distCoeffs: Input/output vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs).
/// * rvecs: Output vector of rotation vectors (@ref Rodrigues ) estimated for each pattern view
/// (e.g. std::vector<cv::Mat>>). That is, each i-th rotation vector together with the corresponding
/// i-th translation vector (see the next output parameter description) brings the calibration pattern
/// from the object coordinate space (in which object points are specified) to the camera coordinate
/// space. In more technical terms, the tuple of the i-th rotation and translation vector performs
/// a change of basis from object coordinate space to camera coordinate space. Due to its duality, this
/// tuple is equivalent to the position of the calibration pattern with respect to the camera coordinate
/// space.
/// * tvecs: Output vector of translation vectors estimated for each pattern view, see parameter
/// describtion above.
/// * stdDeviationsIntrinsics: Output vector of standard deviations estimated for intrinsic
/// parameters. Order of deviations values:
/// ![inline formula](https://latex.codecogs.com/png.latex?%28f%5Fx%2C%20f%5Fy%2C%20c%5Fx%2C%20c%5Fy%2C%20k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%2C%20k%5F3%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%20%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%0A%20s%5F4%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%29) If one of parameters is not estimated, it's deviation is equals to zero.
/// * stdDeviationsExtrinsics: Output vector of standard deviations estimated for extrinsic
/// parameters. Order of deviations values: ![inline formula](https://latex.codecogs.com/png.latex?%28R%5F0%2C%20T%5F0%2C%20%5Cdotsc%20%2C%20R%5F%7BM%20%2D%201%7D%2C%20T%5F%7BM%20%2D%201%7D%29) where M is
/// the number of pattern views. ![inline formula](https://latex.codecogs.com/png.latex?R%5Fi%2C%20T%5Fi) are concatenated 1x3 vectors.
/// * perViewErrors: Output vector of the RMS re-projection error estimated for each pattern view.
/// * flags: Different flags that may be zero or a combination of the following values:
/// *   @ref CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
/// fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
/// center ( imageSize is used), and focal distances are computed in a least-squares fashion.
/// Note, that if intrinsic parameters are known, there is no need to use this function just to
/// estimate extrinsic parameters. Use solvePnP instead.
/// *   @ref CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
/// optimization. It stays at the center or at a different location specified when
///  @ref CALIB_USE_INTRINSIC_GUESS is set too.
/// *   @ref CALIB_FIX_ASPECT_RATIO The functions consider only fy as a free parameter. The
/// ratio fx/fy stays the same as in the input cameraMatrix . When
///  @ref CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
/// ignored, only their ratio is computed and used further.
/// *   @ref CALIB_ZERO_TANGENT_DIST Tangential distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%28p%5F1%2C%20p%5F2%29) are set
/// to zeros and stay zero.
/// *   @ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 The corresponding radial distortion
/// coefficient is not changed during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is
/// set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
/// *   @ref CALIB_RATIONAL_MODEL Coefficients k4, k5, and k6 are enabled. To provide the
/// backward compatibility, this extra flag should be explicitly specified to make the
/// calibration function use the rational model and return 8 coefficients. If the flag is not
/// set, the function computes and returns only 5 distortion coefficients.
/// *   @ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
/// backward compatibility, this extra flag should be explicitly specified to make the
/// calibration function use the thin prism model and return 12 coefficients. If the flag is not
/// set, the function computes and returns only 5 distortion coefficients.
/// *   @ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
/// the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
/// *   @ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
/// backward compatibility, this extra flag should be explicitly specified to make the
/// calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
/// set, the function computes and returns only 5 distortion coefficients.
/// *   @ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
/// the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
/// * criteria: Termination criteria for the iterative optimization algorithm.
/// 
/// ## Returns
/// the overall RMS re-projection error.
/// 
/// The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
/// views. The algorithm is based on [Zhang2000](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Zhang2000) and [BouguetMCT](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_BouguetMCT) . The coordinates of 3D object
/// points and their corresponding 2D projections in each view must be specified. That may be achieved
/// by using an object with known geometry and easily detectable feature points. Such an object is
/// called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
/// a calibration rig (see @ref findChessboardCorners). Currently, initialization of intrinsic
/// parameters (when @ref CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
/// patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
/// be used as long as initial cameraMatrix is provided.
/// 
/// The algorithm performs the following steps:
/// 
/// *   Compute the initial intrinsic parameters (the option only available for planar calibration
///    patterns) or read them from the input parameters. The distortion coefficients are all set to
///    zeros initially unless some of CALIB_FIX_K? are specified.
/// 
/// *   Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
///    done using solvePnP .
/// 
/// *   Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
///    that is, the total sum of squared distances between the observed feature points imagePoints and
///    the projected (using the current estimates for camera parameters and the poses) object points
///    objectPoints. See projectPoints for details.
/// 
/// 
/// Note:
///    If you use a non-square (i.e. non-N-by-N) grid and @ref findChessboardCorners for calibration,
///    and @ref calibrateCamera returns bad values (zero distortion coefficients, ![inline formula](https://latex.codecogs.com/png.latex?c%5Fx) and
///    ![inline formula](https://latex.codecogs.com/png.latex?c%5Fy) very far from the image center, and/or large differences between ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx) and
///    ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy) (ratios of 10:1 or more)), then you are probably using patternSize=cvSize(rows,cols)
///    instead of using patternSize=cvSize(cols,rows) in @ref findChessboardCorners.
/// ## See also
/// calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate,
///    undistort
/// 
/// ## Overloaded parameters
/// 
/// ## C++ default parameters
/// * flags: 0
/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,DBL_EPSILON)
pub fn calibrate_camera(object_points: &dyn core::ToInputArray, image_points: &dyn core::ToInputArray, image_size: core::Size, camera_matrix: &mut dyn core::ToInputOutputArray, dist_coeffs: &mut dyn core::ToInputOutputArray, rvecs: &mut dyn core::ToOutputArray, tvecs: &mut dyn core::ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
	input_array_arg!(object_points);
	input_array_arg!(image_points);
	input_output_array_arg!(camera_matrix);
	input_output_array_arg!(dist_coeffs);
	output_array_arg!(rvecs);
	output_array_arg!(tvecs);
	unsafe { sys::cv_calibrateCamera_const__InputArrayR_const__InputArrayR_Size_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), image_size.opencv_as_extern(), camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), flags, criteria.opencv_as_extern()) }.into_result()
}

/// Computes Hand-Eye calibration: ![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc)
/// 
/// ## Parameters
/// * R_gripper2base: Rotation part extracted from the homogeneous matrix that transforms a point
/// expressed in the gripper frame to the robot base frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bb%7D%5Ctextrm%7BT%7D%5Fg)).
/// This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
/// for all the transformations from gripper frame to robot base frame.
/// * t_gripper2base: Translation part extracted from the homogeneous matrix that transforms a point
/// expressed in the gripper frame to the robot base frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bb%7D%5Ctextrm%7BT%7D%5Fg)).
/// This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
/// from gripper frame to robot base frame.
/// * R_target2cam: Rotation part extracted from the homogeneous matrix that transforms a point
/// expressed in the target frame to the camera frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Ft)).
/// This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
/// for all the transformations from calibration target frame to camera frame.
/// * t_target2cam: Rotation part extracted from the homogeneous matrix that transforms a point
/// expressed in the target frame to the camera frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Ft)).
/// This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
/// from calibration target frame to camera frame.
/// * R_cam2gripper:[out] Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
/// expressed in the camera frame to the gripper frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc)).
/// * t_cam2gripper:[out] Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
/// expressed in the camera frame to the gripper frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc)).
/// * method: One of the implemented Hand-Eye calibration method, see cv::HandEyeCalibrationMethod
/// 
/// The function performs the Hand-Eye calibration using various methods. One approach consists in estimating the
/// rotation then the translation (separable solutions) and the following methods are implemented:
///   - R. Tsai, R. Lenz A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/EyeCalibration \cite Tsai89
///   - F. Park, B. Martin Robot Sensor Calibration: Solving AX = XB on the Euclidean Group \cite Park94
///   - R. Horaud, F. Dornaika Hand-Eye Calibration \cite Horaud95
/// 
/// Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
/// with the following implemented methods:
///   - N. Andreff, R. Horaud, B. Espiau On-line Hand-Eye Calibration \cite Andreff99
///   - K. Daniilidis Hand-Eye Calibration Using Dual Quaternions \cite Daniilidis98
/// 
/// The following picture describes the Hand-Eye calibration problem where the transformation between a camera ("eye")
/// mounted on a robot gripper ("hand") has to be estimated. This configuration is called eye-in-hand.
/// 
/// The eye-to-hand configuration consists in a static camera observing a calibration pattern mounted on the robot
/// end-effector. The transformation from the camera to the robot base frame can then be estimated by inputting
/// the suitable transformations to the function, see below.
/// 
/// ![](https://docs.opencv.org/4.3.0/hand-eye_figure.png)
/// 
/// The calibration procedure is the following:
///   - a static calibration pattern is used to estimate the transformation between the target frame
///   and the camera frame
///   - the robot gripper is moved in order to acquire several poses
///   - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
///   instance the robot kinematics
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fb%5C%5C%0A%20%20%20%20Y%5Fb%5C%5C%0A%20%20%20%20Z%5Fb%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bb%7D%5Ctextrm%7BR%7D%5Fg%20%26%20%5F%7B%7D%5E%7Bb%7D%5Ctextrm%7Bt%7D%5Fg%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fg%5C%5C%0A%20%20%20%20Y%5Fg%5C%5C%0A%20%20%20%20Z%5Fg%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
///   - for each pose, the homogeneous transformation between the calibration target frame and the camera frame is recorded using
///   for instance a pose estimation method (PnP) from 2D-3D point correspondences
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fc%5C%5C%0A%20%20%20%20Y%5Fc%5C%5C%0A%20%20%20%20Z%5Fc%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BR%7D%5Ft%20%26%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7Bt%7D%5Ft%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Ft%5C%5C%0A%20%20%20%20Y%5Ft%5C%5C%0A%20%20%20%20Z%5Ft%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
/// 
/// The Hand-Eye calibration procedure returns the following homogeneous transformation
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fg%5C%5C%0A%20%20%20%20Y%5Fg%5C%5C%0A%20%20%20%20Z%5Fg%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BR%7D%5Fc%20%26%20%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7Bt%7D%5Fc%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fc%5C%5C%0A%20%20%20%20Y%5Fc%5C%5C%0A%20%20%20%20Z%5Fc%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
/// 
/// This problem is also known as solving the ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathbf%7BA%7D%5Cmathbf%7BX%7D%3D%5Cmathbf%7BX%7D%5Cmathbf%7BB%7D) equation:
///   - for an eye-in-hand configuration
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Balign%2A%7D%0A%20%20%20%20%5E%7Bb%7D%7B%5Ctextrm%7BT%7D%5Fg%7D%5E%7B%281%29%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%281%29%7D%20%26%3D%0A%20%20%20%20%5Chspace%7B0%2E1em%7D%20%5E%7Bb%7D%7B%5Ctextrm%7BT%7D%5Fg%7D%5E%7B%282%29%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%282%29%7D%20%5C%5C%0A%0A%20%20%20%20%28%5E%7Bb%7D%7B%5Ctextrm%7BT%7D%5Fg%7D%5E%7B%282%29%7D%29%5E%7B%2D1%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bb%7D%7B%5Ctextrm%7BT%7D%5Fg%7D%5E%7B%281%29%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc%20%26%3D%0A%20%20%20%20%5Chspace%7B0%2E1em%7D%20%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%282%29%7D%20%28%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%281%29%7D%29%5E%7B%2D1%7D%20%5C%5C%0A%0A%20%20%20%20%5Ctextrm%7BA%7D%5Fi%20%5Ctextrm%7BX%7D%20%26%3D%20%5Ctextrm%7BX%7D%20%5Ctextrm%7BB%7D%5Fi%20%5C%5C%0A%20%20%20%20%5Cend%7Balign%2A%7D%0A)
/// 
///   - for an eye-to-hand configuration
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Balign%2A%7D%0A%20%20%20%20%5E%7Bg%7D%7B%5Ctextrm%7BT%7D%5Fb%7D%5E%7B%281%29%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bb%7D%5Ctextrm%7BT%7D%5Fc%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%281%29%7D%20%26%3D%0A%20%20%20%20%5Chspace%7B0%2E1em%7D%20%5E%7Bg%7D%7B%5Ctextrm%7BT%7D%5Fb%7D%5E%7B%282%29%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bb%7D%5Ctextrm%7BT%7D%5Fc%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%282%29%7D%20%5C%5C%0A%0A%20%20%20%20%28%5E%7Bg%7D%7B%5Ctextrm%7BT%7D%5Fb%7D%5E%7B%282%29%7D%29%5E%7B%2D1%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bg%7D%7B%5Ctextrm%7BT%7D%5Fb%7D%5E%7B%281%29%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bb%7D%5Ctextrm%7BT%7D%5Fc%20%26%3D%0A%20%20%20%20%5Chspace%7B0%2E1em%7D%20%5E%7Bb%7D%5Ctextrm%7BT%7D%5Fc%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%282%29%7D%20%28%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%281%29%7D%29%5E%7B%2D1%7D%20%5C%5C%0A%0A%20%20%20%20%5Ctextrm%7BA%7D%5Fi%20%5Ctextrm%7BX%7D%20%26%3D%20%5Ctextrm%7BX%7D%20%5Ctextrm%7BB%7D%5Fi%20%5C%5C%0A%20%20%20%20%5Cend%7Balign%2A%7D%0A)
/// 
/// \note
/// Additional information can be found on this [website](http://campar.in.tum.de/Chair/HandEyeCalibration).
/// \note
/// A minimum of 2 motions with non parallel rotation axes are necessary to determine the hand-eye transformation.
/// So at least 3 different poses are required, but it is strongly recommended to use many more poses.
/// 
/// ## C++ default parameters
/// * method: CALIB_HAND_EYE_TSAI
pub fn calibrate_hand_eye(r_gripper2base: &dyn core::ToInputArray, t_gripper2base: &dyn core::ToInputArray, r_target2cam: &dyn core::ToInputArray, t_target2cam: &dyn core::ToInputArray, r_cam2gripper: &mut dyn core::ToOutputArray, t_cam2gripper: &mut dyn core::ToOutputArray, method: crate::calib3d::HandEyeCalibrationMethod) -> Result<()> {
	input_array_arg!(r_gripper2base);
	input_array_arg!(t_gripper2base);
	input_array_arg!(r_target2cam);
	input_array_arg!(t_target2cam);
	output_array_arg!(r_cam2gripper);
	output_array_arg!(t_cam2gripper);
	unsafe { sys::cv_calibrateHandEye_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_HandEyeCalibrationMethod(r_gripper2base.as_raw__InputArray(), t_gripper2base.as_raw__InputArray(), r_target2cam.as_raw__InputArray(), t_target2cam.as_raw__InputArray(), r_cam2gripper.as_raw__OutputArray(), t_cam2gripper.as_raw__OutputArray(), method) }.into_result()
}

/// Computes Robot-World/Hand-Eye calibration: ![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bw%7D%5Ctextrm%7BT%7D%5Fb) and ![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fg)
/// 
/// ## Parameters
/// * R_world2cam: Rotation part extracted from the homogeneous matrix that transforms a point
/// expressed in the world frame to the camera frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fw)).
/// This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
/// for all the transformations from world frame to the camera frame.
/// * t_world2cam: Translation part extracted from the homogeneous matrix that transforms a point
/// expressed in the world frame to the camera frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fw)).
/// This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
/// from world frame to the camera frame.
/// * R_base2gripper: Rotation part extracted from the homogeneous matrix that transforms a point
/// expressed in the robot base frame to the gripper frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fb)).
/// This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
/// for all the transformations from robot base frame to the gripper frame.
/// * t_base2gripper: Rotation part extracted from the homogeneous matrix that transforms a point
/// expressed in the robot base frame to the gripper frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fb)).
/// This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
/// from robot base frame to the gripper frame.
/// * R_base2world:[out] Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
/// expressed in the robot base frame to the world frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bw%7D%5Ctextrm%7BT%7D%5Fb)).
/// * t_base2world:[out] Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
/// expressed in the robot base frame to the world frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bw%7D%5Ctextrm%7BT%7D%5Fb)).
/// * R_gripper2cam:[out] Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
/// expressed in the gripper frame to the camera frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fg)).
/// * t_gripper2cam:[out] Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
/// expressed in the gripper frame to the camera frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fg)).
/// * method: One of the implemented Robot-World/Hand-Eye calibration method, see cv::RobotWorldHandEyeCalibrationMethod
/// 
/// The function performs the Robot-World/Hand-Eye calibration using various methods. One approach consists in estimating the
/// rotation then the translation (separable solutions):
///   - M. Shah, Solving the robot-world/hand-eye calibration problem using the kronecker product \cite Shah2013SolvingTR
/// 
/// Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
/// with the following implemented method:
///   - A. Li, L. Wang, and D. Wu, Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product \cite Li2010SimultaneousRA
/// 
/// The following picture describes the Robot-World/Hand-Eye calibration problem where the transformations between a robot and a world frame
/// and between a robot gripper ("hand") and a camera ("eye") mounted at the robot end-effector have to be estimated.
/// 
/// ![](https://docs.opencv.org/4.3.0/robot-world_hand-eye_figure.png)
/// 
/// The calibration procedure is the following:
///   - a static calibration pattern is used to estimate the transformation between the target frame
///   and the camera frame
///   - the robot gripper is moved in order to acquire several poses
///   - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
///   instance the robot kinematics
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fg%5C%5C%0A%20%20%20%20Y%5Fg%5C%5C%0A%20%20%20%20Z%5Fg%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BR%7D%5Fb%20%26%20%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7Bt%7D%5Fb%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fb%5C%5C%0A%20%20%20%20Y%5Fb%5C%5C%0A%20%20%20%20Z%5Fb%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
///   - for each pose, the homogeneous transformation between the calibration target frame (the world frame) and the camera frame is recorded using
///   for instance a pose estimation method (PnP) from 2D-3D point correspondences
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fc%5C%5C%0A%20%20%20%20Y%5Fc%5C%5C%0A%20%20%20%20Z%5Fc%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BR%7D%5Fw%20%26%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7Bt%7D%5Fw%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fw%5C%5C%0A%20%20%20%20Y%5Fw%5C%5C%0A%20%20%20%20Z%5Fw%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
/// 
/// The Robot-World/Hand-Eye calibration procedure returns the following homogeneous transformations
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fw%5C%5C%0A%20%20%20%20Y%5Fw%5C%5C%0A%20%20%20%20Z%5Fw%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bw%7D%5Ctextrm%7BR%7D%5Fb%20%26%20%5F%7B%7D%5E%7Bw%7D%5Ctextrm%7Bt%7D%5Fb%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fb%5C%5C%0A%20%20%20%20Y%5Fb%5C%5C%0A%20%20%20%20Z%5Fb%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fc%5C%5C%0A%20%20%20%20Y%5Fc%5C%5C%0A%20%20%20%20Z%5Fc%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BR%7D%5Fg%20%26%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7Bt%7D%5Fg%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fg%5C%5C%0A%20%20%20%20Y%5Fg%5C%5C%0A%20%20%20%20Z%5Fg%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
/// 
/// This problem is also known as solving the ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathbf%7BA%7D%5Cmathbf%7BX%7D%3D%5Cmathbf%7BZ%7D%5Cmathbf%7BB%7D) equation, with:
///   - ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathbf%7BA%7D%20%5CLeftrightarrow%20%5Chspace%7B0%2E1em%7D%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fw)
///   - ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathbf%7BX%7D%20%5CLeftrightarrow%20%5Chspace%7B0%2E1em%7D%20%5F%7B%7D%5E%7Bw%7D%5Ctextrm%7BT%7D%5Fb)
///   - ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathbf%7BZ%7D%20%5CLeftrightarrow%20%5Chspace%7B0%2E1em%7D%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fg)
///   - ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathbf%7BB%7D%20%5CLeftrightarrow%20%5Chspace%7B0%2E1em%7D%20%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fb)
/// 
/// \note
/// At least 3 measurements are required (input vectors size must be greater or equal to 3).
/// 
/// ## C++ default parameters
/// * method: CALIB_ROBOT_WORLD_HAND_EYE_SHAH
pub fn calibrate_robot_world_hand_eye(r_world2cam: &dyn core::ToInputArray, t_world2cam: &dyn core::ToInputArray, r_base2gripper: &dyn core::ToInputArray, t_base2gripper: &dyn core::ToInputArray, r_base2world: &mut dyn core::ToOutputArray, t_base2world: &mut dyn core::ToOutputArray, r_gripper2cam: &mut dyn core::ToOutputArray, t_gripper2cam: &mut dyn core::ToOutputArray, method: crate::calib3d::RobotWorldHandEyeCalibrationMethod) -> Result<()> {
	input_array_arg!(r_world2cam);
	input_array_arg!(t_world2cam);
	input_array_arg!(r_base2gripper);
	input_array_arg!(t_base2gripper);
	output_array_arg!(r_base2world);
	output_array_arg!(t_base2world);
	output_array_arg!(r_gripper2cam);
	output_array_arg!(t_gripper2cam);
	unsafe { sys::cv_calibrateRobotWorldHandEye_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_RobotWorldHandEyeCalibrationMethod(r_world2cam.as_raw__InputArray(), t_world2cam.as_raw__InputArray(), r_base2gripper.as_raw__InputArray(), t_base2gripper.as_raw__InputArray(), r_base2world.as_raw__OutputArray(), t_base2world.as_raw__OutputArray(), r_gripper2cam.as_raw__OutputArray(), t_gripper2cam.as_raw__OutputArray(), method) }.into_result()
}

/// Computes useful camera characteristics from the camera intrinsic matrix.
/// 
/// ## Parameters
/// * cameraMatrix: Input camera intrinsic matrix that can be estimated by calibrateCamera or
/// stereoCalibrate .
/// * imageSize: Input image size in pixels.
/// * apertureWidth: Physical width in mm of the sensor.
/// * apertureHeight: Physical height in mm of the sensor.
/// * fovx: Output field of view in degrees along the horizontal sensor axis.
/// * fovy: Output field of view in degrees along the vertical sensor axis.
/// * focalLength: Focal length of the lens in mm.
/// * principalPoint: Principal point in mm.
/// * aspectRatio: ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy%2Ff%5Fx)
/// 
/// The function computes various useful camera characteristics from the previously estimated camera
/// matrix.
/// 
/// 
/// Note:
///    Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for
///    the chessboard pitch (it can thus be any value).
pub fn calibration_matrix_values(camera_matrix: &dyn core::ToInputArray, image_size: core::Size, aperture_width: f64, aperture_height: f64, fovx: &mut f64, fovy: &mut f64, focal_length: &mut f64, principal_point: &mut core::Point2d, aspect_ratio: &mut f64) -> Result<()> {
	input_array_arg!(camera_matrix);
	unsafe { sys::cv_calibrationMatrixValues_const__InputArrayR_Size_double_double_doubleR_doubleR_doubleR_Point2dR_doubleR(camera_matrix.as_raw__InputArray(), image_size.opencv_as_extern(), aperture_width, aperture_height, fovx, fovy, focal_length, principal_point, aspect_ratio) }.into_result()
}

pub fn check_chessboard(img: &dyn core::ToInputArray, size: core::Size) -> Result<bool> {
	input_array_arg!(img);
	unsafe { sys::cv_checkChessboard_const__InputArrayR_Size(img.as_raw__InputArray(), size.opencv_as_extern()) }.into_result()
}

/// Combines two rotation-and-shift transformations.
/// 
/// ## Parameters
/// * rvec1: First rotation vector.
/// * tvec1: First translation vector.
/// * rvec2: Second rotation vector.
/// * tvec2: Second translation vector.
/// * rvec3: Output rotation vector of the superposition.
/// * tvec3: Output translation vector of the superposition.
/// * dr3dr1: Optional output derivative of rvec3 with regard to rvec1
/// * dr3dt1: Optional output derivative of rvec3 with regard to tvec1
/// * dr3dr2: Optional output derivative of rvec3 with regard to rvec2
/// * dr3dt2: Optional output derivative of rvec3 with regard to tvec2
/// * dt3dr1: Optional output derivative of tvec3 with regard to rvec1
/// * dt3dt1: Optional output derivative of tvec3 with regard to tvec1
/// * dt3dr2: Optional output derivative of tvec3 with regard to rvec2
/// * dt3dt2: Optional output derivative of tvec3 with regard to tvec2
/// 
/// The functions compute:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Barray%7D%7Bl%7D%20%5Ctexttt%7Brvec3%7D%20%3D%20%20%5Cmathrm%7Brodrigues%7D%20%5E%7B%2D1%7D%20%5Cleft%20%28%20%5Cmathrm%7Brodrigues%7D%20%28%20%5Ctexttt%7Brvec2%7D%20%29%20%20%5Ccdot%20%5Cmathrm%7Brodrigues%7D%20%28%20%5Ctexttt%7Brvec1%7D%20%29%20%5Cright%20%29%20%20%5C%5C%20%5Ctexttt%7Btvec3%7D%20%3D%20%20%5Cmathrm%7Brodrigues%7D%20%28%20%5Ctexttt%7Brvec2%7D%20%29%20%20%5Ccdot%20%5Ctexttt%7Btvec1%7D%20%2B%20%20%5Ctexttt%7Btvec2%7D%20%5Cend%7Barray%7D%20%2C)
/// 
/// where ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathrm%7Brodrigues%7D) denotes a rotation vector to a rotation matrix transformation, and
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathrm%7Brodrigues%7D%5E%7B%2D1%7D) denotes the inverse transformation. See Rodrigues for details.
/// 
/// Also, the functions can compute the derivatives of the output vectors with regards to the input
/// vectors (see matMulDeriv ). The functions are used inside stereoCalibrate but can also be used in
/// your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
/// function that contains a matrix multiplication.
/// 
/// ## C++ default parameters
/// * dr3dr1: noArray()
/// * dr3dt1: noArray()
/// * dr3dr2: noArray()
/// * dr3dt2: noArray()
/// * dt3dr1: noArray()
/// * dt3dt1: noArray()
/// * dt3dr2: noArray()
/// * dt3dt2: noArray()
pub fn compose_rt(rvec1: &dyn core::ToInputArray, tvec1: &dyn core::ToInputArray, rvec2: &dyn core::ToInputArray, tvec2: &dyn core::ToInputArray, rvec3: &mut dyn core::ToOutputArray, tvec3: &mut dyn core::ToOutputArray, dr3dr1: &mut dyn core::ToOutputArray, dr3dt1: &mut dyn core::ToOutputArray, dr3dr2: &mut dyn core::ToOutputArray, dr3dt2: &mut dyn core::ToOutputArray, dt3dr1: &mut dyn core::ToOutputArray, dt3dt1: &mut dyn core::ToOutputArray, dt3dr2: &mut dyn core::ToOutputArray, dt3dt2: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(rvec1);
	input_array_arg!(tvec1);
	input_array_arg!(rvec2);
	input_array_arg!(tvec2);
	output_array_arg!(rvec3);
	output_array_arg!(tvec3);
	output_array_arg!(dr3dr1);
	output_array_arg!(dr3dt1);
	output_array_arg!(dr3dr2);
	output_array_arg!(dr3dt2);
	output_array_arg!(dt3dr1);
	output_array_arg!(dt3dt1);
	output_array_arg!(dt3dr2);
	output_array_arg!(dt3dt2);
	unsafe { sys::cv_composeRT_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(rvec1.as_raw__InputArray(), tvec1.as_raw__InputArray(), rvec2.as_raw__InputArray(), tvec2.as_raw__InputArray(), rvec3.as_raw__OutputArray(), tvec3.as_raw__OutputArray(), dr3dr1.as_raw__OutputArray(), dr3dt1.as_raw__OutputArray(), dr3dr2.as_raw__OutputArray(), dr3dt2.as_raw__OutputArray(), dt3dr1.as_raw__OutputArray(), dt3dt1.as_raw__OutputArray(), dt3dr2.as_raw__OutputArray(), dt3dt2.as_raw__OutputArray()) }.into_result()
}

/// For points in an image of a stereo pair, computes the corresponding epilines in the other image.
/// 
/// ## Parameters
/// * points: Input points. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Ctimes%201) or ![inline formula](https://latex.codecogs.com/png.latex?1%20%5Ctimes%20N) matrix of type CV_32FC2 or
/// vector\<Point2f\> .
/// * whichImage: Index of the image (1 or 2) that contains the points .
/// * F: Fundamental matrix that can be estimated using findFundamentalMat or stereoRectify .
/// * lines: Output vector of the epipolar lines corresponding to the points in the other image.
/// Each line ![inline formula](https://latex.codecogs.com/png.latex?ax%20%2B%20by%20%2B%20c%3D0) is encoded by 3 numbers ![inline formula](https://latex.codecogs.com/png.latex?%28a%2C%20b%2C%20c%29) .
/// 
/// For every point in one of the two images of a stereo pair, the function finds the equation of the
/// corresponding epipolar line in the other image.
/// 
/// From the fundamental matrix definition (see findFundamentalMat ), line ![inline formula](https://latex.codecogs.com/png.latex?l%5E%7B%282%29%7D%5Fi) in the second
/// image for the point ![inline formula](https://latex.codecogs.com/png.latex?p%5E%7B%281%29%7D%5Fi) in the first image (when whichImage=1 ) is computed as:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?l%5E%7B%282%29%7D%5Fi%20%3D%20F%20p%5E%7B%281%29%7D%5Fi)
/// 
/// And vice versa, when whichImage=2, ![inline formula](https://latex.codecogs.com/png.latex?l%5E%7B%281%29%7D%5Fi) is computed from ![inline formula](https://latex.codecogs.com/png.latex?p%5E%7B%282%29%7D%5Fi) as:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?l%5E%7B%281%29%7D%5Fi%20%3D%20F%5ET%20p%5E%7B%282%29%7D%5Fi)
/// 
/// Line coefficients are defined up to a scale. They are normalized so that ![inline formula](https://latex.codecogs.com/png.latex?a%5Fi%5E2%2Bb%5Fi%5E2%3D1) .
pub fn compute_correspond_epilines(points: &dyn core::ToInputArray, which_image: i32, f: &dyn core::ToInputArray, lines: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(points);
	input_array_arg!(f);
	output_array_arg!(lines);
	unsafe { sys::cv_computeCorrespondEpilines_const__InputArrayR_int_const__InputArrayR_const__OutputArrayR(points.as_raw__InputArray(), which_image, f.as_raw__InputArray(), lines.as_raw__OutputArray()) }.into_result()
}

/// Converts points from homogeneous to Euclidean space.
/// 
/// ## Parameters
/// * src: Input vector of N-dimensional points.
/// * dst: Output vector of N-1-dimensional points.
/// 
/// The function converts points homogeneous to Euclidean space using perspective projection. That is,
/// each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the
/// output point coordinates will be (0,0,0,...).
pub fn convert_points_from_homogeneous(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	unsafe { sys::cv_convertPointsFromHomogeneous_const__InputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray()) }.into_result()
}

/// Converts points to/from homogeneous coordinates.
/// 
/// ## Parameters
/// * src: Input array or vector of 2D, 3D, or 4D points.
/// * dst: Output vector of 2D, 3D, or 4D points.
/// 
/// The function converts 2D or 3D points from/to homogeneous coordinates by calling either
/// convertPointsToHomogeneous or convertPointsFromHomogeneous.
/// 
/// 
/// Note: The function is obsolete. Use one of the previous two functions instead.
pub fn convert_points_homogeneous(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	unsafe { sys::cv_convertPointsHomogeneous_const__InputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray()) }.into_result()
}

/// Converts points from Euclidean to homogeneous space.
/// 
/// ## Parameters
/// * src: Input vector of N-dimensional points.
/// * dst: Output vector of N+1-dimensional points.
/// 
/// The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of
/// point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).
pub fn convert_points_to_homogeneous(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	unsafe { sys::cv_convertPointsToHomogeneous_const__InputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray()) }.into_result()
}

/// Refines coordinates of corresponding points.
/// 
/// ## Parameters
/// * F: 3x3 fundamental matrix.
/// * points1: 1xN array containing the first set of points.
/// * points2: 1xN array containing the second set of points.
/// * newPoints1: The optimized points1.
/// * newPoints2: The optimized points2.
/// 
/// The function implements the Optimal Triangulation Method (see Multiple View Geometry for details).
/// For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it
/// computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric
/// error ![inline formula](https://latex.codecogs.com/png.latex?d%28points1%5Bi%5D%2C%20newPoints1%5Bi%5D%29%5E2%20%2B%20d%28points2%5Bi%5D%2CnewPoints2%5Bi%5D%29%5E2) (where ![inline formula](https://latex.codecogs.com/png.latex?d%28a%2Cb%29) is the
/// geometric distance between points ![inline formula](https://latex.codecogs.com/png.latex?a) and ![inline formula](https://latex.codecogs.com/png.latex?b) ) subject to the epipolar constraint
/// ![inline formula](https://latex.codecogs.com/png.latex?newPoints2%5ET%20%2A%20F%20%2A%20newPoints1%20%3D%200) .
pub fn correct_matches(f: &dyn core::ToInputArray, points1: &dyn core::ToInputArray, points2: &dyn core::ToInputArray, new_points1: &mut dyn core::ToOutputArray, new_points2: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(f);
	input_array_arg!(points1);
	input_array_arg!(points2);
	output_array_arg!(new_points1);
	output_array_arg!(new_points2);
	unsafe { sys::cv_correctMatches_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(f.as_raw__InputArray(), points1.as_raw__InputArray(), points2.as_raw__InputArray(), new_points1.as_raw__OutputArray(), new_points2.as_raw__OutputArray()) }.into_result()
}

/// Decompose an essential matrix to possible rotations and translation.
/// 
/// ## Parameters
/// * E: The input essential matrix.
/// * R1: One possible rotation matrix.
/// * R2: Another possible rotation matrix.
/// * t: One possible translation.
/// 
/// This function decomposes the essential matrix E using svd decomposition [HartleyZ00](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_HartleyZ00). In
/// general, four possible poses exist for the decomposition of E. They are ![inline formula](https://latex.codecogs.com/png.latex?%5BR%5F1%2C%20t%5D),
/// ![inline formula](https://latex.codecogs.com/png.latex?%5BR%5F1%2C%20%2Dt%5D), ![inline formula](https://latex.codecogs.com/png.latex?%5BR%5F2%2C%20t%5D), ![inline formula](https://latex.codecogs.com/png.latex?%5BR%5F2%2C%20%2Dt%5D).
/// 
/// If E gives the epipolar constraint ![inline formula](https://latex.codecogs.com/png.latex?%5Bp%5F2%3B%201%5D%5ET%20A%5E%7B%2DT%7D%20E%20A%5E%7B%2D1%7D%20%5Bp%5F1%3B%201%5D%20%3D%200) between the image
/// points ![inline formula](https://latex.codecogs.com/png.latex?p%5F1) in the first image and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) in second image, then any of the tuples
/// ![inline formula](https://latex.codecogs.com/png.latex?%5BR%5F1%2C%20t%5D), ![inline formula](https://latex.codecogs.com/png.latex?%5BR%5F1%2C%20%2Dt%5D), ![inline formula](https://latex.codecogs.com/png.latex?%5BR%5F2%2C%20t%5D), ![inline formula](https://latex.codecogs.com/png.latex?%5BR%5F2%2C%20%2Dt%5D) is a change of basis from the first
/// camera's coordinate system to the second camera's coordinate system. However, by decomposing E, one
/// can only get the direction of the translation. For this reason, the translation t is returned with
/// unit length.
pub fn decompose_essential_mat(e: &dyn core::ToInputArray, r1: &mut dyn core::ToOutputArray, r2: &mut dyn core::ToOutputArray, t: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(e);
	output_array_arg!(r1);
	output_array_arg!(r2);
	output_array_arg!(t);
	unsafe { sys::cv_decomposeEssentialMat_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(e.as_raw__InputArray(), r1.as_raw__OutputArray(), r2.as_raw__OutputArray(), t.as_raw__OutputArray()) }.into_result()
}

/// Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
/// 
/// ## Parameters
/// * H: The input homography matrix between two images.
/// * K: The input camera intrinsic matrix.
/// * rotations: Array of rotation matrices.
/// * translations: Array of translation matrices.
/// * normals: Array of plane normal matrices.
/// 
/// This function extracts relative camera motion between two views of a planar object and returns up to
/// four mathematical solution tuples of rotation, translation, and plane normal. The decomposition of
/// the homography matrix H is described in detail in [Malis](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Malis).
/// 
/// If the homography H, induced by the plane, gives the constraint
/// ![block formula](https://latex.codecogs.com/png.latex?s%5Fi%20%5Cbegin%7Bbmatrix%7D%20x%27%5Fi%5C%5C%20y%27%5Fi%5C%5C%201%20%5Cend%7Bbmatrix%7D%20%5Csim%20H%20%5Cbegin%7Bbmatrix%7D%20x%5Fi%5C%5C%20y%5Fi%5C%5C%201%20%5Cend%7Bbmatrix%7D) on the source image points
/// ![inline formula](https://latex.codecogs.com/png.latex?p%5Fi) and the destination image points ![inline formula](https://latex.codecogs.com/png.latex?p%27%5Fi), then the tuple of rotations[k] and
/// translations[k] is a change of basis from the source camera's coordinate system to the destination
/// camera's coordinate system. However, by decomposing H, one can only get the translation normalized
/// by the (typically unknown) depth of the scene, i.e. its direction but with normalized length.
/// 
/// If point correspondences are available, at least two solutions may further be invalidated, by
/// applying positive depth constraint, i.e. all points must be in front of the camera.
pub fn decompose_homography_mat(h: &dyn core::ToInputArray, k: &dyn core::ToInputArray, rotations: &mut dyn core::ToOutputArray, translations: &mut dyn core::ToOutputArray, normals: &mut dyn core::ToOutputArray) -> Result<i32> {
	input_array_arg!(h);
	input_array_arg!(k);
	output_array_arg!(rotations);
	output_array_arg!(translations);
	output_array_arg!(normals);
	unsafe { sys::cv_decomposeHomographyMat_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(h.as_raw__InputArray(), k.as_raw__InputArray(), rotations.as_raw__OutputArray(), translations.as_raw__OutputArray(), normals.as_raw__OutputArray()) }.into_result()
}

/// Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.
/// 
/// ## Parameters
/// * projMatrix: 3x4 input projection matrix P.
/// * cameraMatrix: Output 3x3 camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D).
/// * rotMatrix: Output 3x3 external rotation matrix R.
/// * transVect: Output 4x1 translation vector T.
/// * rotMatrixX: Optional 3x3 rotation matrix around x-axis.
/// * rotMatrixY: Optional 3x3 rotation matrix around y-axis.
/// * rotMatrixZ: Optional 3x3 rotation matrix around z-axis.
/// * eulerAngles: Optional three-element vector containing three Euler angles of rotation in
/// degrees.
/// 
/// The function computes a decomposition of a projection matrix into a calibration and a rotation
/// matrix and the position of a camera.
/// 
/// It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
/// be used in OpenGL. Note, there is always more than one sequence of rotations about the three
/// principal axes that results in the same orientation of an object, e.g. see [Slabaugh](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Slabaugh) . Returned
/// tree rotation matrices and corresponding three Euler angles are only one of the possible solutions.
/// 
/// The function is based on RQDecomp3x3 .
/// 
/// ## C++ default parameters
/// * rot_matrix_x: noArray()
/// * rot_matrix_y: noArray()
/// * rot_matrix_z: noArray()
/// * euler_angles: noArray()
pub fn decompose_projection_matrix(proj_matrix: &dyn core::ToInputArray, camera_matrix: &mut dyn core::ToOutputArray, rot_matrix: &mut dyn core::ToOutputArray, trans_vect: &mut dyn core::ToOutputArray, rot_matrix_x: &mut dyn core::ToOutputArray, rot_matrix_y: &mut dyn core::ToOutputArray, rot_matrix_z: &mut dyn core::ToOutputArray, euler_angles: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(proj_matrix);
	output_array_arg!(camera_matrix);
	output_array_arg!(rot_matrix);
	output_array_arg!(trans_vect);
	output_array_arg!(rot_matrix_x);
	output_array_arg!(rot_matrix_y);
	output_array_arg!(rot_matrix_z);
	output_array_arg!(euler_angles);
	unsafe { sys::cv_decomposeProjectionMatrix_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(proj_matrix.as_raw__InputArray(), camera_matrix.as_raw__OutputArray(), rot_matrix.as_raw__OutputArray(), trans_vect.as_raw__OutputArray(), rot_matrix_x.as_raw__OutputArray(), rot_matrix_y.as_raw__OutputArray(), rot_matrix_z.as_raw__OutputArray(), euler_angles.as_raw__OutputArray()) }.into_result()
}

/// Renders the detected chessboard corners.
/// 
/// ## Parameters
/// * image: Destination image. It must be an 8-bit color image.
/// * patternSize: Number of inner corners per a chessboard row and column
/// (patternSize = cv::Size(points_per_row,points_per_column)).
/// * corners: Array of detected corners, the output of findChessboardCorners.
/// * patternWasFound: Parameter indicating whether the complete board was found or not. The
/// return value of findChessboardCorners should be passed here.
/// 
/// The function draws individual chessboard corners detected either as red circles if the board was not
/// found, or as colored corners connected with lines if the board was found.
pub fn draw_chessboard_corners(image: &mut dyn core::ToInputOutputArray, pattern_size: core::Size, corners: &dyn core::ToInputArray, pattern_was_found: bool) -> Result<()> {
	input_output_array_arg!(image);
	input_array_arg!(corners);
	unsafe { sys::cv_drawChessboardCorners_const__InputOutputArrayR_Size_const__InputArrayR_bool(image.as_raw__InputOutputArray(), pattern_size.opencv_as_extern(), corners.as_raw__InputArray(), pattern_was_found) }.into_result()
}

/// Draw axes of the world/object coordinate system from pose estimation. see also: solvePnP
/// 
/// ## Parameters
/// * image: Input/output image. It must have 1 or 3 channels. The number of channels is not altered.
/// * cameraMatrix: Input 3x3 floating-point matrix of camera intrinsic parameters.
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D)
/// * distCoeffs: Input vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is empty, the zero distortion coefficients are assumed.
/// * rvec: Rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
/// the model coordinate system to the camera coordinate system.
/// * tvec: Translation vector.
/// * length: Length of the painted axes in the same unit than tvec (usually in meters).
/// * thickness: Line thickness of the painted axes.
/// 
/// This function draws the axes of the world/object coordinate system w.r.t. to the camera frame.
/// OX is drawn in red, OY in green and OZ in blue.
/// 
/// ## C++ default parameters
/// * thickness: 3
pub fn draw_frame_axes(image: &mut dyn core::ToInputOutputArray, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, rvec: &dyn core::ToInputArray, tvec: &dyn core::ToInputArray, length: f32, thickness: i32) -> Result<()> {
	input_output_array_arg!(image);
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	input_array_arg!(rvec);
	input_array_arg!(tvec);
	unsafe { sys::cv_drawFrameAxes_const__InputOutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_float_int(image.as_raw__InputOutputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__InputArray(), tvec.as_raw__InputArray(), length, thickness) }.into_result()
}

pub fn estimate_affine_2d_1(pts1: &dyn core::ToInputArray, pts2: &dyn core::ToInputArray, inliers: &mut dyn core::ToOutputArray, params: crate::calib3d::UsacParams) -> Result<core::Mat> {
	input_array_arg!(pts1);
	input_array_arg!(pts2);
	output_array_arg!(inliers);
	unsafe { sys::cv_estimateAffine2D_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const_UsacParamsR(pts1.as_raw__InputArray(), pts2.as_raw__InputArray(), inliers.as_raw__OutputArray(), &params) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
}

/// Computes an optimal affine transformation between two 2D point sets.
/// 
/// It computes
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Bbmatrix%7D%0Ax%5C%5C%0Ay%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0Aa%5F%7B11%7D%20%26%20a%5F%7B12%7D%5C%5C%0Aa%5F%7B21%7D%20%26%20a%5F%7B22%7D%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7D%0AX%5C%5C%0AY%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%2B%0A%5Cbegin%7Bbmatrix%7D%0Ab%5F1%5C%5C%0Ab%5F2%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
/// 
/// ## Parameters
/// * from: First input 2D point set containing ![inline formula](https://latex.codecogs.com/png.latex?%28X%2CY%29).
/// * to: Second input 2D point set containing ![inline formula](https://latex.codecogs.com/png.latex?%28x%2Cy%29).
/// * inliers: Output vector indicating which points are inliers (1-inlier, 0-outlier).
/// * method: Robust method used to compute transformation. The following methods are possible:
/// *   @ref RANSAC - RANSAC-based robust method
/// *   @ref LMEDS - Least-Median robust method
/// RANSAC is the default method.
/// * ransacReprojThreshold: Maximum reprojection error in the RANSAC algorithm to consider
/// a point as an inlier. Applies only to RANSAC.
/// * maxIters: The maximum number of robust method iterations.
/// * confidence: Confidence level, between 0 and 1, for the estimated transformation. Anything
/// between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
/// significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
/// * refineIters: Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
/// Passing 0 will disable refining, so the output matrix will be output of robust method.
/// 
/// ## Returns
/// Output 2D affine transformation matrix ![inline formula](https://latex.codecogs.com/png.latex?2%20%5Ctimes%203) or empty matrix if transformation
/// could not be estimated. The returned matrix has the following form:
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Bbmatrix%7D%0Aa%5F%7B11%7D%20%26%20a%5F%7B12%7D%20%26%20b%5F1%5C%5C%0Aa%5F%7B21%7D%20%26%20a%5F%7B22%7D%20%26%20b%5F2%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
/// 
/// The function estimates an optimal 2D affine transformation between two 2D point sets using the
/// selected robust algorithm.
/// 
/// The computed transformation is then refined further (using only inliers) with the
/// Levenberg-Marquardt method to reduce the re-projection error even more.
/// 
/// 
/// Note:
/// The RANSAC method can handle practically any ratio of outliers but needs a threshold to
/// distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
/// correctly only when there are more than 50% of inliers.
/// ## See also
/// estimateAffinePartial2D, getAffineTransform
/// 
/// ## C++ default parameters
/// * inliers: noArray()
/// * method: RANSAC
/// * ransac_reproj_threshold: 3
/// * max_iters: 2000
/// * confidence: 0.99
/// * refine_iters: 10
pub fn estimate_affine_2d(from: &dyn core::ToInputArray, to: &dyn core::ToInputArray, inliers: &mut dyn core::ToOutputArray, method: i32, ransac_reproj_threshold: f64, max_iters: size_t, confidence: f64, refine_iters: size_t) -> Result<core::Mat> {
	input_array_arg!(from);
	input_array_arg!(to);
	output_array_arg!(inliers);
	unsafe { sys::cv_estimateAffine2D_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_double_size_t_double_size_t(from.as_raw__InputArray(), to.as_raw__InputArray(), inliers.as_raw__OutputArray(), method, ransac_reproj_threshold, max_iters, confidence, refine_iters) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
}

/// Computes an optimal affine transformation between two 3D point sets.
/// 
/// It computes
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Bbmatrix%7D%0Ax%5C%5C%0Ay%5C%5C%0Az%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0Aa%5F%7B11%7D%20%26%20a%5F%7B12%7D%20%26%20a%5F%7B13%7D%5C%5C%0Aa%5F%7B21%7D%20%26%20a%5F%7B22%7D%20%26%20a%5F%7B23%7D%5C%5C%0Aa%5F%7B31%7D%20%26%20a%5F%7B32%7D%20%26%20a%5F%7B33%7D%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7D%0AX%5C%5C%0AY%5C%5C%0AZ%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%2B%0A%5Cbegin%7Bbmatrix%7D%0Ab%5F1%5C%5C%0Ab%5F2%5C%5C%0Ab%5F3%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
/// 
/// ## Parameters
/// * src: First input 3D point set containing ![inline formula](https://latex.codecogs.com/png.latex?%28X%2CY%2CZ%29).
/// * dst: Second input 3D point set containing ![inline formula](https://latex.codecogs.com/png.latex?%28x%2Cy%2Cz%29).
/// * out: Output 3D affine transformation matrix ![inline formula](https://latex.codecogs.com/png.latex?3%20%5Ctimes%204) of the form
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Bbmatrix%7D%0Aa%5F%7B11%7D%20%26%20a%5F%7B12%7D%20%26%20a%5F%7B13%7D%20%26%20b%5F1%5C%5C%0Aa%5F%7B21%7D%20%26%20a%5F%7B22%7D%20%26%20a%5F%7B23%7D%20%26%20b%5F2%5C%5C%0Aa%5F%7B31%7D%20%26%20a%5F%7B32%7D%20%26%20a%5F%7B33%7D%20%26%20b%5F3%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
/// * inliers: Output vector indicating which points are inliers (1-inlier, 0-outlier).
/// * ransacThreshold: Maximum reprojection error in the RANSAC algorithm to consider a point as
/// an inlier.
/// * confidence: Confidence level, between 0 and 1, for the estimated transformation. Anything
/// between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
/// significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
/// 
/// The function estimates an optimal 3D affine transformation between two 3D point sets using the
/// RANSAC algorithm.
/// 
/// ## C++ default parameters
/// * ransac_threshold: 3
/// * confidence: 0.99
pub fn estimate_affine_3d(src: &dyn core::ToInputArray, dst: &dyn core::ToInputArray, out: &mut dyn core::ToOutputArray, inliers: &mut dyn core::ToOutputArray, ransac_threshold: f64, confidence: f64) -> Result<i32> {
	input_array_arg!(src);
	input_array_arg!(dst);
	output_array_arg!(out);
	output_array_arg!(inliers);
	unsafe { sys::cv_estimateAffine3D_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_double_double(src.as_raw__InputArray(), dst.as_raw__InputArray(), out.as_raw__OutputArray(), inliers.as_raw__OutputArray(), ransac_threshold, confidence) }.into_result()
}

/// Computes an optimal limited affine transformation with 4 degrees of freedom between
/// two 2D point sets.
/// 
/// ## Parameters
/// * from: First input 2D point set.
/// * to: Second input 2D point set.
/// * inliers: Output vector indicating which points are inliers.
/// * method: Robust method used to compute transformation. The following methods are possible:
/// *   @ref RANSAC - RANSAC-based robust method
/// *   @ref LMEDS - Least-Median robust method
/// RANSAC is the default method.
/// * ransacReprojThreshold: Maximum reprojection error in the RANSAC algorithm to consider
/// a point as an inlier. Applies only to RANSAC.
/// * maxIters: The maximum number of robust method iterations.
/// * confidence: Confidence level, between 0 and 1, for the estimated transformation. Anything
/// between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
/// significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
/// * refineIters: Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
/// Passing 0 will disable refining, so the output matrix will be output of robust method.
/// 
/// ## Returns
/// Output 2D affine transformation (4 degrees of freedom) matrix ![inline formula](https://latex.codecogs.com/png.latex?2%20%5Ctimes%203) or
/// empty matrix if transformation could not be estimated.
/// 
/// The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
/// combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
/// estimation.
/// 
/// The computed transformation is then refined further (using only inliers) with the
/// Levenberg-Marquardt method to reduce the re-projection error even more.
/// 
/// Estimated transformation matrix is:
/// ![block formula](https://latex.codecogs.com/png.latex?%20%5Cbegin%7Bbmatrix%7D%20%5Ccos%28%5Ctheta%29%20%5Ccdot%20s%20%26%20%2D%5Csin%28%5Ctheta%29%20%5Ccdot%20s%20%26%20t%5Fx%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Csin%28%5Ctheta%29%20%5Ccdot%20s%20%26%20%5Ccos%28%5Ctheta%29%20%5Ccdot%20s%20%26%20t%5Fy%0A%5Cend%7Bbmatrix%7D%20)
/// Where ![inline formula](https://latex.codecogs.com/png.latex?%20%5Ctheta%20) is the rotation angle, ![inline formula](https://latex.codecogs.com/png.latex?%20s%20) the scaling factor and ![inline formula](https://latex.codecogs.com/png.latex?%20t%5Fx%2C%20t%5Fy%20) are
/// translations in ![inline formula](https://latex.codecogs.com/png.latex?%20x%2C%20y%20) axes respectively.
/// 
/// 
/// Note:
/// The RANSAC method can handle practically any ratio of outliers but need a threshold to
/// distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
/// correctly only when there are more than 50% of inliers.
/// ## See also
/// estimateAffine2D, getAffineTransform
/// 
/// ## C++ default parameters
/// * inliers: noArray()
/// * method: RANSAC
/// * ransac_reproj_threshold: 3
/// * max_iters: 2000
/// * confidence: 0.99
/// * refine_iters: 10
pub fn estimate_affine_partial_2d(from: &dyn core::ToInputArray, to: &dyn core::ToInputArray, inliers: &mut dyn core::ToOutputArray, method: i32, ransac_reproj_threshold: f64, max_iters: size_t, confidence: f64, refine_iters: size_t) -> Result<core::Mat> {
	input_array_arg!(from);
	input_array_arg!(to);
	output_array_arg!(inliers);
	unsafe { sys::cv_estimateAffinePartial2D_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_double_size_t_double_size_t(from.as_raw__InputArray(), to.as_raw__InputArray(), inliers.as_raw__OutputArray(), method, ransac_reproj_threshold, max_iters, confidence, refine_iters) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
}

/// Estimates the sharpness of a detected chessboard.
/// 
/// Image sharpness, as well as brightness, are a critical parameter for accuracte
/// camera calibration. For accessing these parameters for filtering out
/// problematic calibraiton images, this method calculates edge profiles by traveling from
/// black to white chessboard cell centers. Based on this, the number of pixels is
/// calculated required to transit from black to white. This width of the
/// transition area is a good indication of how sharp the chessboard is imaged
/// and should be below ~3.0 pixels.
/// 
/// ## Parameters
/// * image: Gray image used to find chessboard corners
/// * patternSize: Size of a found chessboard pattern
/// * corners: Corners found by findChessboardCorners(SB)
/// * rise_distance: Rise distance 0.8 means 10% ... 90% of the final signal strength
/// * vertical: By default edge responses for horizontal lines are calculated
/// * sharpness: Optional output array with a sharpness value for calculated edge responses (see description)
/// 
/// The optional sharpness array is of type CV_32FC1 and has for each calculated
/// profile one row with the following five entries:
/// * 0 = x coordinate of the underlying edge in the image
/// * 1 = y coordinate of the underlying edge in the image
/// * 2 = width of the transition area (sharpness)
/// * 3 = signal strength in the black cell (min brightness)
/// * 4 = signal strength in the white cell (max brightness)
/// 
/// ## Returns
/// Scalar(average sharpness, average min brightness, average max brightness,0)
/// 
/// ## C++ default parameters
/// * rise_distance: 0.8F
/// * vertical: false
/// * sharpness: noArray()
pub fn estimate_chessboard_sharpness(image: &dyn core::ToInputArray, pattern_size: core::Size, corners: &dyn core::ToInputArray, rise_distance: f32, vertical: bool, sharpness: &mut dyn core::ToOutputArray) -> Result<core::Scalar> {
	input_array_arg!(image);
	input_array_arg!(corners);
	output_array_arg!(sharpness);
	unsafe { sys::cv_estimateChessboardSharpness_const__InputArrayR_Size_const__InputArrayR_float_bool_const__OutputArrayR(image.as_raw__InputArray(), pattern_size.opencv_as_extern(), corners.as_raw__InputArray(), rise_distance, vertical, sharpness.as_raw__OutputArray()) }.into_result()
}

/// Computes an optimal translation between two 3D point sets.
/// 
/// It computes
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Bbmatrix%7D%0Ax%5C%5C%0Ay%5C%5C%0Az%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0AX%5C%5C%0AY%5C%5C%0AZ%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%2B%0A%5Cbegin%7Bbmatrix%7D%0Ab%5F1%5C%5C%0Ab%5F2%5C%5C%0Ab%5F3%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
/// 
/// ## Parameters
/// * src: First input 3D point set containing ![inline formula](https://latex.codecogs.com/png.latex?%28X%2CY%2CZ%29).
/// * dst: Second input 3D point set containing ![inline formula](https://latex.codecogs.com/png.latex?%28x%2Cy%2Cz%29).
/// * out: Output 3D translation vector ![inline formula](https://latex.codecogs.com/png.latex?3%20%5Ctimes%201) of the form
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Bbmatrix%7D%0Ab%5F1%20%5C%5C%0Ab%5F2%20%5C%5C%0Ab%5F3%20%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
/// * inliers: Output vector indicating which points are inliers (1-inlier, 0-outlier).
/// * ransacThreshold: Maximum reprojection error in the RANSAC algorithm to consider a point as
/// an inlier.
/// * confidence: Confidence level, between 0 and 1, for the estimated transformation. Anything
/// between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
/// significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
/// 
/// The function estimates an optimal 3D translation between two 3D point sets using the
/// RANSAC algorithm.
/// 
/// ## C++ default parameters
/// * ransac_threshold: 3
/// * confidence: 0.99
pub fn estimate_translation_3d(src: &dyn core::ToInputArray, dst: &dyn core::ToInputArray, out: &mut dyn core::ToOutputArray, inliers: &mut dyn core::ToOutputArray, ransac_threshold: f64, confidence: f64) -> Result<i32> {
	input_array_arg!(src);
	input_array_arg!(dst);
	output_array_arg!(out);
	output_array_arg!(inliers);
	unsafe { sys::cv_estimateTranslation3D_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_double_double(src.as_raw__InputArray(), dst.as_raw__InputArray(), out.as_raw__OutputArray(), inliers.as_raw__OutputArray(), ransac_threshold, confidence) }.into_result()
}

/// Filters homography decompositions based on additional information.
/// 
/// ## Parameters
/// * rotations: Vector of rotation matrices.
/// * normals: Vector of plane normal matrices.
/// * beforePoints: Vector of (rectified) visible reference points before the homography is applied
/// * afterPoints: Vector of (rectified) visible reference points after the homography is applied
/// * possibleSolutions: Vector of int indices representing the viable solution set after filtering
/// * pointsMask: optional Mat/Vector of 8u type representing the mask for the inliers as given by the findHomography function
/// 
/// This function is intended to filter the output of the decomposeHomographyMat based on additional
/// information as described in [Malis](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Malis) . The summary of the method: the decomposeHomographyMat function
/// returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the
/// sets of points visible in the camera frame before and after the homography transformation is applied,
/// we can determine which are the true potential solutions and which are the opposites by verifying which
/// homographies are consistent with all visible reference points being in front of the camera. The inputs
/// are left unchanged; the filtered solution set is returned as indices into the existing one.
/// 
/// ## C++ default parameters
/// * points_mask: noArray()
pub fn filter_homography_decomp_by_visible_refpoints(rotations: &dyn core::ToInputArray, normals: &dyn core::ToInputArray, before_points: &dyn core::ToInputArray, after_points: &dyn core::ToInputArray, possible_solutions: &mut dyn core::ToOutputArray, points_mask: &dyn core::ToInputArray) -> Result<()> {
	input_array_arg!(rotations);
	input_array_arg!(normals);
	input_array_arg!(before_points);
	input_array_arg!(after_points);
	output_array_arg!(possible_solutions);
	input_array_arg!(points_mask);
	unsafe { sys::cv_filterHomographyDecompByVisibleRefpoints_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__InputArrayR(rotations.as_raw__InputArray(), normals.as_raw__InputArray(), before_points.as_raw__InputArray(), after_points.as_raw__InputArray(), possible_solutions.as_raw__OutputArray(), points_mask.as_raw__InputArray()) }.into_result()
}

/// Filters off small noise blobs (speckles) in the disparity map
/// 
/// ## Parameters
/// * img: The input 16-bit signed disparity image
/// * newVal: The disparity value used to paint-off the speckles
/// * maxSpeckleSize: The maximum speckle size to consider it a speckle. Larger blobs are not
/// affected by the algorithm
/// * maxDiff: Maximum difference between neighbor disparity pixels to put them into the same
/// blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
/// disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
/// account when specifying this parameter value.
/// * buf: The optional temporary buffer to avoid memory allocation within the function.
/// 
/// ## C++ default parameters
/// * buf: noArray()
pub fn filter_speckles(img: &mut dyn core::ToInputOutputArray, new_val: f64, max_speckle_size: i32, max_diff: f64, buf: &mut dyn core::ToInputOutputArray) -> Result<()> {
	input_output_array_arg!(img);
	input_output_array_arg!(buf);
	unsafe { sys::cv_filterSpeckles_const__InputOutputArrayR_double_int_double_const__InputOutputArrayR(img.as_raw__InputOutputArray(), new_val, max_speckle_size, max_diff, buf.as_raw__InputOutputArray()) }.into_result()
}

/// finds subpixel-accurate positions of the chessboard corners
pub fn find4_quad_corner_subpix(img: &dyn core::ToInputArray, corners: &mut dyn core::ToInputOutputArray, region_size: core::Size) -> Result<bool> {
	input_array_arg!(img);
	input_output_array_arg!(corners);
	unsafe { sys::cv_find4QuadCornerSubpix_const__InputArrayR_const__InputOutputArrayR_Size(img.as_raw__InputArray(), corners.as_raw__InputOutputArray(), region_size.opencv_as_extern()) }.into_result()
}

/// Finds the positions of internal corners of the chessboard using a sector based approach.
/// 
/// ## Parameters
/// * image: Source chessboard view. It must be an 8-bit grayscale or color image.
/// * patternSize: Number of inner corners per a chessboard row and column
/// ( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
/// * corners: Output array of detected corners.
/// * flags: Various operation flags that can be zero or a combination of the following values:
/// *   **CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before detection.
/// *   **CALIB_CB_EXHAUSTIVE** Run an exhaustive search to improve detection rate.
/// *   **CALIB_CB_ACCURACY** Up sample input image to improve sub-pixel accuracy due to aliasing effects.
/// *   **CALIB_CB_LARGER** The detected pattern is allowed to be larger than patternSize (see description).
/// *   **CALIB_CB_MARKER** The detected pattern must have a marker (see description).
/// This should be used if an accurate camera calibration is required.
/// * meta: Optional output arrray of detected corners (CV_8UC1 and size = cv::Size(columns,rows)).
/// Each entry stands for one corner of the pattern and can have one of the following values:
/// *   0 = no meta data attached
/// *   1 = left-top corner of a black cell
/// *   2 = left-top corner of a white cell
/// *   3 = left-top corner of a black cell with a white marker dot
/// *   4 = left-top corner of a white cell with a black marker dot (pattern origin in case of markers otherwise first corner)
/// 
/// The function is analog to findchessboardCorners but uses a localized radon
/// transformation approximated by box filters being more robust to all sort of
/// noise, faster on larger images and is able to directly return the sub-pixel
/// position of the internal chessboard corners. The Method is based on the paper
/// [duda2018](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_duda2018) "Accurate Detection and Localization of Checkerboard Corners for
/// Calibration" demonstrating that the returned sub-pixel positions are more
/// accurate than the one returned by cornerSubPix allowing a precise camera
/// calibration for demanding applications.
/// 
/// In the case, the flags **CALIB_CB_LARGER** or **CALIB_CB_MARKER** are given,
/// the result can be recovered from the optional meta array. Both flags are
/// helpful to use calibration patterns exceeding the field of view of the camera.
/// These oversized patterns allow more accurate calibrations as corners can be
/// utilized, which are as close as possible to the image borders.  For a
/// consistent coordinate system across all images, the optional marker (see image
/// below) can be used to move the origin of the board to the location where the
/// black circle is located.
/// 
/// 
/// Note: The function requires a white boarder with roughly the same width as one
/// of the checkerboard fields around the whole board to improve the detection in
/// various environments. In addition, because of the localized radon
/// transformation it is beneficial to use round corners for the field corners
/// which are located on the outside of the board. The following figure illustrates
/// a sample checkerboard optimized for the detection. However, any other checkerboard
/// can be used as well.
/// ![Checkerboard](https://docs.opencv.org/4.3.0/checkerboard_radon.png)
/// 
/// ## Overloaded parameters
/// 
/// ## C++ default parameters
/// * flags: 0
pub fn find_chessboard_corners_sb(image: &dyn core::ToInputArray, pattern_size: core::Size, corners: &mut dyn core::ToOutputArray, flags: i32) -> Result<bool> {
	input_array_arg!(image);
	output_array_arg!(corners);
	unsafe { sys::cv_findChessboardCornersSB_const__InputArrayR_Size_const__OutputArrayR_int(image.as_raw__InputArray(), pattern_size.opencv_as_extern(), corners.as_raw__OutputArray(), flags) }.into_result()
}

/// Finds the positions of internal corners of the chessboard using a sector based approach.
/// 
/// ## Parameters
/// * image: Source chessboard view. It must be an 8-bit grayscale or color image.
/// * patternSize: Number of inner corners per a chessboard row and column
/// ( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
/// * corners: Output array of detected corners.
/// * flags: Various operation flags that can be zero or a combination of the following values:
/// *   **CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before detection.
/// *   **CALIB_CB_EXHAUSTIVE** Run an exhaustive search to improve detection rate.
/// *   **CALIB_CB_ACCURACY** Up sample input image to improve sub-pixel accuracy due to aliasing effects.
/// *   **CALIB_CB_LARGER** The detected pattern is allowed to be larger than patternSize (see description).
/// *   **CALIB_CB_MARKER** The detected pattern must have a marker (see description).
/// This should be used if an accurate camera calibration is required.
/// * meta: Optional output arrray of detected corners (CV_8UC1 and size = cv::Size(columns,rows)).
/// Each entry stands for one corner of the pattern and can have one of the following values:
/// *   0 = no meta data attached
/// *   1 = left-top corner of a black cell
/// *   2 = left-top corner of a white cell
/// *   3 = left-top corner of a black cell with a white marker dot
/// *   4 = left-top corner of a white cell with a black marker dot (pattern origin in case of markers otherwise first corner)
/// 
/// The function is analog to findchessboardCorners but uses a localized radon
/// transformation approximated by box filters being more robust to all sort of
/// noise, faster on larger images and is able to directly return the sub-pixel
/// position of the internal chessboard corners. The Method is based on the paper
/// [duda2018](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_duda2018) "Accurate Detection and Localization of Checkerboard Corners for
/// Calibration" demonstrating that the returned sub-pixel positions are more
/// accurate than the one returned by cornerSubPix allowing a precise camera
/// calibration for demanding applications.
/// 
/// In the case, the flags **CALIB_CB_LARGER** or **CALIB_CB_MARKER** are given,
/// the result can be recovered from the optional meta array. Both flags are
/// helpful to use calibration patterns exceeding the field of view of the camera.
/// These oversized patterns allow more accurate calibrations as corners can be
/// utilized, which are as close as possible to the image borders.  For a
/// consistent coordinate system across all images, the optional marker (see image
/// below) can be used to move the origin of the board to the location where the
/// black circle is located.
/// 
/// 
/// Note: The function requires a white boarder with roughly the same width as one
/// of the checkerboard fields around the whole board to improve the detection in
/// various environments. In addition, because of the localized radon
/// transformation it is beneficial to use round corners for the field corners
/// which are located on the outside of the board. The following figure illustrates
/// a sample checkerboard optimized for the detection. However, any other checkerboard
/// can be used as well.
/// ![Checkerboard](https://docs.opencv.org/4.3.0/checkerboard_radon.png)
pub fn find_chessboard_corners_sb_with_meta(image: &dyn core::ToInputArray, pattern_size: core::Size, corners: &mut dyn core::ToOutputArray, flags: i32, meta: &mut dyn core::ToOutputArray) -> Result<bool> {
	input_array_arg!(image);
	output_array_arg!(corners);
	output_array_arg!(meta);
	unsafe { sys::cv_findChessboardCornersSB_const__InputArrayR_Size_const__OutputArrayR_int_const__OutputArrayR(image.as_raw__InputArray(), pattern_size.opencv_as_extern(), corners.as_raw__OutputArray(), flags, meta.as_raw__OutputArray()) }.into_result()
}

/// Finds the positions of internal corners of the chessboard.
/// 
/// ## Parameters
/// * image: Source chessboard view. It must be an 8-bit grayscale or color image.
/// * patternSize: Number of inner corners per a chessboard row and column
/// ( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
/// * corners: Output array of detected corners.
/// * flags: Various operation flags that can be zero or a combination of the following values:
/// *   @ref CALIB_CB_ADAPTIVE_THRESH Use adaptive thresholding to convert the image to black
/// and white, rather than a fixed threshold level (computed from the average image brightness).
/// *   @ref CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with equalizeHist before
/// applying fixed or adaptive thresholding.
/// *   @ref CALIB_CB_FILTER_QUADS Use additional criteria (like contour area, perimeter,
/// square-like shape) to filter out false quads extracted at the contour retrieval stage.
/// *   @ref CALIB_CB_FAST_CHECK Run a fast check on the image that looks for chessboard corners,
/// and shortcut the call if none is found. This can drastically speed up the call in the
/// degenerate condition when no chessboard is observed.
/// 
/// The function attempts to determine whether the input image is a view of the chessboard pattern and
/// locate the internal chessboard corners. The function returns a non-zero value if all of the corners
/// are found and they are placed in a certain order (row by row, left to right in every row).
/// Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
/// a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
/// squares touch each other. The detected coordinates are approximate, and to determine their positions
/// more accurately, the function calls cornerSubPix. You also may use the function cornerSubPix with
/// different parameters if returned coordinates are not accurate enough.
/// 
/// Sample usage of detecting and drawing chessboard corners: :
/// ```ignore
///    Size patternsize(8,6); //interior number of corners
///    Mat gray = ....; //source image
///    vector<Point2f> corners; //this will be filled by the detected corners
/// 
///    //CALIB_CB_FAST_CHECK saves a lot of time on images
///    //that do not contain any chessboard corners
///    bool patternfound = findChessboardCorners(gray, patternsize, corners,
///            CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
///            + CALIB_CB_FAST_CHECK);
/// 
///    if(patternfound)
///       cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
///        TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
/// 
///    drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
/// ```
/// 
/// 
/// Note: The function requires white space (like a square-thick border, the wider the better) around
/// the board to make the detection more robust in various environments. Otherwise, if there is no
/// border and the background is dark, the outer black squares cannot be segmented properly and so the
/// square grouping and ordering algorithm fails.
/// 
/// ## C++ default parameters
/// * flags: CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE
pub fn find_chessboard_corners(image: &dyn core::ToInputArray, pattern_size: core::Size, corners: &mut dyn core::ToOutputArray, flags: i32) -> Result<bool> {
	input_array_arg!(image);
	output_array_arg!(corners);
	unsafe { sys::cv_findChessboardCorners_const__InputArrayR_Size_const__OutputArrayR_int(image.as_raw__InputArray(), pattern_size.opencv_as_extern(), corners.as_raw__OutputArray(), flags) }.into_result()
}

/// Finds centers in the grid of circles.
/// 
/// ## Parameters
/// * image: grid view of input circles; it must be an 8-bit grayscale or color image.
/// * patternSize: number of circles per row and column
/// ( patternSize = Size(points_per_row, points_per_colum) ).
/// * centers: output array of detected centers.
/// * flags: various operation flags that can be one of the following values:
/// *   @ref CALIB_CB_SYMMETRIC_GRID uses symmetric pattern of circles.
/// *   @ref CALIB_CB_ASYMMETRIC_GRID uses asymmetric pattern of circles.
/// *   @ref CALIB_CB_CLUSTERING uses a special algorithm for grid detection. It is more robust to
/// perspective distortions but much more sensitive to background clutter.
/// * blobDetector: feature detector that finds blobs like dark circles on light background.
///                    If `blobDetector` is NULL then `image` represents Point2f array of candidates.
/// * parameters: struct for finding circles in a grid pattern.
/// 
/// The function attempts to determine whether the input image contains a grid of circles. If it is, the
/// function locates centers of the circles. The function returns a non-zero value if all of the centers
/// have been found and they have been placed in a certain order (row by row, left to right in every
/// row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.
/// 
/// Sample usage of detecting and drawing the centers of circles: :
/// ```ignore
///    Size patternsize(7,7); //number of centers
///    Mat gray = ...; //source image
///    vector<Point2f> centers; //this will be filled by the detected centers
/// 
///    bool patternfound = findCirclesGrid(gray, patternsize, centers);
/// 
///    drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
/// ```
/// 
/// 
/// Note: The function requires white space (like a square-thick border, the wider the better) around
/// the board to make the detection more robust in various environments.
/// 
/// ## Overloaded parameters
/// 
/// ## C++ default parameters
/// * flags: CALIB_CB_SYMMETRIC_GRID
/// * blob_detector: SimpleBlobDetector::create()
pub fn find_circles_grid_1(image: &dyn core::ToInputArray, pattern_size: core::Size, centers: &mut dyn core::ToOutputArray, flags: i32, blob_detector: &core::Ptr::<crate::features2d::Feature2D>) -> Result<bool> {
	input_array_arg!(image);
	output_array_arg!(centers);
	unsafe { sys::cv_findCirclesGrid_const__InputArrayR_Size_const__OutputArrayR_int_const_Ptr_Feature2D_R(image.as_raw__InputArray(), pattern_size.opencv_as_extern(), centers.as_raw__OutputArray(), flags, blob_detector.as_raw_PtrOfFeature2D()) }.into_result()
}

/// Finds centers in the grid of circles.
/// 
/// ## Parameters
/// * image: grid view of input circles; it must be an 8-bit grayscale or color image.
/// * patternSize: number of circles per row and column
/// ( patternSize = Size(points_per_row, points_per_colum) ).
/// * centers: output array of detected centers.
/// * flags: various operation flags that can be one of the following values:
/// *   @ref CALIB_CB_SYMMETRIC_GRID uses symmetric pattern of circles.
/// *   @ref CALIB_CB_ASYMMETRIC_GRID uses asymmetric pattern of circles.
/// *   @ref CALIB_CB_CLUSTERING uses a special algorithm for grid detection. It is more robust to
/// perspective distortions but much more sensitive to background clutter.
/// * blobDetector: feature detector that finds blobs like dark circles on light background.
///                    If `blobDetector` is NULL then `image` represents Point2f array of candidates.
/// * parameters: struct for finding circles in a grid pattern.
/// 
/// The function attempts to determine whether the input image contains a grid of circles. If it is, the
/// function locates centers of the circles. The function returns a non-zero value if all of the centers
/// have been found and they have been placed in a certain order (row by row, left to right in every
/// row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.
/// 
/// Sample usage of detecting and drawing the centers of circles: :
/// ```ignore
///    Size patternsize(7,7); //number of centers
///    Mat gray = ...; //source image
///    vector<Point2f> centers; //this will be filled by the detected centers
/// 
///    bool patternfound = findCirclesGrid(gray, patternsize, centers);
/// 
///    drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
/// ```
/// 
/// 
/// Note: The function requires white space (like a square-thick border, the wider the better) around
/// the board to make the detection more robust in various environments.
pub fn find_circles_grid(image: &dyn core::ToInputArray, pattern_size: core::Size, centers: &mut dyn core::ToOutputArray, flags: i32, blob_detector: &core::Ptr::<crate::features2d::Feature2D>, parameters: crate::calib3d::CirclesGridFinderParameters) -> Result<bool> {
	input_array_arg!(image);
	output_array_arg!(centers);
	unsafe { sys::cv_findCirclesGrid_const__InputArrayR_Size_const__OutputArrayR_int_const_Ptr_Feature2D_R_const_CirclesGridFinderParametersR(image.as_raw__InputArray(), pattern_size.opencv_as_extern(), centers.as_raw__OutputArray(), flags, blob_detector.as_raw_PtrOfFeature2D(), &parameters) }.into_result()
}

pub fn find_essential_mat_2(points1: &dyn core::ToInputArray, points2: &dyn core::ToInputArray, camera_matrix1: &dyn core::ToInputArray, camera_matrix2: &dyn core::ToInputArray, dist_coeff1: &dyn core::ToInputArray, dist_coeff2: &dyn core::ToInputArray, mask: &mut dyn core::ToOutputArray, params: crate::calib3d::UsacParams) -> Result<core::Mat> {
	input_array_arg!(points1);
	input_array_arg!(points2);
	input_array_arg!(camera_matrix1);
	input_array_arg!(camera_matrix2);
	input_array_arg!(dist_coeff1);
	input_array_arg!(dist_coeff2);
	output_array_arg!(mask);
	unsafe { sys::cv_findEssentialMat_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const_UsacParamsR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), camera_matrix1.as_raw__InputArray(), camera_matrix2.as_raw__InputArray(), dist_coeff1.as_raw__InputArray(), dist_coeff2.as_raw__InputArray(), mask.as_raw__OutputArray(), &params) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
}

/// Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.
/// 
/// ## Parameters
/// * points1: Array of N (N \>= 5) 2D points from the first image. The point coordinates should
/// be floating-point (single or double precision).
/// * points2: Array of the second image points of the same size and format as points1 .
/// * cameraMatrix1: Camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
/// Note that this function assumes that points1 and points2 are feature points from cameras with the
/// same camera matrix. If this assumption does not hold for your use case, use
/// `undistortPoints()` with `P = cv::NoArray()` for both cameras to transform image points
/// to normalized image coordinates, which are valid for the identity camera matrix. When
/// passing these coordinates, pass the identity matrix for this parameter.
/// * cameraMatrix2: Camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
/// Note that this function assumes that points1 and points2 are feature points from cameras with the
/// same camera matrix. If this assumption does not hold for your use case, use
/// `undistortPoints()` with `P = cv::NoArray()` for both cameras to transform image points
/// to normalized image coordinates, which are valid for the identity camera matrix. When
/// passing these coordinates, pass the identity matrix for this parameter.
/// * distCoeffs1: Input vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
/// of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
/// * distCoeffs2: Input vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
/// of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
/// * method: Method for computing an essential matrix.
/// *   **RANSAC** for the RANSAC algorithm.
/// *   **LMEDS** for the LMedS algorithm.
/// * prob: Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
/// confidence (probability) that the estimated matrix is correct.
/// * threshold: Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
/// point localization, image resolution, and the image noise.
/// * mask: Output array of N elements, every element of which is set to 0 for outliers and to 1
/// for the other points. The array is computed only in the RANSAC and LMedS methods.
/// 
/// This function estimates essential matrix based on the five-point algorithm solver in [Nister03](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Nister03) .
/// [SteweniusCFS](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_SteweniusCFS) is also a related. The epipolar geometry is described by the following equation:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%5Bp%5F2%3B%201%5D%5ET%20K%5E%7B%2DT%7D%20E%20K%5E%7B%2D1%7D%20%5Bp%5F1%3B%201%5D%20%3D%200)
/// 
/// where ![inline formula](https://latex.codecogs.com/png.latex?E) is an essential matrix, ![inline formula](https://latex.codecogs.com/png.latex?p%5F1) and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) are corresponding points in the first and the
/// second images, respectively. The result of this function may be passed further to
/// decomposeEssentialMat or recoverPose to recover the relative pose between cameras.
/// 
/// ## C++ default parameters
/// * method: RANSAC
/// * prob: 0.999
/// * threshold: 1.0
/// * mask: noArray()
pub fn find_essential_mat_1(points1: &dyn core::ToInputArray, points2: &dyn core::ToInputArray, camera_matrix1: &dyn core::ToInputArray, dist_coeffs1: &dyn core::ToInputArray, camera_matrix2: &dyn core::ToInputArray, dist_coeffs2: &dyn core::ToInputArray, method: i32, prob: f64, threshold: f64, mask: &mut dyn core::ToOutputArray) -> Result<core::Mat> {
	input_array_arg!(points1);
	input_array_arg!(points2);
	input_array_arg!(camera_matrix1);
	input_array_arg!(dist_coeffs1);
	input_array_arg!(camera_matrix2);
	input_array_arg!(dist_coeffs2);
	output_array_arg!(mask);
	unsafe { sys::cv_findEssentialMat_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_int_double_double_const__OutputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), camera_matrix1.as_raw__InputArray(), dist_coeffs1.as_raw__InputArray(), camera_matrix2.as_raw__InputArray(), dist_coeffs2.as_raw__InputArray(), method, prob, threshold, mask.as_raw__OutputArray()) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
}

/// Calculates an essential matrix from the corresponding points in two images.
/// 
/// ## Parameters
/// * points1: Array of N (N \>= 5) 2D points from the first image. The point coordinates should
/// be floating-point (single or double precision).
/// * points2: Array of the second image points of the same size and format as points1 .
/// * cameraMatrix: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
/// Note that this function assumes that points1 and points2 are feature points from cameras with the
/// same camera intrinsic matrix. If this assumption does not hold for your use case, use
/// `undistortPoints()` with `P = cv::NoArray()` for both cameras to transform image points
/// to normalized image coordinates, which are valid for the identity camera intrinsic matrix. When
/// passing these coordinates, pass the identity matrix for this parameter.
/// * method: Method for computing an essential matrix.
/// *   @ref RANSAC for the RANSAC algorithm.
/// *   @ref LMEDS for the LMedS algorithm.
/// * prob: Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
/// confidence (probability) that the estimated matrix is correct.
/// * threshold: Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
/// point localization, image resolution, and the image noise.
/// * mask: Output array of N elements, every element of which is set to 0 for outliers and to 1
/// for the other points. The array is computed only in the RANSAC and LMedS methods.
/// 
/// This function estimates essential matrix based on the five-point algorithm solver in [Nister03](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Nister03) .
/// [SteweniusCFS](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_SteweniusCFS) is also a related. The epipolar geometry is described by the following equation:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%5Bp%5F2%3B%201%5D%5ET%20K%5E%7B%2DT%7D%20E%20K%5E%7B%2D1%7D%20%5Bp%5F1%3B%201%5D%20%3D%200)
/// 
/// where ![inline formula](https://latex.codecogs.com/png.latex?E) is an essential matrix, ![inline formula](https://latex.codecogs.com/png.latex?p%5F1) and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) are corresponding points in the first and the
/// second images, respectively. The result of this function may be passed further to
/// decomposeEssentialMat or recoverPose to recover the relative pose between cameras.
/// 
/// ## C++ default parameters
/// * method: RANSAC
/// * prob: 0.999
/// * threshold: 1.0
/// * mask: noArray()
pub fn find_essential_mat_matrix(points1: &dyn core::ToInputArray, points2: &dyn core::ToInputArray, camera_matrix: &dyn core::ToInputArray, method: i32, prob: f64, threshold: f64, mask: &mut dyn core::ToOutputArray) -> Result<core::Mat> {
	input_array_arg!(points1);
	input_array_arg!(points2);
	input_array_arg!(camera_matrix);
	output_array_arg!(mask);
	unsafe { sys::cv_findEssentialMat_const__InputArrayR_const__InputArrayR_const__InputArrayR_int_double_double_const__OutputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), method, prob, threshold, mask.as_raw__OutputArray()) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
}

/// Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.
/// 
/// ## Parameters
/// * points1: Array of N (N \>= 5) 2D points from the first image. The point coordinates should
/// be floating-point (single or double precision).
/// * points2: Array of the second image points of the same size and format as points1 .
/// * cameraMatrix1: Camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
/// Note that this function assumes that points1 and points2 are feature points from cameras with the
/// same camera matrix. If this assumption does not hold for your use case, use
/// `undistortPoints()` with `P = cv::NoArray()` for both cameras to transform image points
/// to normalized image coordinates, which are valid for the identity camera matrix. When
/// passing these coordinates, pass the identity matrix for this parameter.
/// * cameraMatrix2: Camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
/// Note that this function assumes that points1 and points2 are feature points from cameras with the
/// same camera matrix. If this assumption does not hold for your use case, use
/// `undistortPoints()` with `P = cv::NoArray()` for both cameras to transform image points
/// to normalized image coordinates, which are valid for the identity camera matrix. When
/// passing these coordinates, pass the identity matrix for this parameter.
/// * distCoeffs1: Input vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
/// of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
/// * distCoeffs2: Input vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
/// of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
/// * method: Method for computing an essential matrix.
/// *   **RANSAC** for the RANSAC algorithm.
/// *   **LMEDS** for the LMedS algorithm.
/// * prob: Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
/// confidence (probability) that the estimated matrix is correct.
/// * threshold: Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
/// point localization, image resolution, and the image noise.
/// * mask: Output array of N elements, every element of which is set to 0 for outliers and to 1
/// for the other points. The array is computed only in the RANSAC and LMedS methods.
/// 
/// This function estimates essential matrix based on the five-point algorithm solver in [Nister03](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Nister03) .
/// [SteweniusCFS](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_SteweniusCFS) is also a related. The epipolar geometry is described by the following equation:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%5Bp%5F2%3B%201%5D%5ET%20K%5E%7B%2DT%7D%20E%20K%5E%7B%2D1%7D%20%5Bp%5F1%3B%201%5D%20%3D%200)
/// 
/// where ![inline formula](https://latex.codecogs.com/png.latex?E) is an essential matrix, ![inline formula](https://latex.codecogs.com/png.latex?p%5F1) and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) are corresponding points in the first and the
/// second images, respectively. The result of this function may be passed further to
/// decomposeEssentialMat or recoverPose to recover the relative pose between cameras.
/// 
/// ## Overloaded parameters
/// 
/// * points1: Array of N (N \>= 5) 2D points from the first image. The point coordinates should
/// be floating-point (single or double precision).
/// * points2: Array of the second image points of the same size and format as points1 .
/// * focal: focal length of the camera. Note that this function assumes that points1 and points2
/// are feature points from cameras with same focal length and principal point.
/// * pp: principal point of the camera.
/// * method: Method for computing a fundamental matrix.
/// *   @ref RANSAC for the RANSAC algorithm.
/// *   @ref LMEDS for the LMedS algorithm.
/// * threshold: Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
/// point localization, image resolution, and the image noise.
/// * prob: Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
/// confidence (probability) that the estimated matrix is correct.
/// * mask: Output array of N elements, every element of which is set to 0 for outliers and to 1
/// for the other points. The array is computed only in the RANSAC and LMedS methods.
/// 
/// This function differs from the one above that it computes camera intrinsic matrix from focal length and
/// principal point:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?A%20%3D%0A%5Cbegin%7Bbmatrix%7D%0Af%20%26%200%20%26%20x%5F%7Bpp%7D%20%20%5C%5C%0A0%20%26%20f%20%26%20y%5F%7Bpp%7D%20%20%5C%5C%0A0%20%26%200%20%26%201%0A%5Cend%7Bbmatrix%7D)
/// 
/// ## C++ default parameters
/// * focal: 1.0
/// * pp: Point2d(0,0)
/// * method: RANSAC
/// * prob: 0.999
/// * threshold: 1.0
/// * mask: noArray()
pub fn find_essential_mat(points1: &dyn core::ToInputArray, points2: &dyn core::ToInputArray, focal: f64, pp: core::Point2d, method: i32, prob: f64, threshold: f64, mask: &mut dyn core::ToOutputArray) -> Result<core::Mat> {
	input_array_arg!(points1);
	input_array_arg!(points2);
	output_array_arg!(mask);
	unsafe { sys::cv_findEssentialMat_const__InputArrayR_const__InputArrayR_double_Point2d_int_double_double_const__OutputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), focal, pp.opencv_as_extern(), method, prob, threshold, mask.as_raw__OutputArray()) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
}

pub fn find_fundamental_mat_2(points1: &dyn core::ToInputArray, points2: &dyn core::ToInputArray, mask: &mut dyn core::ToOutputArray, params: crate::calib3d::UsacParams) -> Result<core::Mat> {
	input_array_arg!(points1);
	input_array_arg!(points2);
	output_array_arg!(mask);
	unsafe { sys::cv_findFundamentalMat_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const_UsacParamsR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), mask.as_raw__OutputArray(), &params) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
}

/// Calculates a fundamental matrix from the corresponding points in two images.
/// 
/// ## Parameters
/// * points1: Array of N points from the first image. The point coordinates should be
/// floating-point (single or double precision).
/// * points2: Array of the second image points of the same size and format as points1 .
/// * method: Method for computing a fundamental matrix.
/// *   @ref FM_7POINT for a 7-point algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%3D%207)
/// *   @ref FM_8POINT for an 8-point algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
/// *   @ref FM_RANSAC for the RANSAC algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
/// *   @ref FM_LMEDS for the LMedS algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
/// * ransacReprojThreshold: Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
/// point localization, image resolution, and the image noise.
/// * confidence: Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
/// of confidence (probability) that the estimated matrix is correct.
/// * mask:[out] optional output mask
/// * maxIters: The maximum number of robust method iterations.
/// 
/// The epipolar geometry is described by the following equation:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%5Bp%5F2%3B%201%5D%5ET%20F%20%5Bp%5F1%3B%201%5D%20%3D%200)
/// 
/// where ![inline formula](https://latex.codecogs.com/png.latex?F) is a fundamental matrix, ![inline formula](https://latex.codecogs.com/png.latex?p%5F1) and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) are corresponding points in the first and the
/// second images, respectively.
/// 
/// The function calculates the fundamental matrix using one of four methods listed above and returns
/// the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
/// algorithm, the function may return up to 3 solutions ( ![inline formula](https://latex.codecogs.com/png.latex?9%20%5Ctimes%203) matrix that stores all 3
/// matrices sequentially).
/// 
/// The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the
/// epipolar lines corresponding to the specified points. It can also be passed to
/// stereoRectifyUncalibrated to compute the rectification transformation. :
/// ```ignore
///    // Example. Estimation of fundamental matrix using the RANSAC algorithm
///    int point_count = 100;
///    vector<Point2f> points1(point_count);
///    vector<Point2f> points2(point_count);
/// 
///    // initialize the points here ...
///    for( int i = 0; i < point_count; i++ )
///    {
///        points1[i] = ...;
///        points2[i] = ...;
///    }
/// 
///    Mat fundamental_matrix =
///      findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
/// ```
/// 
/// 
/// ## Overloaded parameters
/// 
/// ## C++ default parameters
/// * method: FM_RANSAC
/// * ransac_reproj_threshold: 3.
/// * confidence: 0.99
pub fn find_fundamental_mat_mask(points1: &dyn core::ToInputArray, points2: &dyn core::ToInputArray, mask: &mut dyn core::ToOutputArray, method: i32, ransac_reproj_threshold: f64, confidence: f64) -> Result<core::Mat> {
	input_array_arg!(points1);
	input_array_arg!(points2);
	output_array_arg!(mask);
	unsafe { sys::cv_findFundamentalMat_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_double_double(points1.as_raw__InputArray(), points2.as_raw__InputArray(), mask.as_raw__OutputArray(), method, ransac_reproj_threshold, confidence) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
}

/// Calculates a fundamental matrix from the corresponding points in two images.
/// 
/// ## Parameters
/// * points1: Array of N points from the first image. The point coordinates should be
/// floating-point (single or double precision).
/// * points2: Array of the second image points of the same size and format as points1 .
/// * method: Method for computing a fundamental matrix.
/// *   @ref FM_7POINT for a 7-point algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%3D%207)
/// *   @ref FM_8POINT for an 8-point algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
/// *   @ref FM_RANSAC for the RANSAC algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
/// *   @ref FM_LMEDS for the LMedS algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
/// * ransacReprojThreshold: Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
/// point localization, image resolution, and the image noise.
/// * confidence: Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
/// of confidence (probability) that the estimated matrix is correct.
/// * mask:[out] optional output mask
/// * maxIters: The maximum number of robust method iterations.
/// 
/// The epipolar geometry is described by the following equation:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%5Bp%5F2%3B%201%5D%5ET%20F%20%5Bp%5F1%3B%201%5D%20%3D%200)
/// 
/// where ![inline formula](https://latex.codecogs.com/png.latex?F) is a fundamental matrix, ![inline formula](https://latex.codecogs.com/png.latex?p%5F1) and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) are corresponding points in the first and the
/// second images, respectively.
/// 
/// The function calculates the fundamental matrix using one of four methods listed above and returns
/// the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
/// algorithm, the function may return up to 3 solutions ( ![inline formula](https://latex.codecogs.com/png.latex?9%20%5Ctimes%203) matrix that stores all 3
/// matrices sequentially).
/// 
/// The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the
/// epipolar lines corresponding to the specified points. It can also be passed to
/// stereoRectifyUncalibrated to compute the rectification transformation. :
/// ```ignore
///    // Example. Estimation of fundamental matrix using the RANSAC algorithm
///    int point_count = 100;
///    vector<Point2f> points1(point_count);
///    vector<Point2f> points2(point_count);
/// 
///    // initialize the points here ...
///    for( int i = 0; i < point_count; i++ )
///    {
///        points1[i] = ...;
///        points2[i] = ...;
///    }
/// 
///    Mat fundamental_matrix =
///      findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
/// ```
/// 
/// 
/// ## Overloaded parameters
/// 
/// ## C++ default parameters
/// * method: FM_RANSAC
/// * ransac_reproj_threshold: 3.
/// * confidence: 0.99
/// * mask: noArray()
pub fn find_fundamental_mat_1(points1: &dyn core::ToInputArray, points2: &dyn core::ToInputArray, method: i32, ransac_reproj_threshold: f64, confidence: f64, mask: &mut dyn core::ToOutputArray) -> Result<core::Mat> {
	input_array_arg!(points1);
	input_array_arg!(points2);
	output_array_arg!(mask);
	unsafe { sys::cv_findFundamentalMat_const__InputArrayR_const__InputArrayR_int_double_double_const__OutputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), method, ransac_reproj_threshold, confidence, mask.as_raw__OutputArray()) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
}

/// Calculates a fundamental matrix from the corresponding points in two images.
/// 
/// ## Parameters
/// * points1: Array of N points from the first image. The point coordinates should be
/// floating-point (single or double precision).
/// * points2: Array of the second image points of the same size and format as points1 .
/// * method: Method for computing a fundamental matrix.
/// *   @ref FM_7POINT for a 7-point algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%3D%207)
/// *   @ref FM_8POINT for an 8-point algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
/// *   @ref FM_RANSAC for the RANSAC algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
/// *   @ref FM_LMEDS for the LMedS algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
/// * ransacReprojThreshold: Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
/// point localization, image resolution, and the image noise.
/// * confidence: Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
/// of confidence (probability) that the estimated matrix is correct.
/// * mask:[out] optional output mask
/// * maxIters: The maximum number of robust method iterations.
/// 
/// The epipolar geometry is described by the following equation:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%5Bp%5F2%3B%201%5D%5ET%20F%20%5Bp%5F1%3B%201%5D%20%3D%200)
/// 
/// where ![inline formula](https://latex.codecogs.com/png.latex?F) is a fundamental matrix, ![inline formula](https://latex.codecogs.com/png.latex?p%5F1) and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) are corresponding points in the first and the
/// second images, respectively.
/// 
/// The function calculates the fundamental matrix using one of four methods listed above and returns
/// the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
/// algorithm, the function may return up to 3 solutions ( ![inline formula](https://latex.codecogs.com/png.latex?9%20%5Ctimes%203) matrix that stores all 3
/// matrices sequentially).
/// 
/// The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the
/// epipolar lines corresponding to the specified points. It can also be passed to
/// stereoRectifyUncalibrated to compute the rectification transformation. :
/// ```ignore
///    // Example. Estimation of fundamental matrix using the RANSAC algorithm
///    int point_count = 100;
///    vector<Point2f> points1(point_count);
///    vector<Point2f> points2(point_count);
/// 
///    // initialize the points here ...
///    for( int i = 0; i < point_count; i++ )
///    {
///        points1[i] = ...;
///        points2[i] = ...;
///    }
/// 
///    Mat fundamental_matrix =
///      findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
/// ```
/// 
/// 
/// ## C++ default parameters
/// * mask: noArray()
pub fn find_fundamental_mat(points1: &dyn core::ToInputArray, points2: &dyn core::ToInputArray, method: i32, ransac_reproj_threshold: f64, confidence: f64, max_iters: i32, mask: &mut dyn core::ToOutputArray) -> Result<core::Mat> {
	input_array_arg!(points1);
	input_array_arg!(points2);
	output_array_arg!(mask);
	unsafe { sys::cv_findFundamentalMat_const__InputArrayR_const__InputArrayR_int_double_double_int_const__OutputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), method, ransac_reproj_threshold, confidence, max_iters, mask.as_raw__OutputArray()) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
}

pub fn find_homography_1(src_points: &dyn core::ToInputArray, dst_points: &dyn core::ToInputArray, mask: &mut dyn core::ToOutputArray, params: crate::calib3d::UsacParams) -> Result<core::Mat> {
	input_array_arg!(src_points);
	input_array_arg!(dst_points);
	output_array_arg!(mask);
	unsafe { sys::cv_findHomography_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const_UsacParamsR(src_points.as_raw__InputArray(), dst_points.as_raw__InputArray(), mask.as_raw__OutputArray(), &params) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
}

/// Finds a perspective transformation between two planes.
/// 
/// ## Parameters
/// * srcPoints: Coordinates of the points in the original plane, a matrix of the type CV_32FC2
/// or vector\<Point2f\> .
/// * dstPoints: Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
/// a vector\<Point2f\> .
/// * method: Method used to compute a homography matrix. The following methods are possible:
/// *   **0** - a regular method using all the points, i.e., the least squares method
/// *   @ref RANSAC - RANSAC-based robust method
/// *   @ref LMEDS - Least-Median robust method
/// *   @ref RHO - PROSAC-based robust method
/// * ransacReprojThreshold: Maximum allowed reprojection error to treat a point pair as an inlier
/// (used in the RANSAC and RHO methods only). That is, if
/// ![block formula](https://latex.codecogs.com/png.latex?%5C%7C%20%5Ctexttt%7BdstPoints%7D%20%5Fi%20%2D%20%20%5Ctexttt%7BconvertPointsHomogeneous%7D%20%28%20%5Ctexttt%7BH%7D%20%2A%20%5Ctexttt%7BsrcPoints%7D%20%5Fi%29%20%5C%7C%5F2%20%20%3E%20%20%5Ctexttt%7BransacReprojThreshold%7D)
/// then the point ![inline formula](https://latex.codecogs.com/png.latex?i) is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
/// it usually makes sense to set this parameter somewhere in the range of 1 to 10.
/// * mask: Optional output mask set by a robust method ( RANSAC or LMeDS ). Note that the input
/// mask values are ignored.
/// * maxIters: The maximum number of RANSAC iterations.
/// * confidence: Confidence level, between 0 and 1.
/// 
/// The function finds and returns the perspective transformation ![inline formula](https://latex.codecogs.com/png.latex?H) between the source and the
/// destination planes:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?s%5Fi%20%20%5Cbegin%7Bbmatrix%7D%20x%27%5Fi%5C%5C%20y%27%5Fi%5C%5C%201%20%5Cend%7Bbmatrix%7D%20%5Csim%20H%20%20%5Cbegin%7Bbmatrix%7D%20x%5Fi%5C%5C%20y%5Fi%5C%5C%201%20%5Cend%7Bbmatrix%7D)
/// 
/// so that the back-projection error
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%5Csum%20%5Fi%20%5Cleft%20%28%20x%27%5Fi%2D%20%5Cfrac%7Bh%5F%7B11%7D%20x%5Fi%20%2B%20h%5F%7B12%7D%20y%5Fi%20%2B%20h%5F%7B13%7D%7D%7Bh%5F%7B31%7D%20x%5Fi%20%2B%20h%5F%7B32%7D%20y%5Fi%20%2B%20h%5F%7B33%7D%7D%20%5Cright%20%29%5E2%2B%20%5Cleft%20%28%20y%27%5Fi%2D%20%5Cfrac%7Bh%5F%7B21%7D%20x%5Fi%20%2B%20h%5F%7B22%7D%20y%5Fi%20%2B%20h%5F%7B23%7D%7D%7Bh%5F%7B31%7D%20x%5Fi%20%2B%20h%5F%7B32%7D%20y%5Fi%20%2B%20h%5F%7B33%7D%7D%20%5Cright%20%29%5E2)
/// 
/// is minimized. If the parameter method is set to the default value 0, the function uses all the point
/// pairs to compute an initial homography estimate with a simple least-squares scheme.
/// 
/// However, if not all of the point pairs ( ![inline formula](https://latex.codecogs.com/png.latex?srcPoints%5Fi), ![inline formula](https://latex.codecogs.com/png.latex?dstPoints%5Fi) ) fit the rigid perspective
/// transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
/// you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
/// random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
/// using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
/// computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
/// LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
/// the mask of inliers/outliers.
/// 
/// Regardless of the method, robust or not, the computed homography matrix is refined further (using
/// inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
/// re-projection error even more.
/// 
/// The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
/// distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
/// correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
/// noise is rather small, use the default method (method=0).
/// 
/// The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
/// determined up to a scale. Thus, it is normalized so that ![inline formula](https://latex.codecogs.com/png.latex?h%5F%7B33%7D%3D1). Note that whenever an ![inline formula](https://latex.codecogs.com/png.latex?H) matrix
/// cannot be estimated, an empty one will be returned.
/// ## See also
/// getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
/// perspectiveTransform
/// 
/// ## Overloaded parameters
/// 
/// ## C++ default parameters
/// * method: 0
/// * ransac_reproj_threshold: 3
pub fn find_homography(src_points: &dyn core::ToInputArray, dst_points: &dyn core::ToInputArray, mask: &mut dyn core::ToOutputArray, method: i32, ransac_reproj_threshold: f64) -> Result<core::Mat> {
	input_array_arg!(src_points);
	input_array_arg!(dst_points);
	output_array_arg!(mask);
	unsafe { sys::cv_findHomography_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_double(src_points.as_raw__InputArray(), dst_points.as_raw__InputArray(), mask.as_raw__OutputArray(), method, ransac_reproj_threshold) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
}

/// Finds a perspective transformation between two planes.
/// 
/// ## Parameters
/// * srcPoints: Coordinates of the points in the original plane, a matrix of the type CV_32FC2
/// or vector\<Point2f\> .
/// * dstPoints: Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
/// a vector\<Point2f\> .
/// * method: Method used to compute a homography matrix. The following methods are possible:
/// *   **0** - a regular method using all the points, i.e., the least squares method
/// *   @ref RANSAC - RANSAC-based robust method
/// *   @ref LMEDS - Least-Median robust method
/// *   @ref RHO - PROSAC-based robust method
/// * ransacReprojThreshold: Maximum allowed reprojection error to treat a point pair as an inlier
/// (used in the RANSAC and RHO methods only). That is, if
/// ![block formula](https://latex.codecogs.com/png.latex?%5C%7C%20%5Ctexttt%7BdstPoints%7D%20%5Fi%20%2D%20%20%5Ctexttt%7BconvertPointsHomogeneous%7D%20%28%20%5Ctexttt%7BH%7D%20%2A%20%5Ctexttt%7BsrcPoints%7D%20%5Fi%29%20%5C%7C%5F2%20%20%3E%20%20%5Ctexttt%7BransacReprojThreshold%7D)
/// then the point ![inline formula](https://latex.codecogs.com/png.latex?i) is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
/// it usually makes sense to set this parameter somewhere in the range of 1 to 10.
/// * mask: Optional output mask set by a robust method ( RANSAC or LMeDS ). Note that the input
/// mask values are ignored.
/// * maxIters: The maximum number of RANSAC iterations.
/// * confidence: Confidence level, between 0 and 1.
/// 
/// The function finds and returns the perspective transformation ![inline formula](https://latex.codecogs.com/png.latex?H) between the source and the
/// destination planes:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?s%5Fi%20%20%5Cbegin%7Bbmatrix%7D%20x%27%5Fi%5C%5C%20y%27%5Fi%5C%5C%201%20%5Cend%7Bbmatrix%7D%20%5Csim%20H%20%20%5Cbegin%7Bbmatrix%7D%20x%5Fi%5C%5C%20y%5Fi%5C%5C%201%20%5Cend%7Bbmatrix%7D)
/// 
/// so that the back-projection error
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%5Csum%20%5Fi%20%5Cleft%20%28%20x%27%5Fi%2D%20%5Cfrac%7Bh%5F%7B11%7D%20x%5Fi%20%2B%20h%5F%7B12%7D%20y%5Fi%20%2B%20h%5F%7B13%7D%7D%7Bh%5F%7B31%7D%20x%5Fi%20%2B%20h%5F%7B32%7D%20y%5Fi%20%2B%20h%5F%7B33%7D%7D%20%5Cright%20%29%5E2%2B%20%5Cleft%20%28%20y%27%5Fi%2D%20%5Cfrac%7Bh%5F%7B21%7D%20x%5Fi%20%2B%20h%5F%7B22%7D%20y%5Fi%20%2B%20h%5F%7B23%7D%7D%7Bh%5F%7B31%7D%20x%5Fi%20%2B%20h%5F%7B32%7D%20y%5Fi%20%2B%20h%5F%7B33%7D%7D%20%5Cright%20%29%5E2)
/// 
/// is minimized. If the parameter method is set to the default value 0, the function uses all the point
/// pairs to compute an initial homography estimate with a simple least-squares scheme.
/// 
/// However, if not all of the point pairs ( ![inline formula](https://latex.codecogs.com/png.latex?srcPoints%5Fi), ![inline formula](https://latex.codecogs.com/png.latex?dstPoints%5Fi) ) fit the rigid perspective
/// transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
/// you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
/// random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
/// using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
/// computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
/// LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
/// the mask of inliers/outliers.
/// 
/// Regardless of the method, robust or not, the computed homography matrix is refined further (using
/// inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
/// re-projection error even more.
/// 
/// The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
/// distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
/// correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
/// noise is rather small, use the default method (method=0).
/// 
/// The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
/// determined up to a scale. Thus, it is normalized so that ![inline formula](https://latex.codecogs.com/png.latex?h%5F%7B33%7D%3D1). Note that whenever an ![inline formula](https://latex.codecogs.com/png.latex?H) matrix
/// cannot be estimated, an empty one will be returned.
/// ## See also
/// getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
/// perspectiveTransform
/// 
/// ## C++ default parameters
/// * method: 0
/// * ransac_reproj_threshold: 3
/// * mask: noArray()
/// * max_iters: 2000
/// * confidence: 0.995
pub fn find_homography_ext(src_points: &dyn core::ToInputArray, dst_points: &dyn core::ToInputArray, method: i32, ransac_reproj_threshold: f64, mask: &mut dyn core::ToOutputArray, max_iters: i32, confidence: f64) -> Result<core::Mat> {
	input_array_arg!(src_points);
	input_array_arg!(dst_points);
	output_array_arg!(mask);
	unsafe { sys::cv_findHomography_const__InputArrayR_const__InputArrayR_int_double_const__OutputArrayR_const_int_const_double(src_points.as_raw__InputArray(), dst_points.as_raw__InputArray(), method, ransac_reproj_threshold, mask.as_raw__OutputArray(), max_iters, confidence) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
}

/// Performs camera calibaration
/// 
/// ## Parameters
/// * objectPoints: vector of vectors of calibration pattern points in the calibration pattern
///    coordinate space.
/// * imagePoints: vector of vectors of the projections of calibration pattern points.
///    imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
///    objectPoints[i].size() for each i.
/// * image_size: Size of the image used only to initialize the camera intrinsic matrix.
/// * K: Output 3x3 floating-point camera intrinsic matrix
///    ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) . If
///    @ref fisheye::CALIB_USE_INTRINSIC_GUESS is specified, some or all of fx, fy, cx, cy must be
///    initialized before calling the function.
/// * D: Output vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
/// * rvecs: Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view.
///    That is, each k-th rotation vector together with the corresponding k-th translation vector (see
///    the next output parameter description) brings the calibration pattern from the model coordinate
///    space (in which object points are specified) to the world coordinate space, that is, a real
///    position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
/// * tvecs: Output vector of translation vectors estimated for each pattern view.
/// * flags: Different flags that may be zero or a combination of the following values:
///    *    @ref fisheye::CALIB_USE_INTRINSIC_GUESS  cameraMatrix contains valid initial values of
///    fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
///    center ( imageSize is used), and focal distances are computed in a least-squares fashion.
///    *    @ref fisheye::CALIB_RECOMPUTE_EXTRINSIC  Extrinsic will be recomputed after each iteration
///    of intrinsic optimization.
///    *    @ref fisheye::CALIB_CHECK_COND  The functions will check validity of condition number.
///    *    @ref fisheye::CALIB_FIX_SKEW  Skew coefficient (alpha) is set to zero and stay zero.
///    *    @ref fisheye::CALIB_FIX_K1,..., @ref fisheye::CALIB_FIX_K4 Selected distortion coefficients
///    are set to zeros and stay zero.
///    *    @ref fisheye::CALIB_FIX_PRINCIPAL_POINT  The principal point is not changed during the global
/// optimization. It stays at the center or at a different location specified when @ref fisheye::CALIB_USE_INTRINSIC_GUESS is set too.
/// * criteria: Termination criteria for the iterative optimization algorithm.
/// 
/// ## C++ default parameters
/// * flags: 0
/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,100,DBL_EPSILON)
pub fn calibrate(object_points: &dyn core::ToInputArray, image_points: &dyn core::ToInputArray, image_size: core::Size, k: &mut dyn core::ToInputOutputArray, d: &mut dyn core::ToInputOutputArray, rvecs: &mut dyn core::ToOutputArray, tvecs: &mut dyn core::ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
	input_array_arg!(object_points);
	input_array_arg!(image_points);
	input_output_array_arg!(k);
	input_output_array_arg!(d);
	output_array_arg!(rvecs);
	output_array_arg!(tvecs);
	unsafe { sys::cv_fisheye_calibrate_const__InputArrayR_const__InputArrayR_const_SizeR_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), &image_size, k.as_raw__InputOutputArray(), d.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), flags, criteria.opencv_as_extern()) }.into_result()
}

/// Distorts 2D points using fisheye model.
/// 
/// ## Parameters
/// * undistorted: Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
/// the number of points in the view.
/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?cameramatrix%7BK%7D).
/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
/// * alpha: The skew coefficient.
/// * distorted: Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
/// 
/// Note that the function assumes the camera intrinsic matrix of the undistorted points to be identity.
/// This means if you want to transform back points undistorted with undistortPoints() you have to
/// multiply them with ![inline formula](https://latex.codecogs.com/png.latex?P%5E%7B%2D1%7D).
/// 
/// ## C++ default parameters
/// * alpha: 0
pub fn distort_points(undistorted: &dyn core::ToInputArray, distorted: &mut dyn core::ToOutputArray, k: &dyn core::ToInputArray, d: &dyn core::ToInputArray, alpha: f64) -> Result<()> {
	input_array_arg!(undistorted);
	output_array_arg!(distorted);
	input_array_arg!(k);
	input_array_arg!(d);
	unsafe { sys::cv_fisheye_distortPoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_double(undistorted.as_raw__InputArray(), distorted.as_raw__OutputArray(), k.as_raw__InputArray(), d.as_raw__InputArray(), alpha) }.into_result()
}

/// Estimates new camera intrinsic matrix for undistortion or rectification.
/// 
/// ## Parameters
/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?cameramatrix%7BK%7D).
/// * image_size: Size of the image
/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
/// * R: Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
/// 1-channel or 1x1 3-channel
/// * P: New camera intrinsic matrix (3x3) or new projection matrix (3x4)
/// * balance: Sets the new focal length in range between the min focal length and the max focal
/// length. Balance is in range of [0, 1].
/// * new_size: the new size
/// * fov_scale: Divisor for new focal length.
/// 
/// ## C++ default parameters
/// * balance: 0.0
/// * new_size: Size()
/// * fov_scale: 1.0
pub fn estimate_new_camera_matrix_for_undistort_rectify(k: &dyn core::ToInputArray, d: &dyn core::ToInputArray, image_size: core::Size, r: &dyn core::ToInputArray, p: &mut dyn core::ToOutputArray, balance: f64, new_size: core::Size, fov_scale: f64) -> Result<()> {
	input_array_arg!(k);
	input_array_arg!(d);
	input_array_arg!(r);
	output_array_arg!(p);
	unsafe { sys::cv_fisheye_estimateNewCameraMatrixForUndistortRectify_const__InputArrayR_const__InputArrayR_const_SizeR_const__InputArrayR_const__OutputArrayR_double_const_SizeR_double(k.as_raw__InputArray(), d.as_raw__InputArray(), &image_size, r.as_raw__InputArray(), p.as_raw__OutputArray(), balance, &new_size, fov_scale) }.into_result()
}

/// Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero
/// distortion is used, if R or P is empty identity matrixes are used.
/// 
/// ## Parameters
/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?cameramatrix%7BK%7D).
/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
/// * R: Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
/// 1-channel or 1x1 3-channel
/// * P: New camera intrinsic matrix (3x3) or new projection matrix (3x4)
/// * size: Undistorted image size.
/// * m1type: Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps()
/// for details.
/// * map1: The first output map.
/// * map2: The second output map.
pub fn fisheye_init_undistort_rectify_map(k: &dyn core::ToInputArray, d: &dyn core::ToInputArray, r: &dyn core::ToInputArray, p: &dyn core::ToInputArray, size: core::Size, m1type: i32, map1: &mut dyn core::ToOutputArray, map2: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(k);
	input_array_arg!(d);
	input_array_arg!(r);
	input_array_arg!(p);
	output_array_arg!(map1);
	output_array_arg!(map2);
	unsafe { sys::cv_fisheye_initUndistortRectifyMap_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const_SizeR_int_const__OutputArrayR_const__OutputArrayR(k.as_raw__InputArray(), d.as_raw__InputArray(), r.as_raw__InputArray(), p.as_raw__InputArray(), &size, m1type, map1.as_raw__OutputArray(), map2.as_raw__OutputArray()) }.into_result()
}

/// Projects points using fisheye model
/// 
/// ## Parameters
/// * objectPoints: Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is
/// the number of points in the view.
/// * imagePoints: Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
/// vector\<Point2f\>.
/// * affine: 
/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?cameramatrix%7BK%7D).
/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
/// * alpha: The skew coefficient.
/// * jacobian: Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
/// to components of the focal lengths, coordinates of the principal point, distortion coefficients,
/// rotation vector, translation vector, and the skew. In the old interface different components of
/// the jacobian are returned via different output parameters.
/// 
/// The function computes projections of 3D points to the image plane given intrinsic and extrinsic
/// camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
/// image points coordinates (as functions of all the input parameters) with respect to the particular
/// parameters, intrinsic and/or extrinsic.
/// 
/// ## C++ default parameters
/// * alpha: 0
/// * jacobian: noArray()
pub fn fisheye_project_points(object_points: &dyn core::ToInputArray, image_points: &mut dyn core::ToOutputArray, affine: core::Affine3d, k: &dyn core::ToInputArray, d: &dyn core::ToInputArray, alpha: f64, jacobian: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(object_points);
	output_array_arg!(image_points);
	input_array_arg!(k);
	input_array_arg!(d);
	output_array_arg!(jacobian);
	unsafe { sys::cv_fisheye_projectPoints_const__InputArrayR_const__OutputArrayR_const_Affine3dR_const__InputArrayR_const__InputArrayR_double_const__OutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__OutputArray(), &affine, k.as_raw__InputArray(), d.as_raw__InputArray(), alpha, jacobian.as_raw__OutputArray()) }.into_result()
}

/// Projects points using fisheye model
/// 
/// ## Parameters
/// * objectPoints: Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is
/// the number of points in the view.
/// * imagePoints: Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
/// vector\<Point2f\>.
/// * affine: 
/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?cameramatrix%7BK%7D).
/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
/// * alpha: The skew coefficient.
/// * jacobian: Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
/// to components of the focal lengths, coordinates of the principal point, distortion coefficients,
/// rotation vector, translation vector, and the skew. In the old interface different components of
/// the jacobian are returned via different output parameters.
/// 
/// The function computes projections of 3D points to the image plane given intrinsic and extrinsic
/// camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
/// image points coordinates (as functions of all the input parameters) with respect to the particular
/// parameters, intrinsic and/or extrinsic.
/// 
/// ## Overloaded parameters
/// 
/// ## C++ default parameters
/// * alpha: 0
/// * jacobian: noArray()
pub fn fisheye_project_points_vec(object_points: &dyn core::ToInputArray, image_points: &mut dyn core::ToOutputArray, rvec: &dyn core::ToInputArray, tvec: &dyn core::ToInputArray, k: &dyn core::ToInputArray, d: &dyn core::ToInputArray, alpha: f64, jacobian: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(object_points);
	output_array_arg!(image_points);
	input_array_arg!(rvec);
	input_array_arg!(tvec);
	input_array_arg!(k);
	input_array_arg!(d);
	output_array_arg!(jacobian);
	unsafe { sys::cv_fisheye_projectPoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_double_const__OutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__OutputArray(), rvec.as_raw__InputArray(), tvec.as_raw__InputArray(), k.as_raw__InputArray(), d.as_raw__InputArray(), alpha, jacobian.as_raw__OutputArray()) }.into_result()
}

/// Performs stereo calibration
/// 
/// ## Parameters
/// * objectPoints: Vector of vectors of the calibration pattern points.
/// * imagePoints1: Vector of vectors of the projections of the calibration pattern points,
/// observed by the first camera.
/// * imagePoints2: Vector of vectors of the projections of the calibration pattern points,
/// observed by the second camera.
/// * K1: Input/output first camera intrinsic matrix:
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cvecthreethree%7Bf%5Fx%5E%7B%28j%29%7D%7D%7B0%7D%7Bc%5Fx%5E%7B%28j%29%7D%7D%7B0%7D%7Bf%5Fy%5E%7B%28j%29%7D%7D%7Bc%5Fy%5E%7B%28j%29%7D%7D%7B0%7D%7B0%7D%7B1%7D) , ![inline formula](https://latex.codecogs.com/png.latex?j%20%3D%200%2C%5C%2C%201) . If
/// any of @ref fisheye::CALIB_USE_INTRINSIC_GUESS , @ref fisheye::CALIB_FIX_INTRINSIC are specified,
/// some or all of the matrix components must be initialized.
/// * D1: Input/output vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye) of 4 elements.
/// * K2: Input/output second camera intrinsic matrix. The parameter is similar to K1 .
/// * D2: Input/output lens distortion coefficients for the second camera. The parameter is
/// similar to D1 .
/// * imageSize: Size of the image used only to initialize camera intrinsic matrix.
/// * R: Output rotation matrix between the 1st and the 2nd camera coordinate systems.
/// * T: Output translation vector between the coordinate systems of the cameras.
/// * flags: Different flags that may be zero or a combination of the following values:
/// *    @ref fisheye::CALIB_FIX_INTRINSIC  Fix K1, K2? and D1, D2? so that only R, T matrices
/// are estimated.
/// *    @ref fisheye::CALIB_USE_INTRINSIC_GUESS  K1, K2 contains valid initial values of
/// fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
/// center (imageSize is used), and focal distances are computed in a least-squares fashion.
/// *    @ref fisheye::CALIB_RECOMPUTE_EXTRINSIC  Extrinsic will be recomputed after each iteration
/// of intrinsic optimization.
/// *    @ref fisheye::CALIB_CHECK_COND  The functions will check validity of condition number.
/// *    @ref fisheye::CALIB_FIX_SKEW  Skew coefficient (alpha) is set to zero and stay zero.
/// *   @ref fisheye::CALIB_FIX_K1,..., @ref fisheye::CALIB_FIX_K4 Selected distortion coefficients are set to zeros and stay
/// zero.
/// * criteria: Termination criteria for the iterative optimization algorithm.
/// 
/// ## C++ default parameters
/// * flags: fisheye::CALIB_FIX_INTRINSIC
/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,100,DBL_EPSILON)
pub fn fisheye_stereo_calibrate(object_points: &dyn core::ToInputArray, image_points1: &dyn core::ToInputArray, image_points2: &dyn core::ToInputArray, k1: &mut dyn core::ToInputOutputArray, d1: &mut dyn core::ToInputOutputArray, k2: &mut dyn core::ToInputOutputArray, d2: &mut dyn core::ToInputOutputArray, image_size: core::Size, r: &mut dyn core::ToOutputArray, t: &mut dyn core::ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
	input_array_arg!(object_points);
	input_array_arg!(image_points1);
	input_array_arg!(image_points2);
	input_output_array_arg!(k1);
	input_output_array_arg!(d1);
	input_output_array_arg!(k2);
	input_output_array_arg!(d2);
	output_array_arg!(r);
	output_array_arg!(t);
	unsafe { sys::cv_fisheye_stereoCalibrate_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_Size_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(object_points.as_raw__InputArray(), image_points1.as_raw__InputArray(), image_points2.as_raw__InputArray(), k1.as_raw__InputOutputArray(), d1.as_raw__InputOutputArray(), k2.as_raw__InputOutputArray(), d2.as_raw__InputOutputArray(), image_size.opencv_as_extern(), r.as_raw__OutputArray(), t.as_raw__OutputArray(), flags, criteria.opencv_as_extern()) }.into_result()
}

/// Stereo rectification for fisheye camera model
/// 
/// ## Parameters
/// * K1: First camera intrinsic matrix.
/// * D1: First camera distortion parameters.
/// * K2: Second camera intrinsic matrix.
/// * D2: Second camera distortion parameters.
/// * imageSize: Size of the image used for stereo calibration.
/// * R: Rotation matrix between the coordinate systems of the first and the second
/// cameras.
/// * tvec: Translation vector between coordinate systems of the cameras.
/// * R1: Output 3x3 rectification transform (rotation matrix) for the first camera.
/// * R2: Output 3x3 rectification transform (rotation matrix) for the second camera.
/// * P1: Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
/// camera.
/// * P2: Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
/// camera.
/// * Q: Output ![inline formula](https://latex.codecogs.com/png.latex?4%20%5Ctimes%204) disparity-to-depth mapping matrix (see reprojectImageTo3D ).
/// * flags: Operation flags that may be zero or @ref fisheye::CALIB_ZERO_DISPARITY . If the flag is set,
/// the function makes the principal points of each camera have the same pixel coordinates in the
/// rectified views. And if the flag is not set, the function may still shift the images in the
/// horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
/// useful image area.
/// * newImageSize: New image resolution after rectification. The same size should be passed to
/// initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
/// is passed (default), it is set to the original imageSize . Setting it to larger value can help you
/// preserve details in the original image, especially when there is a big radial distortion.
/// * balance: Sets the new focal length in range between the min focal length and the max focal
/// length. Balance is in range of [0, 1].
/// * fov_scale: Divisor for new focal length.
/// 
/// ## C++ default parameters
/// * new_image_size: Size()
/// * balance: 0.0
/// * fov_scale: 1.0
pub fn fisheye_stereo_rectify(k1: &dyn core::ToInputArray, d1: &dyn core::ToInputArray, k2: &dyn core::ToInputArray, d2: &dyn core::ToInputArray, image_size: core::Size, r: &dyn core::ToInputArray, tvec: &dyn core::ToInputArray, r1: &mut dyn core::ToOutputArray, r2: &mut dyn core::ToOutputArray, p1: &mut dyn core::ToOutputArray, p2: &mut dyn core::ToOutputArray, q: &mut dyn core::ToOutputArray, flags: i32, new_image_size: core::Size, balance: f64, fov_scale: f64) -> Result<()> {
	input_array_arg!(k1);
	input_array_arg!(d1);
	input_array_arg!(k2);
	input_array_arg!(d2);
	input_array_arg!(r);
	input_array_arg!(tvec);
	output_array_arg!(r1);
	output_array_arg!(r2);
	output_array_arg!(p1);
	output_array_arg!(p2);
	output_array_arg!(q);
	unsafe { sys::cv_fisheye_stereoRectify_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const_SizeR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_const_SizeR_double_double(k1.as_raw__InputArray(), d1.as_raw__InputArray(), k2.as_raw__InputArray(), d2.as_raw__InputArray(), &image_size, r.as_raw__InputArray(), tvec.as_raw__InputArray(), r1.as_raw__OutputArray(), r2.as_raw__OutputArray(), p1.as_raw__OutputArray(), p2.as_raw__OutputArray(), q.as_raw__OutputArray(), flags, &new_image_size, balance, fov_scale) }.into_result()
}

/// Transforms an image to compensate for fisheye lens distortion.
/// 
/// ## Parameters
/// * distorted: image with fisheye lens distortion.
/// * undistorted: Output image with compensated fisheye lens distortion.
/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?cameramatrix%7BK%7D).
/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
/// * Knew: Camera intrinsic matrix of the distorted image. By default, it is the identity matrix but you
/// may additionally scale and shift the result by using a different matrix.
/// * new_size: the new size
/// 
/// The function transforms an image to compensate radial and tangential lens distortion.
/// 
/// The function is simply a combination of fisheye::initUndistortRectifyMap (with unity R ) and remap
/// (with bilinear interpolation). See the former function for details of the transformation being
/// performed.
/// 
/// See below the results of undistortImage.
///    *   a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
///        k_4, k_5, k_6) of distortion were optimized under calibration)
///    *   b\) result of fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
///        k_3, k_4) of fisheye distortion were optimized under calibration)
///    *   c\) original image was captured with fisheye lens
/// 
/// Pictures a) and b) almost the same. But if we consider points of image located far from the center
/// of image, we can notice that on image a) these points are distorted.
/// 
/// ![image](https://docs.opencv.org/4.3.0/fisheye_undistorted.jpg)
/// 
/// ## C++ default parameters
/// * knew: cv::noArray()
/// * new_size: Size()
pub fn fisheye_undistort_image(distorted: &dyn core::ToInputArray, undistorted: &mut dyn core::ToOutputArray, k: &dyn core::ToInputArray, d: &dyn core::ToInputArray, knew: &dyn core::ToInputArray, new_size: core::Size) -> Result<()> {
	input_array_arg!(distorted);
	output_array_arg!(undistorted);
	input_array_arg!(k);
	input_array_arg!(d);
	input_array_arg!(knew);
	unsafe { sys::cv_fisheye_undistortImage_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const_SizeR(distorted.as_raw__InputArray(), undistorted.as_raw__OutputArray(), k.as_raw__InputArray(), d.as_raw__InputArray(), knew.as_raw__InputArray(), &new_size) }.into_result()
}

/// Undistorts 2D points using fisheye model
/// 
/// ## Parameters
/// * distorted: Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the
/// number of points in the view.
/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?cameramatrix%7BK%7D).
/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
/// * R: Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
/// 1-channel or 1x1 3-channel
/// * P: New camera intrinsic matrix (3x3) or new projection matrix (3x4)
/// * undistorted: Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
/// 
/// ## C++ default parameters
/// * r: noArray()
/// * p: noArray()
pub fn fisheye_undistort_points(distorted: &dyn core::ToInputArray, undistorted: &mut dyn core::ToOutputArray, k: &dyn core::ToInputArray, d: &dyn core::ToInputArray, r: &dyn core::ToInputArray, p: &dyn core::ToInputArray) -> Result<()> {
	input_array_arg!(distorted);
	output_array_arg!(undistorted);
	input_array_arg!(k);
	input_array_arg!(d);
	input_array_arg!(r);
	input_array_arg!(p);
	unsafe { sys::cv_fisheye_undistortPoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR(distorted.as_raw__InputArray(), undistorted.as_raw__OutputArray(), k.as_raw__InputArray(), d.as_raw__InputArray(), r.as_raw__InputArray(), p.as_raw__InputArray()) }.into_result()
}

/// Returns the default new camera matrix.
/// 
/// The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
/// centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true).
/// 
/// In the latter case, the new camera matrix will be:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%26%200%20%26%26%20%28%20%5Ctexttt%7BimgSize%2Ewidth%7D%20%2D1%29%2A0%2E5%20%20%5C%5C%200%20%26%26%20f%5Fy%20%26%26%20%28%20%5Ctexttt%7BimgSize%2Eheight%7D%20%2D1%29%2A0%2E5%20%20%5C%5C%200%20%26%26%200%20%26%26%201%20%5Cend%7Bbmatrix%7D%20%2C)
/// 
/// where ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy) are ![inline formula](https://latex.codecogs.com/png.latex?%280%2C0%29) and ![inline formula](https://latex.codecogs.com/png.latex?%281%2C1%29) elements of cameraMatrix, respectively.
/// 
/// By default, the undistortion functions in OpenCV (see #initUndistortRectifyMap, #undistort) do not
/// move the principal point. However, when you work with stereo, it is important to move the principal
/// points in both views to the same y-coordinate (which is required by most of stereo correspondence
/// algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for
/// each view where the principal points are located at the center.
/// 
/// ## Parameters
/// * cameraMatrix: Input camera matrix.
/// * imgsize: Camera view image size in pixels.
/// * centerPrincipalPoint: Location of the principal point in the new camera matrix. The
/// parameter indicates whether this location should be at the image center or not.
/// 
/// ## C++ default parameters
/// * imgsize: Size()
/// * center_principal_point: false
pub fn get_default_new_camera_matrix(camera_matrix: &dyn core::ToInputArray, imgsize: core::Size, center_principal_point: bool) -> Result<core::Mat> {
	input_array_arg!(camera_matrix);
	unsafe { sys::cv_getDefaultNewCameraMatrix_const__InputArrayR_Size_bool(camera_matrix.as_raw__InputArray(), imgsize.opencv_as_extern(), center_principal_point) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
}

/// Returns the new camera intrinsic matrix based on the free scaling parameter.
/// 
/// ## Parameters
/// * cameraMatrix: Input camera intrinsic matrix.
/// * distCoeffs: Input vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
/// assumed.
/// * imageSize: Original image size.
/// * alpha: Free scaling parameter between 0 (when all the pixels in the undistorted image are
/// valid) and 1 (when all the source image pixels are retained in the undistorted image). See
/// stereoRectify for details.
/// * newImgSize: Image size after rectification. By default, it is set to imageSize .
/// * validPixROI: Optional output rectangle that outlines all-good-pixels region in the
/// undistorted image. See roi1, roi2 description in stereoRectify .
/// * centerPrincipalPoint: Optional flag that indicates whether in the new camera intrinsic matrix the
/// principal point should be at the image center or not. By default, the principal point is chosen to
/// best fit a subset of the source image (determined by alpha) to the corrected image.
/// ## Returns
/// new_camera_matrix Output new camera intrinsic matrix.
/// 
/// The function computes and returns the optimal new camera intrinsic matrix based on the free scaling parameter.
/// By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
/// image pixels if there is valuable information in the corners alpha=1 , or get something in between.
/// When alpha\>0 , the undistorted result is likely to have some black pixels corresponding to
/// "virtual" pixels outside of the captured distorted image. The original camera intrinsic matrix, distortion
/// coefficients, the computed new camera intrinsic matrix, and newImageSize should be passed to
/// initUndistortRectifyMap to produce the maps for remap .
/// 
/// ## C++ default parameters
/// * new_img_size: Size()
/// * valid_pix_roi: 0
/// * center_principal_point: false
pub fn get_optimal_new_camera_matrix(camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, image_size: core::Size, alpha: f64, new_img_size: core::Size, valid_pix_roi: &mut core::Rect, center_principal_point: bool) -> Result<core::Mat> {
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	unsafe { sys::cv_getOptimalNewCameraMatrix_const__InputArrayR_const__InputArrayR_Size_double_Size_RectX_bool(camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), image_size.opencv_as_extern(), alpha, new_img_size.opencv_as_extern(), valid_pix_roi, center_principal_point) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
}

/// computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
pub fn get_valid_disparity_roi(roi1: core::Rect, roi2: core::Rect, min_disparity: i32, number_of_disparities: i32, block_size: i32) -> Result<core::Rect> {
	unsafe { sys::cv_getValidDisparityROI_Rect_Rect_int_int_int(roi1.opencv_as_extern(), roi2.opencv_as_extern(), min_disparity, number_of_disparities, block_size) }.into_result()
}

/// Finds an initial camera intrinsic matrix from 3D-2D point correspondences.
/// 
/// ## Parameters
/// * objectPoints: Vector of vectors of the calibration pattern points in the calibration pattern
/// coordinate space. In the old interface all the per-view vectors are concatenated. See
/// calibrateCamera for details.
/// * imagePoints: Vector of vectors of the projections of the calibration pattern points. In the
/// old interface all the per-view vectors are concatenated.
/// * imageSize: Image size in pixels used to initialize the principal point.
/// * aspectRatio: If it is zero or negative, both ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy) are estimated independently.
/// Otherwise, ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx%20%3D%20f%5Fy%20%2A%20%5Ctexttt%7BaspectRatio%7D) .
/// 
/// The function estimates and returns an initial camera intrinsic matrix for the camera calibration process.
/// Currently, the function only supports planar calibration patterns, which are patterns where each
/// object point has z-coordinate =0.
/// 
/// ## C++ default parameters
/// * aspect_ratio: 1.0
pub fn init_camera_matrix_2d(object_points: &dyn core::ToInputArray, image_points: &dyn core::ToInputArray, image_size: core::Size, aspect_ratio: f64) -> Result<core::Mat> {
	input_array_arg!(object_points);
	input_array_arg!(image_points);
	unsafe { sys::cv_initCameraMatrix2D_const__InputArrayR_const__InputArrayR_Size_double(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), image_size.opencv_as_extern(), aspect_ratio) }.into_result().map(|r| unsafe { core::Mat::opencv_from_extern(r) } )
}

/// Computes the undistortion and rectification transformation map.
/// 
/// The function computes the joint undistortion and rectification transformation and represents the
/// result in the form of maps for remap. The undistorted image looks like original, as if it is
/// captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a
/// monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by
/// #getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera,
/// newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
/// 
/// Also, this new camera is oriented differently in the coordinate space, according to R. That, for
/// example, helps to align two heads of a stereo camera so that the epipolar lines on both images
/// become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera).
/// 
/// The function actually builds the maps for the inverse mapping algorithm that is used by remap. That
/// is, for each pixel ![inline formula](https://latex.codecogs.com/png.latex?%28u%2C%20v%29) in the destination (corrected and rectified) image, the function
/// computes the corresponding coordinates in the source image (that is, in the original image from
/// camera). The following process is applied:
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Barray%7D%7Bl%7D%0Ax%20%20%5Cleftarrow%20%28u%20%2D%20%7Bc%27%7D%5Fx%29%2F%7Bf%27%7D%5Fx%20%20%5C%5C%0Ay%20%20%5Cleftarrow%20%28v%20%2D%20%7Bc%27%7D%5Fy%29%2F%7Bf%27%7D%5Fy%20%20%5C%5C%0A%7B%5BX%5C%2CY%5C%2CW%5D%7D%20%5ET%20%20%5Cleftarrow%20R%5E%7B%2D1%7D%2A%5Bx%20%5C%2C%20y%20%5C%2C%201%5D%5ET%20%20%5C%5C%0Ax%27%20%20%5Cleftarrow%20X%2FW%20%20%5C%5C%0Ay%27%20%20%5Cleftarrow%20Y%2FW%20%20%5C%5C%0Ar%5E2%20%20%5Cleftarrow%20x%27%5E2%20%2B%20y%27%5E2%20%5C%5C%0Ax%27%27%20%20%5Cleftarrow%20x%27%20%5Cfrac%7B1%20%2B%20k%5F1%20r%5E2%20%2B%20k%5F2%20r%5E4%20%2B%20k%5F3%20r%5E6%7D%7B1%20%2B%20k%5F4%20r%5E2%20%2B%20k%5F5%20r%5E4%20%2B%20k%5F6%20r%5E6%7D%0A%2B%202p%5F1%20x%27%20y%27%20%2B%20p%5F2%28r%5E2%20%2B%202%20x%27%5E2%29%20%20%2B%20s%5F1%20r%5E2%20%2B%20s%5F2%20r%5E4%5C%5C%0Ay%27%27%20%20%5Cleftarrow%20y%27%20%5Cfrac%7B1%20%2B%20k%5F1%20r%5E2%20%2B%20k%5F2%20r%5E4%20%2B%20k%5F3%20r%5E6%7D%7B1%20%2B%20k%5F4%20r%5E2%20%2B%20k%5F5%20r%5E4%20%2B%20k%5F6%20r%5E6%7D%0A%2B%20p%5F1%20%28r%5E2%20%2B%202%20y%27%5E2%29%20%2B%202%20p%5F2%20x%27%20y%27%20%2B%20s%5F3%20r%5E2%20%2B%20s%5F4%20r%5E4%20%5C%5C%0As%5Cbegin%7Bbmatrix%7D%20x%27%27%27%5C%5C%20y%27%27%27%5C%5C%201%20%5Cend%7Bbmatrix%7D%20%3D%0A%5Cvecthreethree%7BR%5F%7B33%7D%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%7D%7B0%7D%7B%2DR%5F%7B13%7D%28%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%7D%0A%7B0%7D%7BR%5F%7B33%7D%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%7D%7B%2DR%5F%7B23%7D%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%7D%0A%7B0%7D%7B0%7D%7B1%7D%20R%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%20%5Cbegin%7Bbmatrix%7D%20x%27%27%5C%5C%20y%27%27%5C%5C%201%20%5Cend%7Bbmatrix%7D%5C%5C%0Amap%5Fx%28u%2Cv%29%20%20%5Cleftarrow%20x%27%27%27%20f%5Fx%20%2B%20c%5Fx%20%20%5C%5C%0Amap%5Fy%28u%2Cv%29%20%20%5Cleftarrow%20y%27%27%27%20f%5Fy%20%2B%20c%5Fy%0A%5Cend%7Barray%7D%0A)
/// where ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
/// are the distortion coefficients.
/// 
/// In case of a stereo camera, this function is called twice: once for each camera head, after
/// stereoRectify, which in its turn is called after #stereoCalibrate. But if the stereo camera
/// was not calibrated, it is still possible to compute the rectification transformations directly from
/// the fundamental matrix using #stereoRectifyUncalibrated. For each camera, the function computes
/// homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
/// space. R can be computed from H as
/// ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BR%7D%20%3D%20%5Ctexttt%7BcameraMatrix%7D%20%5E%7B%2D1%7D%20%5Ccdot%20%5Ctexttt%7BH%7D%20%5Ccdot%20%5Ctexttt%7BcameraMatrix%7D)
/// where cameraMatrix can be chosen arbitrarily.
/// 
/// ## Parameters
/// * cameraMatrix: Input camera matrix ![inline formula](https://latex.codecogs.com/png.latex?A%3D%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
/// * distCoeffs: Input vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
/// of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
/// * R: Optional rectification transformation in the object space (3x3 matrix). R1 or R2 ,
/// computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
/// is assumed. In cvInitUndistortMap R assumed to be an identity matrix.
/// * newCameraMatrix: New camera matrix ![inline formula](https://latex.codecogs.com/png.latex?A%27%3D%5Cbegin%7Bbmatrix%7D%20f%5Fx%27%20%26%200%20%26%20c%5Fx%27%5C%5C%200%20%26%20f%5Fy%27%20%26%20c%5Fy%27%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D).
/// * size: Undistorted image size.
/// * m1type: Type of the first output map that can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps
/// * map1: The first output map.
/// * map2: The second output map.
pub fn init_undistort_rectify_map(camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, r: &dyn core::ToInputArray, new_camera_matrix: &dyn core::ToInputArray, size: core::Size, m1type: i32, map1: &mut dyn core::ToOutputArray, map2: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	input_array_arg!(r);
	input_array_arg!(new_camera_matrix);
	output_array_arg!(map1);
	output_array_arg!(map2);
	unsafe { sys::cv_initUndistortRectifyMap_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_Size_int_const__OutputArrayR_const__OutputArrayR(camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), r.as_raw__InputArray(), new_camera_matrix.as_raw__InputArray(), size.opencv_as_extern(), m1type, map1.as_raw__OutputArray(), map2.as_raw__OutputArray()) }.into_result()
}

/// initializes maps for #remap for wide-angle
/// 
/// ## C++ default parameters
/// * proj_type: PROJ_SPHERICAL_EQRECT
/// * alpha: 0
pub fn init_wide_angle_proj_map(camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, image_size: core::Size, dest_image_width: i32, m1type: i32, map1: &mut dyn core::ToOutputArray, map2: &mut dyn core::ToOutputArray, proj_type: crate::calib3d::UndistortTypes, alpha: f64) -> Result<f32> {
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	output_array_arg!(map1);
	output_array_arg!(map2);
	unsafe { sys::cv_initWideAngleProjMap_const__InputArrayR_const__InputArrayR_Size_int_int_const__OutputArrayR_const__OutputArrayR_UndistortTypes_double(camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), image_size.opencv_as_extern(), dest_image_width, m1type, map1.as_raw__OutputArray(), map2.as_raw__OutputArray(), proj_type, alpha) }.into_result()
}

/// Computes partial derivatives of the matrix product for each multiplied matrix.
/// 
/// ## Parameters
/// * A: First multiplied matrix.
/// * B: Second multiplied matrix.
/// * dABdA: First output derivative matrix d(A\*B)/dA of size
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BA%2Erows%2AB%2Ecols%7D%20%5Ctimes%20%7BA%2Erows%2AA%2Ecols%7D) .
/// * dABdB: Second output derivative matrix d(A\*B)/dB of size
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BA%2Erows%2AB%2Ecols%7D%20%5Ctimes%20%7BB%2Erows%2AB%2Ecols%7D) .
/// 
/// The function computes partial derivatives of the elements of the matrix product ![inline formula](https://latex.codecogs.com/png.latex?A%2AB) with regard to
/// the elements of each of the two input matrices. The function is used to compute the Jacobian
/// matrices in stereoCalibrate but can also be used in any other similar optimization function.
pub fn mat_mul_deriv(a: &dyn core::ToInputArray, b: &dyn core::ToInputArray, d_a_bd_a: &mut dyn core::ToOutputArray, d_a_bd_b: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(a);
	input_array_arg!(b);
	output_array_arg!(d_a_bd_a);
	output_array_arg!(d_a_bd_b);
	unsafe { sys::cv_matMulDeriv_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(a.as_raw__InputArray(), b.as_raw__InputArray(), d_a_bd_a.as_raw__OutputArray(), d_a_bd_b.as_raw__OutputArray()) }.into_result()
}

/// Projects 3D points to an image plane.
/// 
/// ## Parameters
/// * objectPoints: Array of object points expressed wrt. the world coordinate frame. A 3xN/Nx3
/// 1-channel or 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is the number of points in the view.
/// * rvec: The rotation vector (@ref Rodrigues) that, together with tvec, performs a change of
/// basis from world to camera coordinate system, see @ref calibrateCamera for details.
/// * tvec: The translation vector, see parameter description above.
/// * cameraMatrix: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
/// * distCoeffs: Input vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs) . If the vector is empty, the zero distortion coefficients are assumed.
/// * imagePoints: Output array of image points, 1xN/Nx1 2-channel, or
/// vector\<Point2f\> .
/// * jacobian: Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image
/// points with respect to components of the rotation vector, translation vector, focal lengths,
/// coordinates of the principal point and the distortion coefficients. In the old interface different
/// components of the jacobian are returned via different output parameters.
/// * aspectRatio: Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
/// function assumes that the aspect ratio (![inline formula](https://latex.codecogs.com/png.latex?f%5Fx%20%2F%20f%5Fy)) is fixed and correspondingly adjusts the
/// jacobian matrix.
/// 
/// The function computes the 2D projections of 3D points to the image plane, given intrinsic and
/// extrinsic camera parameters. Optionally, the function computes Jacobians -matrices of partial
/// derivatives of image points coordinates (as functions of all the input parameters) with respect to
/// the particular parameters, intrinsic and/or extrinsic. The Jacobians are used during the global
/// optimization in @ref calibrateCamera, @ref solvePnP, and @ref stereoCalibrate. The function itself
/// can also be used to compute a re-projection error, given the current intrinsic and extrinsic
/// parameters.
/// 
/// 
/// Note: By setting rvec = tvec = ![inline formula](https://latex.codecogs.com/png.latex?%5B0%2C%200%2C%200%5D), or by setting cameraMatrix to a 3x3 identity matrix,
/// or by passing zero distortion coefficients, one can get various useful partial cases of the
/// function. This means, one can compute the distorted coordinates for a sparse set of points or apply
/// a perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
/// 
/// ## C++ default parameters
/// * jacobian: noArray()
/// * aspect_ratio: 0
pub fn project_points(object_points: &dyn core::ToInputArray, rvec: &dyn core::ToInputArray, tvec: &dyn core::ToInputArray, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, image_points: &mut dyn core::ToOutputArray, jacobian: &mut dyn core::ToOutputArray, aspect_ratio: f64) -> Result<()> {
	input_array_arg!(object_points);
	input_array_arg!(rvec);
	input_array_arg!(tvec);
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	output_array_arg!(image_points);
	output_array_arg!(jacobian);
	unsafe { sys::cv_projectPoints_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_double(object_points.as_raw__InputArray(), rvec.as_raw__InputArray(), tvec.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), image_points.as_raw__OutputArray(), jacobian.as_raw__OutputArray(), aspect_ratio) }.into_result()
}

/// Recovers the relative camera rotation and the translation from an estimated essential
/// matrix and the corresponding points in two images, using cheirality check. Returns the number of
/// inliers that pass the check.
/// 
/// ## Parameters
/// * E: The input essential matrix.
/// * points1: Array of N 2D points from the first image. The point coordinates should be
/// floating-point (single or double precision).
/// * points2: Array of the second image points of the same size and format as points1 .
/// * cameraMatrix: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
/// Note that this function assumes that points1 and points2 are feature points from cameras with the
/// same camera intrinsic matrix.
/// * R: Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
/// that performs a change of basis from the first camera's coordinate system to the second camera's
/// coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
/// described below.
/// * t: Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
/// therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
/// length.
/// * mask: Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
/// inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
/// recover pose. In the output mask only inliers which pass the cheirality check.
/// 
/// This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies
/// possible pose hypotheses by doing cheirality check. The cheirality check means that the
/// triangulated 3D points should have positive depth. Some details can be found in [Nister03](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Nister03).
/// 
/// This function can be used to process the output E and mask from @ref findEssentialMat. In this
/// scenario, points1 and points2 are the same input for findEssentialMat.:
/// ```ignore
///    // Example. Estimation of fundamental matrix using the RANSAC algorithm
///    int point_count = 100;
///    vector<Point2f> points1(point_count);
///    vector<Point2f> points2(point_count);
/// 
///    // initialize the points here ...
///    for( int i = 0; i < point_count; i++ )
///    {
///        points1[i] = ...;
///        points2[i] = ...;
///    }
/// 
///    // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
///    Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
/// 
///    Mat E, R, t, mask;
/// 
///    E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
///    recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
/// ```
/// 
/// 
/// ## C++ default parameters
/// * mask: noArray()
pub fn recover_pose_camera(e: &dyn core::ToInputArray, points1: &dyn core::ToInputArray, points2: &dyn core::ToInputArray, camera_matrix: &dyn core::ToInputArray, r: &mut dyn core::ToOutputArray, t: &mut dyn core::ToOutputArray, mask: &mut dyn core::ToInputOutputArray) -> Result<i32> {
	input_array_arg!(e);
	input_array_arg!(points1);
	input_array_arg!(points2);
	input_array_arg!(camera_matrix);
	output_array_arg!(r);
	output_array_arg!(t);
	input_output_array_arg!(mask);
	unsafe { sys::cv_recoverPose_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__InputOutputArrayR(e.as_raw__InputArray(), points1.as_raw__InputArray(), points2.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), r.as_raw__OutputArray(), t.as_raw__OutputArray(), mask.as_raw__InputOutputArray()) }.into_result()
}

/// Recovers the relative camera rotation and the translation from an estimated essential
/// matrix and the corresponding points in two images, using cheirality check. Returns the number of
/// inliers that pass the check.
/// 
/// ## Parameters
/// * E: The input essential matrix.
/// * points1: Array of N 2D points from the first image. The point coordinates should be
/// floating-point (single or double precision).
/// * points2: Array of the second image points of the same size and format as points1 .
/// * cameraMatrix: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
/// Note that this function assumes that points1 and points2 are feature points from cameras with the
/// same camera intrinsic matrix.
/// * R: Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
/// that performs a change of basis from the first camera's coordinate system to the second camera's
/// coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
/// described below.
/// * t: Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
/// therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
/// length.
/// * mask: Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
/// inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
/// recover pose. In the output mask only inliers which pass the cheirality check.
/// 
/// This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies
/// possible pose hypotheses by doing cheirality check. The cheirality check means that the
/// triangulated 3D points should have positive depth. Some details can be found in [Nister03](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Nister03).
/// 
/// This function can be used to process the output E and mask from @ref findEssentialMat. In this
/// scenario, points1 and points2 are the same input for findEssentialMat.:
/// ```ignore
///    // Example. Estimation of fundamental matrix using the RANSAC algorithm
///    int point_count = 100;
///    vector<Point2f> points1(point_count);
///    vector<Point2f> points2(point_count);
/// 
///    // initialize the points here ...
///    for( int i = 0; i < point_count; i++ )
///    {
///        points1[i] = ...;
///        points2[i] = ...;
///    }
/// 
///    // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
///    Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
/// 
///    Mat E, R, t, mask;
/// 
///    E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
///    recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
/// ```
/// 
/// 
/// ## Overloaded parameters
/// 
/// * E: The input essential matrix.
/// * points1: Array of N 2D points from the first image. The point coordinates should be
/// floating-point (single or double precision).
/// * points2: Array of the second image points of the same size and format as points1.
/// * cameraMatrix: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
/// Note that this function assumes that points1 and points2 are feature points from cameras with the
/// same camera intrinsic matrix.
/// * R: Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
/// that performs a change of basis from the first camera's coordinate system to the second camera's
/// coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
/// description below.
/// * t: Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
/// therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
/// length.
/// * distanceThresh: threshold distance which is used to filter out far away points (i.e. infinite
/// points).
/// * mask: Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
/// inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
/// recover pose. In the output mask only inliers which pass the cheirality check.
/// * triangulatedPoints: 3D points which were reconstructed by triangulation.
/// 
/// This function differs from the one above that it outputs the triangulated 3D point that are used for
/// the cheirality check.
/// 
/// ## C++ default parameters
/// * mask: noArray()
/// * triangulated_points: noArray()
pub fn recover_pose_camera_with_points(e: &dyn core::ToInputArray, points1: &dyn core::ToInputArray, points2: &dyn core::ToInputArray, camera_matrix: &dyn core::ToInputArray, r: &mut dyn core::ToOutputArray, t: &mut dyn core::ToOutputArray, distance_thresh: f64, mask: &mut dyn core::ToInputOutputArray, triangulated_points: &mut dyn core::ToOutputArray) -> Result<i32> {
	input_array_arg!(e);
	input_array_arg!(points1);
	input_array_arg!(points2);
	input_array_arg!(camera_matrix);
	output_array_arg!(r);
	output_array_arg!(t);
	input_output_array_arg!(mask);
	output_array_arg!(triangulated_points);
	unsafe { sys::cv_recoverPose_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_double_const__InputOutputArrayR_const__OutputArrayR(e.as_raw__InputArray(), points1.as_raw__InputArray(), points2.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), r.as_raw__OutputArray(), t.as_raw__OutputArray(), distance_thresh, mask.as_raw__InputOutputArray(), triangulated_points.as_raw__OutputArray()) }.into_result()
}

/// Recovers the relative camera rotation and the translation from an estimated essential
/// matrix and the corresponding points in two images, using cheirality check. Returns the number of
/// inliers that pass the check.
/// 
/// ## Parameters
/// * E: The input essential matrix.
/// * points1: Array of N 2D points from the first image. The point coordinates should be
/// floating-point (single or double precision).
/// * points2: Array of the second image points of the same size and format as points1 .
/// * cameraMatrix: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
/// Note that this function assumes that points1 and points2 are feature points from cameras with the
/// same camera intrinsic matrix.
/// * R: Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
/// that performs a change of basis from the first camera's coordinate system to the second camera's
/// coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
/// described below.
/// * t: Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
/// therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
/// length.
/// * mask: Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
/// inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
/// recover pose. In the output mask only inliers which pass the cheirality check.
/// 
/// This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies
/// possible pose hypotheses by doing cheirality check. The cheirality check means that the
/// triangulated 3D points should have positive depth. Some details can be found in [Nister03](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Nister03).
/// 
/// This function can be used to process the output E and mask from @ref findEssentialMat. In this
/// scenario, points1 and points2 are the same input for findEssentialMat.:
/// ```ignore
///    // Example. Estimation of fundamental matrix using the RANSAC algorithm
///    int point_count = 100;
///    vector<Point2f> points1(point_count);
///    vector<Point2f> points2(point_count);
/// 
///    // initialize the points here ...
///    for( int i = 0; i < point_count; i++ )
///    {
///        points1[i] = ...;
///        points2[i] = ...;
///    }
/// 
///    // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
///    Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
/// 
///    Mat E, R, t, mask;
/// 
///    E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
///    recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
/// ```
/// 
/// 
/// ## Overloaded parameters
/// 
/// * E: The input essential matrix.
/// * points1: Array of N 2D points from the first image. The point coordinates should be
/// floating-point (single or double precision).
/// * points2: Array of the second image points of the same size and format as points1 .
/// * R: Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
/// that performs a change of basis from the first camera's coordinate system to the second camera's
/// coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
/// description below.
/// * t: Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
/// therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
/// length.
/// * focal: Focal length of the camera. Note that this function assumes that points1 and points2
/// are feature points from cameras with same focal length and principal point.
/// * pp: principal point of the camera.
/// * mask: Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
/// inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
/// recover pose. In the output mask only inliers which pass the cheirality check.
/// 
/// This function differs from the one above that it computes camera intrinsic matrix from focal length and
/// principal point:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?A%20%3D%0A%5Cbegin%7Bbmatrix%7D%0Af%20%26%200%20%26%20x%5F%7Bpp%7D%20%20%5C%5C%0A0%20%26%20f%20%26%20y%5F%7Bpp%7D%20%20%5C%5C%0A0%20%26%200%20%26%201%0A%5Cend%7Bbmatrix%7D)
/// 
/// ## C++ default parameters
/// * focal: 1.0
/// * pp: Point2d(0,0)
/// * mask: noArray()
pub fn recover_pose(e: &dyn core::ToInputArray, points1: &dyn core::ToInputArray, points2: &dyn core::ToInputArray, r: &mut dyn core::ToOutputArray, t: &mut dyn core::ToOutputArray, focal: f64, pp: core::Point2d, mask: &mut dyn core::ToInputOutputArray) -> Result<i32> {
	input_array_arg!(e);
	input_array_arg!(points1);
	input_array_arg!(points2);
	output_array_arg!(r);
	output_array_arg!(t);
	input_output_array_arg!(mask);
	unsafe { sys::cv_recoverPose_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_double_Point2d_const__InputOutputArrayR(e.as_raw__InputArray(), points1.as_raw__InputArray(), points2.as_raw__InputArray(), r.as_raw__OutputArray(), t.as_raw__OutputArray(), focal, pp.opencv_as_extern(), mask.as_raw__InputOutputArray()) }.into_result()
}

/// computes the rectification transformations for 3-head camera, where all the heads are on the same line.
pub fn rectify3_collinear(camera_matrix1: &dyn core::ToInputArray, dist_coeffs1: &dyn core::ToInputArray, camera_matrix2: &dyn core::ToInputArray, dist_coeffs2: &dyn core::ToInputArray, camera_matrix3: &dyn core::ToInputArray, dist_coeffs3: &dyn core::ToInputArray, imgpt1: &dyn core::ToInputArray, imgpt3: &dyn core::ToInputArray, image_size: core::Size, r12: &dyn core::ToInputArray, t12: &dyn core::ToInputArray, r13: &dyn core::ToInputArray, t13: &dyn core::ToInputArray, r1: &mut dyn core::ToOutputArray, r2: &mut dyn core::ToOutputArray, r3: &mut dyn core::ToOutputArray, p1: &mut dyn core::ToOutputArray, p2: &mut dyn core::ToOutputArray, p3: &mut dyn core::ToOutputArray, q: &mut dyn core::ToOutputArray, alpha: f64, new_img_size: core::Size, roi1: &mut core::Rect, roi2: &mut core::Rect, flags: i32) -> Result<f32> {
	input_array_arg!(camera_matrix1);
	input_array_arg!(dist_coeffs1);
	input_array_arg!(camera_matrix2);
	input_array_arg!(dist_coeffs2);
	input_array_arg!(camera_matrix3);
	input_array_arg!(dist_coeffs3);
	input_array_arg!(imgpt1);
	input_array_arg!(imgpt3);
	input_array_arg!(r12);
	input_array_arg!(t12);
	input_array_arg!(r13);
	input_array_arg!(t13);
	output_array_arg!(r1);
	output_array_arg!(r2);
	output_array_arg!(r3);
	output_array_arg!(p1);
	output_array_arg!(p2);
	output_array_arg!(p3);
	output_array_arg!(q);
	unsafe { sys::cv_rectify3Collinear_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_Size_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_double_Size_RectX_RectX_int(camera_matrix1.as_raw__InputArray(), dist_coeffs1.as_raw__InputArray(), camera_matrix2.as_raw__InputArray(), dist_coeffs2.as_raw__InputArray(), camera_matrix3.as_raw__InputArray(), dist_coeffs3.as_raw__InputArray(), imgpt1.as_raw__InputArray(), imgpt3.as_raw__InputArray(), image_size.opencv_as_extern(), r12.as_raw__InputArray(), t12.as_raw__InputArray(), r13.as_raw__InputArray(), t13.as_raw__InputArray(), r1.as_raw__OutputArray(), r2.as_raw__OutputArray(), r3.as_raw__OutputArray(), p1.as_raw__OutputArray(), p2.as_raw__OutputArray(), p3.as_raw__OutputArray(), q.as_raw__OutputArray(), alpha, new_img_size.opencv_as_extern(), roi1, roi2, flags) }.into_result()
}

/// Reprojects a disparity image to 3D space.
/// 
/// ## Parameters
/// * disparity: Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
/// floating-point disparity image. The values of 8-bit / 16-bit signed formats are assumed to have no
/// fractional bits. If the disparity is 16-bit signed format, as computed by @ref StereoBM or
/// @ref StereoSGBM and maybe other algorithms, it should be divided by 16 (and scaled to float) before
/// being used here.
/// * _3dImage: Output 3-channel floating-point image of the same size as disparity. Each element of
/// _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map. If one
/// uses Q obtained by @ref stereoRectify, then the returned points are represented in the first
/// camera's rectified coordinate system.
/// * Q: ![inline formula](https://latex.codecogs.com/png.latex?4%20%5Ctimes%204) perspective transformation matrix that can be obtained with
/// @ref stereoRectify.
/// * handleMissingValues: Indicates, whether the function should handle missing values (i.e.
/// points where the disparity was not computed). If handleMissingValues=true, then pixels with the
/// minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
/// to 3D points with a very large Z value (currently set to 10000).
/// * ddepth: The optional output array depth. If it is -1, the output image will have CV_32F
/// depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
/// 
/// The function transforms a single-channel disparity map to a 3-channel image representing a 3D
/// surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it
/// computes:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0AX%20%5C%5C%0AY%20%5C%5C%0AZ%20%5C%5C%0AW%0A%5Cend%7Bbmatrix%7D%20%3D%20Q%20%5Cbegin%7Bbmatrix%7D%0Ax%20%5C%5C%0Ay%20%5C%5C%0A%5Ctexttt%7Bdisparity%7D%20%28x%2Cy%29%20%5C%5C%0Az%0A%5Cend%7Bbmatrix%7D%2E)
/// ## See also
/// To reproject a sparse set of points {(x,y,d),...} to 3D space, use perspectiveTransform.
/// 
/// ## C++ default parameters
/// * handle_missing_values: false
/// * ddepth: -1
pub fn reproject_image_to_3d(disparity: &dyn core::ToInputArray, _3d_image: &mut dyn core::ToOutputArray, q: &dyn core::ToInputArray, handle_missing_values: bool, ddepth: i32) -> Result<()> {
	input_array_arg!(disparity);
	output_array_arg!(_3d_image);
	input_array_arg!(q);
	unsafe { sys::cv_reprojectImageTo3D_const__InputArrayR_const__OutputArrayR_const__InputArrayR_bool_int(disparity.as_raw__InputArray(), _3d_image.as_raw__OutputArray(), q.as_raw__InputArray(), handle_missing_values, ddepth) }.into_result()
}

/// Calculates the Sampson Distance between two points.
/// 
/// The function cv::sampsonDistance calculates and returns the first order approximation of the geometric error as:
/// ![block formula](https://latex.codecogs.com/png.latex?%0Asd%28%20%5Ctexttt%7Bpt1%7D%20%2C%20%5Ctexttt%7Bpt2%7D%20%29%3D%0A%5Cfrac%7B%28%5Ctexttt%7Bpt2%7D%5Et%20%5Ccdot%20%5Ctexttt%7BF%7D%20%5Ccdot%20%5Ctexttt%7Bpt1%7D%29%5E2%7D%0A%7B%28%28%5Ctexttt%7BF%7D%20%5Ccdot%20%5Ctexttt%7Bpt1%7D%29%280%29%29%5E2%20%2B%0A%28%28%5Ctexttt%7BF%7D%20%5Ccdot%20%5Ctexttt%7Bpt1%7D%29%281%29%29%5E2%20%2B%0A%28%28%5Ctexttt%7BF%7D%5Et%20%5Ccdot%20%5Ctexttt%7Bpt2%7D%29%280%29%29%5E2%20%2B%0A%28%28%5Ctexttt%7BF%7D%5Et%20%5Ccdot%20%5Ctexttt%7Bpt2%7D%29%281%29%29%5E2%7D%0A)
/// The fundamental matrix may be calculated using the cv::findFundamentalMat function. See [HartleyZ00](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_HartleyZ00) 11.4.3 for details.
/// ## Parameters
/// * pt1: first homogeneous 2d point
/// * pt2: second homogeneous 2d point
/// * F: fundamental matrix
/// ## Returns
/// The computed Sampson distance.
pub fn sampson_distance(pt1: &dyn core::ToInputArray, pt2: &dyn core::ToInputArray, f: &dyn core::ToInputArray) -> Result<f64> {
	input_array_arg!(pt1);
	input_array_arg!(pt2);
	input_array_arg!(f);
	unsafe { sys::cv_sampsonDistance_const__InputArrayR_const__InputArrayR_const__InputArrayR(pt1.as_raw__InputArray(), pt2.as_raw__InputArray(), f.as_raw__InputArray()) }.into_result()
}

/// Finds an object pose from 3 3D-2D point correspondences.
/// 
/// ## Parameters
/// * objectPoints: Array of object points in the object coordinate space, 3x3 1-channel or
/// 1x3/3x1 3-channel. vector\<Point3f\> can be also passed here.
/// * imagePoints: Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel.
///  vector\<Point2f\> can be also passed here.
/// * cameraMatrix: Input camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
/// * distCoeffs: Input vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
/// assumed.
/// * rvecs: Output rotation vectors (see @ref Rodrigues ) that, together with tvecs, brings points from
/// the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions.
/// * tvecs: Output translation vectors.
/// * flags: Method for solving a P3P problem:
/// *   @ref SOLVEPNP_P3P Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
/// "Complete Solution Classification for the Perspective-Three-Point Problem" ([gao2003complete](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_gao2003complete)).
/// *   @ref SOLVEPNP_AP3P Method is based on the paper of T. Ke and S. Roumeliotis.
/// "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" ([Ke17](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Ke17)).
/// 
/// The function estimates the object pose given 3 object points, their corresponding image
/// projections, as well as the camera intrinsic matrix and the distortion coefficients.
/// 
/// 
/// Note:
/// The solutions are sorted by reprojection errors (lowest to highest).
pub fn solve_p3p(object_points: &dyn core::ToInputArray, image_points: &dyn core::ToInputArray, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, rvecs: &mut dyn core::ToOutputArray, tvecs: &mut dyn core::ToOutputArray, flags: i32) -> Result<i32> {
	input_array_arg!(object_points);
	input_array_arg!(image_points);
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	output_array_arg!(rvecs);
	output_array_arg!(tvecs);
	unsafe { sys::cv_solveP3P_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_int(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), flags) }.into_result()
}

/// Finds an object pose from 3D-2D point correspondences.
/// This function returns a list of all the possible solutions (a solution is a <rotation vector, translation vector>
/// couple), depending on the number of input points and the chosen method:
/// - P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points.
/// - @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar. Returns 2 solutions.
/// - @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
/// Number of input points must be 4 and 2 solutions are returned. Object points must be defined in the following order:
///   - point 0: [-squareLength / 2,  squareLength / 2, 0]
///   - point 1: [ squareLength / 2,  squareLength / 2, 0]
///   - point 2: [ squareLength / 2, -squareLength / 2, 0]
///   - point 3: [-squareLength / 2, -squareLength / 2, 0]
/// - for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
/// Only 1 solution is returned.
/// 
/// ## Parameters
/// * objectPoints: Array of object points in the object coordinate space, Nx3 1-channel or
/// 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
/// * imagePoints: Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
/// where N is the number of points. vector\<Point2d\> can be also passed here.
/// * cameraMatrix: Input camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
/// * distCoeffs: Input vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
/// assumed.
/// * rvecs: Vector of output rotation vectors (see @ref Rodrigues ) that, together with tvecs, brings points from
/// the model coordinate system to the camera coordinate system.
/// * tvecs: Vector of output translation vectors.
/// * useExtrinsicGuess: Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
/// the provided rvec and tvec values as initial approximations of the rotation and translation
/// vectors, respectively, and further optimizes them.
/// * flags: Method for solving a PnP problem:
/// *   @ref SOLVEPNP_ITERATIVE Iterative method is based on a Levenberg-Marquardt optimization. In
/// this case the function finds such a pose that minimizes reprojection error, that is the sum
/// of squared distances between the observed projections imagePoints and the projected (using
/// projectPoints ) objectPoints .
/// *   @ref SOLVEPNP_P3P Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
/// "Complete Solution Classification for the Perspective-Three-Point Problem" ([gao2003complete](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_gao2003complete)).
/// In this case the function requires exactly four object and image points.
/// *   @ref SOLVEPNP_AP3P Method is based on the paper of T. Ke, S. Roumeliotis
/// "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" ([Ke17](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Ke17)).
/// In this case the function requires exactly four object and image points.
/// *   @ref SOLVEPNP_EPNP Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the
/// paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" ([lepetit2009epnp](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_lepetit2009epnp)).
/// *   @ref SOLVEPNP_DLS **Broken implementation. Using this flag will fallback to EPnP.** 
/// 
/// Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis.
/// "A Direct Least-Squares (DLS) Method for PnP" ([hesch2011direct](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_hesch2011direct)).
/// *   @ref SOLVEPNP_UPNP **Broken implementation. Using this flag will fallback to EPnP.** 
/// 
/// Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto,
/// F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length
/// Estimation" ([penate2013exhaustive](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_penate2013exhaustive)). In this case the function also estimates the parameters ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy)
/// assuming that both have the same value. Then the cameraMatrix is updated with the estimated
/// focal length.
/// *   @ref SOLVEPNP_IPPE Method is based on the paper of T. Collins and A. Bartoli.
/// "Infinitesimal Plane-Based Pose Estimation" ([Collins14](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Collins14)). This method requires coplanar object points.
/// *   @ref SOLVEPNP_IPPE_SQUARE Method is based on the paper of Toby Collins and Adrien Bartoli.
/// "Infinitesimal Plane-Based Pose Estimation" ([Collins14](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Collins14)). This method is suitable for marker pose estimation.
/// It requires 4 coplanar object points defined in the following order:
///   - point 0: [-squareLength / 2,  squareLength / 2, 0]
///   - point 1: [ squareLength / 2,  squareLength / 2, 0]
///   - point 2: [ squareLength / 2, -squareLength / 2, 0]
///   - point 3: [-squareLength / 2, -squareLength / 2, 0]
/// * rvec: Rotation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE
/// and useExtrinsicGuess is set to true.
/// * tvec: Translation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE
/// and useExtrinsicGuess is set to true.
/// * reprojectionError: Optional vector of reprojection error, that is the RMS error
/// (![inline formula](https://latex.codecogs.com/png.latex?%20%5Ctext%7BRMSE%7D%20%3D%20%5Csqrt%7B%5Cfrac%7B%5Csum%5F%7Bi%7D%5E%7BN%7D%20%5Cleft%20%28%20%5Chat%7By%5Fi%7D%20%2D%20y%5Fi%20%5Cright%20%29%5E2%7D%7BN%7D%7D%20)) between the input image points
/// and the 3D object points projected with the estimated pose.
/// 
/// The function estimates the object pose given a set of object points, their corresponding image
/// projections, as well as the camera intrinsic matrix and the distortion coefficients, see the figure below
/// (more precisely, the X-axis of the camera frame is pointing to the right, the Y-axis downward
/// and the Z-axis forward).
/// 
/// ![](https://docs.opencv.org/4.3.0/pnp.jpg)
/// 
/// Points expressed in the world frame ![inline formula](https://latex.codecogs.com/png.latex?%20%5Cbf%7BX%7D%5Fw%20) are projected into the image plane ![inline formula](https://latex.codecogs.com/png.latex?%20%5Cleft%5B%20u%2C%20v%20%5Cright%5D%20)
/// using the perspective projection model ![inline formula](https://latex.codecogs.com/png.latex?%20%5CPi%20) and the camera intrinsic parameters matrix ![inline formula](https://latex.codecogs.com/png.latex?%20%5Cbf%7BA%7D%20):
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%5Cbegin%7Balign%2A%7D%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20u%20%5C%5C%0A%20%20v%20%5C%5C%0A%20%201%0A%20%20%5Cend%7Bbmatrix%7D%20%26%3D%0A%20%20%5Cbf%7BA%7D%20%5Chspace%7B0%2E1em%7D%20%5CPi%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%5Cbf%7BT%7D%5Fw%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20X%5F%7Bw%7D%20%5C%5C%0A%20%20Y%5F%7Bw%7D%20%5C%5C%0A%20%20Z%5F%7Bw%7D%20%5C%5C%0A%20%201%0A%20%20%5Cend%7Bbmatrix%7D%20%5C%5C%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20u%20%5C%5C%0A%20%20v%20%5C%5C%0A%20%201%0A%20%20%5Cend%7Bbmatrix%7D%20%26%3D%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20f%5Fx%20%26%200%20%26%20c%5Fx%20%5C%5C%0A%20%200%20%26%20f%5Fy%20%26%20c%5Fy%20%5C%5C%0A%20%200%20%26%200%20%26%201%0A%20%20%5Cend%7Bbmatrix%7D%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%201%20%26%200%20%26%200%20%26%200%20%5C%5C%0A%20%200%20%26%201%20%26%200%20%26%200%20%5C%5C%0A%20%200%20%26%200%20%26%201%20%26%200%0A%20%20%5Cend%7Bbmatrix%7D%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20r%5F%7B11%7D%20%26%20r%5F%7B12%7D%20%26%20r%5F%7B13%7D%20%26%20t%5Fx%20%5C%5C%0A%20%20r%5F%7B21%7D%20%26%20r%5F%7B22%7D%20%26%20r%5F%7B23%7D%20%26%20t%5Fy%20%5C%5C%0A%20%20r%5F%7B31%7D%20%26%20r%5F%7B32%7D%20%26%20r%5F%7B33%7D%20%26%20t%5Fz%20%5C%5C%0A%20%200%20%26%200%20%26%200%20%26%201%0A%20%20%5Cend%7Bbmatrix%7D%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20X%5F%7Bw%7D%20%5C%5C%0A%20%20Y%5F%7Bw%7D%20%5C%5C%0A%20%20Z%5F%7Bw%7D%20%5C%5C%0A%20%201%0A%20%20%5Cend%7Bbmatrix%7D%0A%20%20%5Cend%7Balign%2A%7D%0A)
/// 
/// The estimated pose is thus the rotation (`rvec`) and the translation (`tvec`) vectors that allow transforming
/// a 3D point expressed in the world frame into the camera frame:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%5Cbegin%7Balign%2A%7D%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20X%5Fc%20%5C%5C%0A%20%20Y%5Fc%20%5C%5C%0A%20%20Z%5Fc%20%5C%5C%0A%20%201%0A%20%20%5Cend%7Bbmatrix%7D%20%26%3D%0A%20%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%5Cbf%7BT%7D%5Fw%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20X%5F%7Bw%7D%20%5C%5C%0A%20%20Y%5F%7Bw%7D%20%5C%5C%0A%20%20Z%5F%7Bw%7D%20%5C%5C%0A%20%201%0A%20%20%5Cend%7Bbmatrix%7D%20%5C%5C%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20X%5Fc%20%5C%5C%0A%20%20Y%5Fc%20%5C%5C%0A%20%20Z%5Fc%20%5C%5C%0A%20%201%0A%20%20%5Cend%7Bbmatrix%7D%20%26%3D%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20r%5F%7B11%7D%20%26%20r%5F%7B12%7D%20%26%20r%5F%7B13%7D%20%26%20t%5Fx%20%5C%5C%0A%20%20r%5F%7B21%7D%20%26%20r%5F%7B22%7D%20%26%20r%5F%7B23%7D%20%26%20t%5Fy%20%5C%5C%0A%20%20r%5F%7B31%7D%20%26%20r%5F%7B32%7D%20%26%20r%5F%7B33%7D%20%26%20t%5Fz%20%5C%5C%0A%20%200%20%26%200%20%26%200%20%26%201%0A%20%20%5Cend%7Bbmatrix%7D%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20X%5F%7Bw%7D%20%5C%5C%0A%20%20Y%5F%7Bw%7D%20%5C%5C%0A%20%20Z%5F%7Bw%7D%20%5C%5C%0A%20%201%0A%20%20%5Cend%7Bbmatrix%7D%0A%20%20%5Cend%7Balign%2A%7D%0A)
/// 
/// 
/// Note:
///    *   An example of how to use solvePnP for planar augmented reality can be found at
///        opencv_source_code/samples/python/plane_ar.py
///    *   If you are using Python:
///        - Numpy array slices won't work as input because solvePnP requires contiguous
///        arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
///        modules/calib3d/src/solvepnp.cpp version 2.4.9)
///        - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
///        to its calling of cv::undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
///        which requires 2-channel information.
///        - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
///        it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
///        np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
///    *   The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are
///        unstable and sometimes give completely wrong results. If you pass one of these two
///        flags, @ref SOLVEPNP_EPNP method will be used instead.
///    *   The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P
///        methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
///        of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
///    *   With @ref SOLVEPNP_ITERATIVE method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
///        are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
///        global solution to converge.
///    *   With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar.
///    *   With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
///        Number of input points must be 4. Object points must be defined in the following order:
///          - point 0: [-squareLength / 2,  squareLength / 2, 0]
///          - point 1: [ squareLength / 2,  squareLength / 2, 0]
///          - point 2: [ squareLength / 2, -squareLength / 2, 0]
///          - point 3: [-squareLength / 2, -squareLength / 2, 0]
/// 
/// ## C++ default parameters
/// * use_extrinsic_guess: false
/// * flags: SOLVEPNP_ITERATIVE
/// * rvec: noArray()
/// * tvec: noArray()
/// * reprojection_error: noArray()
pub fn solve_pnp_generic(object_points: &dyn core::ToInputArray, image_points: &dyn core::ToInputArray, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, rvecs: &mut dyn core::ToOutputArray, tvecs: &mut dyn core::ToOutputArray, use_extrinsic_guess: bool, flags: crate::calib3d::SolvePnPMethod, rvec: &dyn core::ToInputArray, tvec: &dyn core::ToInputArray, reprojection_error: &mut dyn core::ToOutputArray) -> Result<i32> {
	input_array_arg!(object_points);
	input_array_arg!(image_points);
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	output_array_arg!(rvecs);
	output_array_arg!(tvecs);
	input_array_arg!(rvec);
	input_array_arg!(tvec);
	output_array_arg!(reprojection_error);
	unsafe { sys::cv_solvePnPGeneric_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_bool_SolvePnPMethod_const__InputArrayR_const__InputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), use_extrinsic_guess, flags, rvec.as_raw__InputArray(), tvec.as_raw__InputArray(), reprojection_error.as_raw__OutputArray()) }.into_result()
}

/// Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
/// 
/// ## Parameters
/// * objectPoints: Array of object points in the object coordinate space, Nx3 1-channel or
/// 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
/// * imagePoints: Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
/// where N is the number of points. vector\<Point2d\> can be also passed here.
/// * cameraMatrix: Input camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
/// * distCoeffs: Input vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
/// assumed.
/// * rvec: Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
/// the model coordinate system to the camera coordinate system.
/// * tvec: Output translation vector.
/// * useExtrinsicGuess: Parameter used for @ref SOLVEPNP_ITERATIVE. If true (1), the function uses
/// the provided rvec and tvec values as initial approximations of the rotation and translation
/// vectors, respectively, and further optimizes them.
/// * iterationsCount: Number of iterations.
/// * reprojectionError: Inlier threshold value used by the RANSAC procedure. The parameter value
/// is the maximum allowed distance between the observed and computed point projections to consider it
/// an inlier.
/// * confidence: The probability that the algorithm produces a useful result.
/// * inliers: Output vector that contains indices of inliers in objectPoints and imagePoints .
/// * flags: Method for solving a PnP problem (see @ref solvePnP ).
/// 
/// The function estimates an object pose given a set of object points, their corresponding image
/// projections, as well as the camera intrinsic matrix and the distortion coefficients. This function finds such
/// a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
/// projections imagePoints and the projected (using @ref projectPoints ) objectPoints. The use of RANSAC
/// makes the function resistant to outliers.
/// 
/// 
/// Note:
///    *   An example of how to use solvePNPRansac for object detection can be found at
///        opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
///    *   The default method used to estimate the camera pose for the Minimal Sample Sets step
///        is #SOLVEPNP_EPNP. Exceptions are:
///          - if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
///          - if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
///    *   The method used to estimate the camera pose using all the inliers is defined by the
///        flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
///        the method #SOLVEPNP_EPNP will be used instead.
/// 
/// ## C++ default parameters
/// * use_extrinsic_guess: false
/// * iterations_count: 100
/// * reprojection_error: 8.0
/// * confidence: 0.99
/// * inliers: noArray()
/// * flags: SOLVEPNP_ITERATIVE
pub fn solve_pnp_ransac(object_points: &dyn core::ToInputArray, image_points: &dyn core::ToInputArray, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, rvec: &mut dyn core::ToOutputArray, tvec: &mut dyn core::ToOutputArray, use_extrinsic_guess: bool, iterations_count: i32, reprojection_error: f32, confidence: f64, inliers: &mut dyn core::ToOutputArray, flags: i32) -> Result<bool> {
	input_array_arg!(object_points);
	input_array_arg!(image_points);
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	output_array_arg!(rvec);
	output_array_arg!(tvec);
	output_array_arg!(inliers);
	unsafe { sys::cv_solvePnPRansac_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_bool_int_float_double_const__OutputArrayR_int(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__OutputArray(), tvec.as_raw__OutputArray(), use_extrinsic_guess, iterations_count, reprojection_error, confidence, inliers.as_raw__OutputArray(), flags) }.into_result()
}

/// ## C++ default parameters
/// * params: UsacParams()
pub fn solve_pnp_ransac_1(object_points: &dyn core::ToInputArray, image_points: &dyn core::ToInputArray, camera_matrix: &mut dyn core::ToInputOutputArray, dist_coeffs: &dyn core::ToInputArray, rvec: &mut dyn core::ToOutputArray, tvec: &mut dyn core::ToOutputArray, inliers: &mut dyn core::ToOutputArray, params: crate::calib3d::UsacParams) -> Result<bool> {
	input_array_arg!(object_points);
	input_array_arg!(image_points);
	input_output_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	output_array_arg!(rvec);
	output_array_arg!(tvec);
	output_array_arg!(inliers);
	unsafe { sys::cv_solvePnPRansac_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const_UsacParamsR(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__OutputArray(), tvec.as_raw__OutputArray(), inliers.as_raw__OutputArray(), &params) }.into_result()
}

/// Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
/// to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
/// 
/// ## Parameters
/// * objectPoints: Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
/// where N is the number of points. vector\<Point3d\> can also be passed here.
/// * imagePoints: Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
/// where N is the number of points. vector\<Point2d\> can also be passed here.
/// * cameraMatrix: Input camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
/// * distCoeffs: Input vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
/// assumed.
/// * rvec: Input/Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
/// the model coordinate system to the camera coordinate system. Input values are used as an initial solution.
/// * tvec: Input/Output translation vector. Input values are used as an initial solution.
/// * criteria: Criteria when to stop the Levenberg-Marquard iterative algorithm.
/// 
/// The function refines the object pose given at least 3 object points, their corresponding image
/// projections, an initial solution for the rotation and translation vector,
/// as well as the camera intrinsic matrix and the distortion coefficients.
/// The function minimizes the projection error with respect to the rotation and the translation vectors, according
/// to a Levenberg-Marquardt iterative minimization [Madsen04](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Madsen04) [Eade13](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Eade13) process.
/// 
/// ## C++ default parameters
/// * criteria: TermCriteria(TermCriteria::EPS+TermCriteria::COUNT,20,FLT_EPSILON)
pub fn solve_pnp_refine_lm(object_points: &dyn core::ToInputArray, image_points: &dyn core::ToInputArray, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, rvec: &mut dyn core::ToInputOutputArray, tvec: &mut dyn core::ToInputOutputArray, criteria: core::TermCriteria) -> Result<()> {
	input_array_arg!(object_points);
	input_array_arg!(image_points);
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	input_output_array_arg!(rvec);
	input_output_array_arg!(tvec);
	unsafe { sys::cv_solvePnPRefineLM_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_TermCriteria(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__InputOutputArray(), tvec.as_raw__InputOutputArray(), criteria.opencv_as_extern()) }.into_result()
}

/// Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
/// to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
/// 
/// ## Parameters
/// * objectPoints: Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
/// where N is the number of points. vector\<Point3d\> can also be passed here.
/// * imagePoints: Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
/// where N is the number of points. vector\<Point2d\> can also be passed here.
/// * cameraMatrix: Input camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
/// * distCoeffs: Input vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
/// assumed.
/// * rvec: Input/Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
/// the model coordinate system to the camera coordinate system. Input values are used as an initial solution.
/// * tvec: Input/Output translation vector. Input values are used as an initial solution.
/// * criteria: Criteria when to stop the Levenberg-Marquard iterative algorithm.
/// * VVSlambda: Gain for the virtual visual servoing control law, equivalent to the ![inline formula](https://latex.codecogs.com/png.latex?%5Calpha)
/// gain in the Damped Gauss-Newton formulation.
/// 
/// The function refines the object pose given at least 3 object points, their corresponding image
/// projections, an initial solution for the rotation and translation vector,
/// as well as the camera intrinsic matrix and the distortion coefficients.
/// The function minimizes the projection error with respect to the rotation and the translation vectors, using a
/// virtual visual servoing (VVS) [Chaumette06](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Chaumette06) [Marchand16](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Marchand16) scheme.
/// 
/// ## C++ default parameters
/// * criteria: TermCriteria(TermCriteria::EPS+TermCriteria::COUNT,20,FLT_EPSILON)
/// * vv_slambda: 1
pub fn solve_pnp_refine_vvs(object_points: &dyn core::ToInputArray, image_points: &dyn core::ToInputArray, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, rvec: &mut dyn core::ToInputOutputArray, tvec: &mut dyn core::ToInputOutputArray, criteria: core::TermCriteria, vv_slambda: f64) -> Result<()> {
	input_array_arg!(object_points);
	input_array_arg!(image_points);
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	input_output_array_arg!(rvec);
	input_output_array_arg!(tvec);
	unsafe { sys::cv_solvePnPRefineVVS_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_TermCriteria_double(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__InputOutputArray(), tvec.as_raw__InputOutputArray(), criteria.opencv_as_extern(), vv_slambda) }.into_result()
}

/// Finds an object pose from 3D-2D point correspondences.
/// This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
/// coordinate frame to the camera coordinate frame, using different methods:
/// - P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): need 4 input points to return a unique solution.
/// - @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar.
/// - @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
/// Number of input points must be 4. Object points must be defined in the following order:
///   - point 0: [-squareLength / 2,  squareLength / 2, 0]
///   - point 1: [ squareLength / 2,  squareLength / 2, 0]
///   - point 2: [ squareLength / 2, -squareLength / 2, 0]
///   - point 3: [-squareLength / 2, -squareLength / 2, 0]
/// - for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
/// 
/// ## Parameters
/// * objectPoints: Array of object points in the object coordinate space, Nx3 1-channel or
/// 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
/// * imagePoints: Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
/// where N is the number of points. vector\<Point2d\> can be also passed here.
/// * cameraMatrix: Input camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
/// * distCoeffs: Input vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
/// assumed.
/// * rvec: Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
/// the model coordinate system to the camera coordinate system.
/// * tvec: Output translation vector.
/// * useExtrinsicGuess: Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
/// the provided rvec and tvec values as initial approximations of the rotation and translation
/// vectors, respectively, and further optimizes them.
/// * flags: Method for solving a PnP problem:
/// *   @ref SOLVEPNP_ITERATIVE Iterative method is based on a Levenberg-Marquardt optimization. In
/// this case the function finds such a pose that minimizes reprojection error, that is the sum
/// of squared distances between the observed projections imagePoints and the projected (using
/// @ref projectPoints ) objectPoints .
/// *   @ref SOLVEPNP_P3P Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
/// "Complete Solution Classification for the Perspective-Three-Point Problem" ([gao2003complete](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_gao2003complete)).
/// In this case the function requires exactly four object and image points.
/// *   @ref SOLVEPNP_AP3P Method is based on the paper of T. Ke, S. Roumeliotis
/// "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" ([Ke17](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Ke17)).
/// In this case the function requires exactly four object and image points.
/// *   @ref SOLVEPNP_EPNP Method has been introduced by F. Moreno-Noguer, V. Lepetit and P. Fua in the
/// paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" ([lepetit2009epnp](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_lepetit2009epnp)).
/// *   @ref SOLVEPNP_DLS **Broken implementation. Using this flag will fallback to EPnP.** 
/// 
/// Method is based on the paper of J. Hesch and S. Roumeliotis.
/// "A Direct Least-Squares (DLS) Method for PnP" ([hesch2011direct](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_hesch2011direct)).
/// *   @ref SOLVEPNP_UPNP **Broken implementation. Using this flag will fallback to EPnP.** 
/// 
/// Method is based on the paper of A. Penate-Sanchez, J. Andrade-Cetto,
/// F. Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length
/// Estimation" ([penate2013exhaustive](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_penate2013exhaustive)). In this case the function also estimates the parameters ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy)
/// assuming that both have the same value. Then the cameraMatrix is updated with the estimated
/// focal length.
/// *   @ref SOLVEPNP_IPPE Method is based on the paper of T. Collins and A. Bartoli.
/// "Infinitesimal Plane-Based Pose Estimation" ([Collins14](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Collins14)). This method requires coplanar object points.
/// *   @ref SOLVEPNP_IPPE_SQUARE Method is based on the paper of Toby Collins and Adrien Bartoli.
/// "Infinitesimal Plane-Based Pose Estimation" ([Collins14](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Collins14)). This method is suitable for marker pose estimation.
/// It requires 4 coplanar object points defined in the following order:
///   - point 0: [-squareLength / 2,  squareLength / 2, 0]
///   - point 1: [ squareLength / 2,  squareLength / 2, 0]
///   - point 2: [ squareLength / 2, -squareLength / 2, 0]
///   - point 3: [-squareLength / 2, -squareLength / 2, 0]
/// *   @ref SOLVEPNP_SQPNP Method is based on the paper "A Consistently Fast and Globally Optimal Solution to the
/// Perspective-n-Point Problem" by G. Terzakis and M.Lourakis ([Terzakis20](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Terzakis20)). It requires 3 or more points.
/// 
/// 
/// The function estimates the object pose given a set of object points, their corresponding image
/// projections, as well as the camera intrinsic matrix and the distortion coefficients, see the figure below
/// (more precisely, the X-axis of the camera frame is pointing to the right, the Y-axis downward
/// and the Z-axis forward).
/// 
/// ![](https://docs.opencv.org/4.3.0/pnp.jpg)
/// 
/// Points expressed in the world frame ![inline formula](https://latex.codecogs.com/png.latex?%20%5Cbf%7BX%7D%5Fw%20) are projected into the image plane ![inline formula](https://latex.codecogs.com/png.latex?%20%5Cleft%5B%20u%2C%20v%20%5Cright%5D%20)
/// using the perspective projection model ![inline formula](https://latex.codecogs.com/png.latex?%20%5CPi%20) and the camera intrinsic parameters matrix ![inline formula](https://latex.codecogs.com/png.latex?%20%5Cbf%7BA%7D%20):
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%5Cbegin%7Balign%2A%7D%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20u%20%5C%5C%0A%20%20v%20%5C%5C%0A%20%201%0A%20%20%5Cend%7Bbmatrix%7D%20%26%3D%0A%20%20%5Cbf%7BA%7D%20%5Chspace%7B0%2E1em%7D%20%5CPi%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%5Cbf%7BT%7D%5Fw%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20X%5F%7Bw%7D%20%5C%5C%0A%20%20Y%5F%7Bw%7D%20%5C%5C%0A%20%20Z%5F%7Bw%7D%20%5C%5C%0A%20%201%0A%20%20%5Cend%7Bbmatrix%7D%20%5C%5C%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20u%20%5C%5C%0A%20%20v%20%5C%5C%0A%20%201%0A%20%20%5Cend%7Bbmatrix%7D%20%26%3D%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20f%5Fx%20%26%200%20%26%20c%5Fx%20%5C%5C%0A%20%200%20%26%20f%5Fy%20%26%20c%5Fy%20%5C%5C%0A%20%200%20%26%200%20%26%201%0A%20%20%5Cend%7Bbmatrix%7D%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%201%20%26%200%20%26%200%20%26%200%20%5C%5C%0A%20%200%20%26%201%20%26%200%20%26%200%20%5C%5C%0A%20%200%20%26%200%20%26%201%20%26%200%0A%20%20%5Cend%7Bbmatrix%7D%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20r%5F%7B11%7D%20%26%20r%5F%7B12%7D%20%26%20r%5F%7B13%7D%20%26%20t%5Fx%20%5C%5C%0A%20%20r%5F%7B21%7D%20%26%20r%5F%7B22%7D%20%26%20r%5F%7B23%7D%20%26%20t%5Fy%20%5C%5C%0A%20%20r%5F%7B31%7D%20%26%20r%5F%7B32%7D%20%26%20r%5F%7B33%7D%20%26%20t%5Fz%20%5C%5C%0A%20%200%20%26%200%20%26%200%20%26%201%0A%20%20%5Cend%7Bbmatrix%7D%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20X%5F%7Bw%7D%20%5C%5C%0A%20%20Y%5F%7Bw%7D%20%5C%5C%0A%20%20Z%5F%7Bw%7D%20%5C%5C%0A%20%201%0A%20%20%5Cend%7Bbmatrix%7D%0A%20%20%5Cend%7Balign%2A%7D%0A)
/// 
/// The estimated pose is thus the rotation (`rvec`) and the translation (`tvec`) vectors that allow transforming
/// a 3D point expressed in the world frame into the camera frame:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%5Cbegin%7Balign%2A%7D%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20X%5Fc%20%5C%5C%0A%20%20Y%5Fc%20%5C%5C%0A%20%20Z%5Fc%20%5C%5C%0A%20%201%0A%20%20%5Cend%7Bbmatrix%7D%20%26%3D%0A%20%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%5Cbf%7BT%7D%5Fw%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20X%5F%7Bw%7D%20%5C%5C%0A%20%20Y%5F%7Bw%7D%20%5C%5C%0A%20%20Z%5F%7Bw%7D%20%5C%5C%0A%20%201%0A%20%20%5Cend%7Bbmatrix%7D%20%5C%5C%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20X%5Fc%20%5C%5C%0A%20%20Y%5Fc%20%5C%5C%0A%20%20Z%5Fc%20%5C%5C%0A%20%201%0A%20%20%5Cend%7Bbmatrix%7D%20%26%3D%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20r%5F%7B11%7D%20%26%20r%5F%7B12%7D%20%26%20r%5F%7B13%7D%20%26%20t%5Fx%20%5C%5C%0A%20%20r%5F%7B21%7D%20%26%20r%5F%7B22%7D%20%26%20r%5F%7B23%7D%20%26%20t%5Fy%20%5C%5C%0A%20%20r%5F%7B31%7D%20%26%20r%5F%7B32%7D%20%26%20r%5F%7B33%7D%20%26%20t%5Fz%20%5C%5C%0A%20%200%20%26%200%20%26%200%20%26%201%0A%20%20%5Cend%7Bbmatrix%7D%0A%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20X%5F%7Bw%7D%20%5C%5C%0A%20%20Y%5F%7Bw%7D%20%5C%5C%0A%20%20Z%5F%7Bw%7D%20%5C%5C%0A%20%201%0A%20%20%5Cend%7Bbmatrix%7D%0A%20%20%5Cend%7Balign%2A%7D%0A)
/// 
/// 
/// Note:
///    *   An example of how to use solvePnP for planar augmented reality can be found at
///        opencv_source_code/samples/python/plane_ar.py
///    *   If you are using Python:
///        - Numpy array slices won't work as input because solvePnP requires contiguous
///        arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
///        modules/calib3d/src/solvepnp.cpp version 2.4.9)
///        - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
///        to its calling of cv::undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
///        which requires 2-channel information.
///        - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
///        it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
///        np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
///    *   The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are
///        unstable and sometimes give completely wrong results. If you pass one of these two
///        flags, @ref SOLVEPNP_EPNP method will be used instead.
///    *   The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P
///        methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
///        of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
///    *   With @ref SOLVEPNP_ITERATIVE method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
///        are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
///        global solution to converge.
///    *   With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar.
///    *   With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
///        Number of input points must be 4. Object points must be defined in the following order:
///          - point 0: [-squareLength / 2,  squareLength / 2, 0]
///          - point 1: [ squareLength / 2,  squareLength / 2, 0]
///          - point 2: [ squareLength / 2, -squareLength / 2, 0]
///          - point 3: [-squareLength / 2, -squareLength / 2, 0]
///    *  With @ref SOLVEPNP_SQPNP input points must be >= 3
/// 
/// ## C++ default parameters
/// * use_extrinsic_guess: false
/// * flags: SOLVEPNP_ITERATIVE
pub fn solve_pnp(object_points: &dyn core::ToInputArray, image_points: &dyn core::ToInputArray, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, rvec: &mut dyn core::ToOutputArray, tvec: &mut dyn core::ToOutputArray, use_extrinsic_guess: bool, flags: i32) -> Result<bool> {
	input_array_arg!(object_points);
	input_array_arg!(image_points);
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	output_array_arg!(rvec);
	output_array_arg!(tvec);
	unsafe { sys::cv_solvePnP_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_bool_int(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__OutputArray(), tvec.as_raw__OutputArray(), use_extrinsic_guess, flags) }.into_result()
}

/// Calibrates a stereo camera set up. This function finds the intrinsic parameters
/// for each of the two cameras and the extrinsic parameters between the two cameras.
/// 
/// ## Parameters
/// * objectPoints: Vector of vectors of the calibration pattern points. The same structure as
/// in @ref calibrateCamera. For each pattern view, both cameras need to see the same object
/// points. Therefore, objectPoints.size(), imagePoints1.size(), and imagePoints2.size() need to be
/// equal as well as objectPoints[i].size(), imagePoints1[i].size(), and imagePoints2[i].size() need to
/// be equal for each i.
/// * imagePoints1: Vector of vectors of the projections of the calibration pattern points,
/// observed by the first camera. The same structure as in @ref calibrateCamera.
/// * imagePoints2: Vector of vectors of the projections of the calibration pattern points,
/// observed by the second camera. The same structure as in @ref calibrateCamera.
/// * cameraMatrix1: Input/output camera intrinsic matrix for the first camera, the same as in
/// @ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
/// * distCoeffs1: Input/output vector of distortion coefficients, the same as in
/// @ref calibrateCamera.
/// * cameraMatrix2: Input/output second camera intrinsic matrix for the second camera. See description for
/// cameraMatrix1.
/// * distCoeffs2: Input/output lens distortion coefficients for the second camera. See
/// description for distCoeffs1.
/// * imageSize: Size of the image used only to initialize the camera intrinsic matrices.
/// * R: Output rotation matrix. Together with the translation vector T, this matrix brings
/// points given in the first camera's coordinate system to points in the second camera's
/// coordinate system. In more technical terms, the tuple of R and T performs a change of basis
/// from the first camera's coordinate system to the second camera's coordinate system. Due to its
/// duality, this tuple is equivalent to the position of the first camera with respect to the
/// second camera coordinate system.
/// * T: Output translation vector, see description above.
/// * E: Output essential matrix.
/// * F: Output fundamental matrix.
/// * perViewErrors: Output vector of the RMS re-projection error estimated for each pattern view.
/// * flags: Different flags that may be zero or a combination of the following values:
/// *   @ref CALIB_FIX_INTRINSIC Fix cameraMatrix? and distCoeffs? so that only R, T, E, and F
/// matrices are estimated.
/// *   @ref CALIB_USE_INTRINSIC_GUESS Optimize some or all of the intrinsic parameters
/// according to the specified flags. Initial values are provided by the user.
/// *   @ref CALIB_USE_EXTRINSIC_GUESS R and T contain valid initial values that are optimized further.
/// Otherwise R and T are initialized to the median value of the pattern views (each dimension separately).
/// *   @ref CALIB_FIX_PRINCIPAL_POINT Fix the principal points during the optimization.
/// *   @ref CALIB_FIX_FOCAL_LENGTH Fix ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fy) .
/// *   @ref CALIB_FIX_ASPECT_RATIO Optimize ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fy) . Fix the ratio ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fx%2Ff%5E%7B%28j%29%7D%5Fy)
/// .
/// *   @ref CALIB_SAME_FOCAL_LENGTH Enforce ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%280%29%7D%5Fx%3Df%5E%7B%281%29%7D%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%280%29%7D%5Fy%3Df%5E%7B%281%29%7D%5Fy) .
/// *   @ref CALIB_ZERO_TANGENT_DIST Set tangential distortion coefficients for each camera to
/// zeros and fix there.
/// *   @ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 Do not change the corresponding radial
/// distortion coefficient during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set,
/// the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
/// *   @ref CALIB_RATIONAL_MODEL Enable coefficients k4, k5, and k6. To provide the backward
/// compatibility, this extra flag should be explicitly specified to make the calibration
/// function use the rational model and return 8 coefficients. If the flag is not set, the
/// function computes and returns only 5 distortion coefficients.
/// *   @ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
/// backward compatibility, this extra flag should be explicitly specified to make the
/// calibration function use the thin prism model and return 12 coefficients. If the flag is not
/// set, the function computes and returns only 5 distortion coefficients.
/// *   @ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
/// the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
/// *   @ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
/// backward compatibility, this extra flag should be explicitly specified to make the
/// calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
/// set, the function computes and returns only 5 distortion coefficients.
/// *   @ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
/// the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
/// * criteria: Termination criteria for the iterative optimization algorithm.
/// 
/// The function estimates the transformation between two cameras making a stereo pair. If one computes
/// the poses of an object relative to the first camera and to the second camera,
/// ( ![inline formula](https://latex.codecogs.com/png.latex?R%5F1),![inline formula](https://latex.codecogs.com/png.latex?T%5F1) ) and (![inline formula](https://latex.codecogs.com/png.latex?R%5F2),![inline formula](https://latex.codecogs.com/png.latex?T%5F2)), respectively, for a stereo camera where the
/// relative position and orientation between the two cameras are fixed, then those poses definitely
/// relate to each other. This means, if the relative position and orientation (![inline formula](https://latex.codecogs.com/png.latex?R),![inline formula](https://latex.codecogs.com/png.latex?T)) of the
/// two cameras is known, it is possible to compute (![inline formula](https://latex.codecogs.com/png.latex?R%5F2),![inline formula](https://latex.codecogs.com/png.latex?T%5F2)) when (![inline formula](https://latex.codecogs.com/png.latex?R%5F1),![inline formula](https://latex.codecogs.com/png.latex?T%5F1)) is
/// given. This is what the described function does. It computes (![inline formula](https://latex.codecogs.com/png.latex?R),![inline formula](https://latex.codecogs.com/png.latex?T)) such that:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?R%5F2%3DR%20R%5F1)
/// ![block formula](https://latex.codecogs.com/png.latex?T%5F2%3DR%20T%5F1%20%2B%20T%2E)
/// 
/// Therefore, one can compute the coordinate representation of a 3D point for the second camera's
/// coordinate system when given the point's coordinate representation in the first camera's coordinate
/// system:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0AX%5F2%20%5C%5C%0AY%5F2%20%5C%5C%0AZ%5F2%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0AR%20%26%20T%20%5C%5C%0A0%20%26%201%0A%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7D%0AX%5F1%20%5C%5C%0AY%5F1%20%5C%5C%0AZ%5F1%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2E)
/// 
/// 
/// Optionally, it computes the essential matrix E:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?E%3D%20%5Cbegin%7Bbmatrix%7D%200%20%26%20%2DT%5F2%20%26%20T%5F1%5C%5C%20T%5F2%20%26%200%20%26%20%2DT%5F0%5C%5C%20%2DT%5F1%20%26%20T%5F0%20%26%200%20%5Cend%7Bbmatrix%7D%20R)
/// 
/// where ![inline formula](https://latex.codecogs.com/png.latex?T%5Fi) are components of the translation vector ![inline formula](https://latex.codecogs.com/png.latex?T) : ![inline formula](https://latex.codecogs.com/png.latex?T%3D%5BT%5F0%2C%20T%5F1%2C%20T%5F2%5D%5ET) .
/// And the function can also compute the fundamental matrix F:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?F%20%3D%20cameraMatrix2%5E%7B%2DT%7D%5Ccdot%20E%20%5Ccdot%20cameraMatrix1%5E%7B%2D1%7D)
/// 
/// Besides the stereo-related information, the function can also perform a full calibration of each of
/// the two cameras. However, due to the high dimensionality of the parameter space and noise in the
/// input data, the function can diverge from the correct solution. If the intrinsic parameters can be
/// estimated with high accuracy for each of the cameras individually (for example, using
/// calibrateCamera ), you are recommended to do so and then pass @ref CALIB_FIX_INTRINSIC flag to the
/// function along with the computed intrinsic parameters. Otherwise, if all the parameters are
/// estimated at once, it makes sense to restrict some parameters, for example, pass
///  @ref CALIB_SAME_FOCAL_LENGTH and @ref CALIB_ZERO_TANGENT_DIST flags, which is usually a
/// reasonable assumption.
/// 
/// Similarly to calibrateCamera, the function minimizes the total re-projection error for all the
/// points in all the available views from both cameras. The function returns the final value of the
/// re-projection error.
/// 
/// ## C++ default parameters
/// * flags: CALIB_FIX_INTRINSIC
/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,1e-6)
pub fn stereo_calibrate_extended(object_points: &dyn core::ToInputArray, image_points1: &dyn core::ToInputArray, image_points2: &dyn core::ToInputArray, camera_matrix1: &mut dyn core::ToInputOutputArray, dist_coeffs1: &mut dyn core::ToInputOutputArray, camera_matrix2: &mut dyn core::ToInputOutputArray, dist_coeffs2: &mut dyn core::ToInputOutputArray, image_size: core::Size, r: &mut dyn core::ToInputOutputArray, t: &mut dyn core::ToInputOutputArray, e: &mut dyn core::ToOutputArray, f: &mut dyn core::ToOutputArray, per_view_errors: &mut dyn core::ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
	input_array_arg!(object_points);
	input_array_arg!(image_points1);
	input_array_arg!(image_points2);
	input_output_array_arg!(camera_matrix1);
	input_output_array_arg!(dist_coeffs1);
	input_output_array_arg!(camera_matrix2);
	input_output_array_arg!(dist_coeffs2);
	input_output_array_arg!(r);
	input_output_array_arg!(t);
	output_array_arg!(e);
	output_array_arg!(f);
	output_array_arg!(per_view_errors);
	unsafe { sys::cv_stereoCalibrate_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_Size_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(object_points.as_raw__InputArray(), image_points1.as_raw__InputArray(), image_points2.as_raw__InputArray(), camera_matrix1.as_raw__InputOutputArray(), dist_coeffs1.as_raw__InputOutputArray(), camera_matrix2.as_raw__InputOutputArray(), dist_coeffs2.as_raw__InputOutputArray(), image_size.opencv_as_extern(), r.as_raw__InputOutputArray(), t.as_raw__InputOutputArray(), e.as_raw__OutputArray(), f.as_raw__OutputArray(), per_view_errors.as_raw__OutputArray(), flags, criteria.opencv_as_extern()) }.into_result()
}

/// Calibrates a stereo camera set up. This function finds the intrinsic parameters
/// for each of the two cameras and the extrinsic parameters between the two cameras.
/// 
/// ## Parameters
/// * objectPoints: Vector of vectors of the calibration pattern points. The same structure as
/// in @ref calibrateCamera. For each pattern view, both cameras need to see the same object
/// points. Therefore, objectPoints.size(), imagePoints1.size(), and imagePoints2.size() need to be
/// equal as well as objectPoints[i].size(), imagePoints1[i].size(), and imagePoints2[i].size() need to
/// be equal for each i.
/// * imagePoints1: Vector of vectors of the projections of the calibration pattern points,
/// observed by the first camera. The same structure as in @ref calibrateCamera.
/// * imagePoints2: Vector of vectors of the projections of the calibration pattern points,
/// observed by the second camera. The same structure as in @ref calibrateCamera.
/// * cameraMatrix1: Input/output camera intrinsic matrix for the first camera, the same as in
/// @ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
/// * distCoeffs1: Input/output vector of distortion coefficients, the same as in
/// @ref calibrateCamera.
/// * cameraMatrix2: Input/output second camera intrinsic matrix for the second camera. See description for
/// cameraMatrix1.
/// * distCoeffs2: Input/output lens distortion coefficients for the second camera. See
/// description for distCoeffs1.
/// * imageSize: Size of the image used only to initialize the camera intrinsic matrices.
/// * R: Output rotation matrix. Together with the translation vector T, this matrix brings
/// points given in the first camera's coordinate system to points in the second camera's
/// coordinate system. In more technical terms, the tuple of R and T performs a change of basis
/// from the first camera's coordinate system to the second camera's coordinate system. Due to its
/// duality, this tuple is equivalent to the position of the first camera with respect to the
/// second camera coordinate system.
/// * T: Output translation vector, see description above.
/// * E: Output essential matrix.
/// * F: Output fundamental matrix.
/// * perViewErrors: Output vector of the RMS re-projection error estimated for each pattern view.
/// * flags: Different flags that may be zero or a combination of the following values:
/// *   @ref CALIB_FIX_INTRINSIC Fix cameraMatrix? and distCoeffs? so that only R, T, E, and F
/// matrices are estimated.
/// *   @ref CALIB_USE_INTRINSIC_GUESS Optimize some or all of the intrinsic parameters
/// according to the specified flags. Initial values are provided by the user.
/// *   @ref CALIB_USE_EXTRINSIC_GUESS R and T contain valid initial values that are optimized further.
/// Otherwise R and T are initialized to the median value of the pattern views (each dimension separately).
/// *   @ref CALIB_FIX_PRINCIPAL_POINT Fix the principal points during the optimization.
/// *   @ref CALIB_FIX_FOCAL_LENGTH Fix ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fy) .
/// *   @ref CALIB_FIX_ASPECT_RATIO Optimize ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fy) . Fix the ratio ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fx%2Ff%5E%7B%28j%29%7D%5Fy)
/// .
/// *   @ref CALIB_SAME_FOCAL_LENGTH Enforce ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%280%29%7D%5Fx%3Df%5E%7B%281%29%7D%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%280%29%7D%5Fy%3Df%5E%7B%281%29%7D%5Fy) .
/// *   @ref CALIB_ZERO_TANGENT_DIST Set tangential distortion coefficients for each camera to
/// zeros and fix there.
/// *   @ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 Do not change the corresponding radial
/// distortion coefficient during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set,
/// the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
/// *   @ref CALIB_RATIONAL_MODEL Enable coefficients k4, k5, and k6. To provide the backward
/// compatibility, this extra flag should be explicitly specified to make the calibration
/// function use the rational model and return 8 coefficients. If the flag is not set, the
/// function computes and returns only 5 distortion coefficients.
/// *   @ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
/// backward compatibility, this extra flag should be explicitly specified to make the
/// calibration function use the thin prism model and return 12 coefficients. If the flag is not
/// set, the function computes and returns only 5 distortion coefficients.
/// *   @ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
/// the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
/// *   @ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
/// backward compatibility, this extra flag should be explicitly specified to make the
/// calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
/// set, the function computes and returns only 5 distortion coefficients.
/// *   @ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
/// the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
/// * criteria: Termination criteria for the iterative optimization algorithm.
/// 
/// The function estimates the transformation between two cameras making a stereo pair. If one computes
/// the poses of an object relative to the first camera and to the second camera,
/// ( ![inline formula](https://latex.codecogs.com/png.latex?R%5F1),![inline formula](https://latex.codecogs.com/png.latex?T%5F1) ) and (![inline formula](https://latex.codecogs.com/png.latex?R%5F2),![inline formula](https://latex.codecogs.com/png.latex?T%5F2)), respectively, for a stereo camera where the
/// relative position and orientation between the two cameras are fixed, then those poses definitely
/// relate to each other. This means, if the relative position and orientation (![inline formula](https://latex.codecogs.com/png.latex?R),![inline formula](https://latex.codecogs.com/png.latex?T)) of the
/// two cameras is known, it is possible to compute (![inline formula](https://latex.codecogs.com/png.latex?R%5F2),![inline formula](https://latex.codecogs.com/png.latex?T%5F2)) when (![inline formula](https://latex.codecogs.com/png.latex?R%5F1),![inline formula](https://latex.codecogs.com/png.latex?T%5F1)) is
/// given. This is what the described function does. It computes (![inline formula](https://latex.codecogs.com/png.latex?R),![inline formula](https://latex.codecogs.com/png.latex?T)) such that:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?R%5F2%3DR%20R%5F1)
/// ![block formula](https://latex.codecogs.com/png.latex?T%5F2%3DR%20T%5F1%20%2B%20T%2E)
/// 
/// Therefore, one can compute the coordinate representation of a 3D point for the second camera's
/// coordinate system when given the point's coordinate representation in the first camera's coordinate
/// system:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0AX%5F2%20%5C%5C%0AY%5F2%20%5C%5C%0AZ%5F2%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0AR%20%26%20T%20%5C%5C%0A0%20%26%201%0A%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7D%0AX%5F1%20%5C%5C%0AY%5F1%20%5C%5C%0AZ%5F1%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2E)
/// 
/// 
/// Optionally, it computes the essential matrix E:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?E%3D%20%5Cbegin%7Bbmatrix%7D%200%20%26%20%2DT%5F2%20%26%20T%5F1%5C%5C%20T%5F2%20%26%200%20%26%20%2DT%5F0%5C%5C%20%2DT%5F1%20%26%20T%5F0%20%26%200%20%5Cend%7Bbmatrix%7D%20R)
/// 
/// where ![inline formula](https://latex.codecogs.com/png.latex?T%5Fi) are components of the translation vector ![inline formula](https://latex.codecogs.com/png.latex?T) : ![inline formula](https://latex.codecogs.com/png.latex?T%3D%5BT%5F0%2C%20T%5F1%2C%20T%5F2%5D%5ET) .
/// And the function can also compute the fundamental matrix F:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?F%20%3D%20cameraMatrix2%5E%7B%2DT%7D%5Ccdot%20E%20%5Ccdot%20cameraMatrix1%5E%7B%2D1%7D)
/// 
/// Besides the stereo-related information, the function can also perform a full calibration of each of
/// the two cameras. However, due to the high dimensionality of the parameter space and noise in the
/// input data, the function can diverge from the correct solution. If the intrinsic parameters can be
/// estimated with high accuracy for each of the cameras individually (for example, using
/// calibrateCamera ), you are recommended to do so and then pass @ref CALIB_FIX_INTRINSIC flag to the
/// function along with the computed intrinsic parameters. Otherwise, if all the parameters are
/// estimated at once, it makes sense to restrict some parameters, for example, pass
///  @ref CALIB_SAME_FOCAL_LENGTH and @ref CALIB_ZERO_TANGENT_DIST flags, which is usually a
/// reasonable assumption.
/// 
/// Similarly to calibrateCamera, the function minimizes the total re-projection error for all the
/// points in all the available views from both cameras. The function returns the final value of the
/// re-projection error.
/// 
/// ## Overloaded parameters
/// 
/// ## C++ default parameters
/// * flags: CALIB_FIX_INTRINSIC
/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,1e-6)
pub fn stereo_calibrate(object_points: &dyn core::ToInputArray, image_points1: &dyn core::ToInputArray, image_points2: &dyn core::ToInputArray, camera_matrix1: &mut dyn core::ToInputOutputArray, dist_coeffs1: &mut dyn core::ToInputOutputArray, camera_matrix2: &mut dyn core::ToInputOutputArray, dist_coeffs2: &mut dyn core::ToInputOutputArray, image_size: core::Size, r: &mut dyn core::ToOutputArray, t: &mut dyn core::ToOutputArray, e: &mut dyn core::ToOutputArray, f: &mut dyn core::ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
	input_array_arg!(object_points);
	input_array_arg!(image_points1);
	input_array_arg!(image_points2);
	input_output_array_arg!(camera_matrix1);
	input_output_array_arg!(dist_coeffs1);
	input_output_array_arg!(camera_matrix2);
	input_output_array_arg!(dist_coeffs2);
	output_array_arg!(r);
	output_array_arg!(t);
	output_array_arg!(e);
	output_array_arg!(f);
	unsafe { sys::cv_stereoCalibrate_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_Size_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(object_points.as_raw__InputArray(), image_points1.as_raw__InputArray(), image_points2.as_raw__InputArray(), camera_matrix1.as_raw__InputOutputArray(), dist_coeffs1.as_raw__InputOutputArray(), camera_matrix2.as_raw__InputOutputArray(), dist_coeffs2.as_raw__InputOutputArray(), image_size.opencv_as_extern(), r.as_raw__OutputArray(), t.as_raw__OutputArray(), e.as_raw__OutputArray(), f.as_raw__OutputArray(), flags, criteria.opencv_as_extern()) }.into_result()
}

/// Computes a rectification transform for an uncalibrated stereo camera.
/// 
/// ## Parameters
/// * points1: Array of feature points in the first image.
/// * points2: The corresponding points in the second image. The same formats as in
/// findFundamentalMat are supported.
/// * F: Input fundamental matrix. It can be computed from the same set of point pairs using
/// findFundamentalMat .
/// * imgSize: Size of the image.
/// * H1: Output rectification homography matrix for the first image.
/// * H2: Output rectification homography matrix for the second image.
/// * threshold: Optional threshold used to filter out the outliers. If the parameter is greater
/// than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
/// for which ![inline formula](https://latex.codecogs.com/png.latex?%7C%5Ctexttt%7Bpoints2%5Bi%5D%7D%5ET%2A%5Ctexttt%7BF%7D%2A%5Ctexttt%7Bpoints1%5Bi%5D%7D%7C%3E%5Ctexttt%7Bthreshold%7D) ) are
/// rejected prior to computing the homographies. Otherwise, all the points are considered inliers.
/// 
/// The function computes the rectification transformations without knowing intrinsic parameters of the
/// cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
/// related difference from stereoRectify is that the function outputs not the rectification
/// transformations in the object (3D) space, but the planar perspective transformations encoded by the
/// homography matrices H1 and H2 . The function implements the algorithm [Hartley99](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_Hartley99) .
/// 
/// 
/// Note:
///    While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
///    depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
///    it would be better to correct it before computing the fundamental matrix and calling this
///    function. For example, distortion coefficients can be estimated for each head of stereo camera
///    separately by using calibrateCamera . Then, the images can be corrected using undistort , or
///    just the point coordinates can be corrected with undistortPoints .
/// 
/// ## C++ default parameters
/// * threshold: 5
pub fn stereo_rectify_uncalibrated(points1: &dyn core::ToInputArray, points2: &dyn core::ToInputArray, f: &dyn core::ToInputArray, img_size: core::Size, h1: &mut dyn core::ToOutputArray, h2: &mut dyn core::ToOutputArray, threshold: f64) -> Result<bool> {
	input_array_arg!(points1);
	input_array_arg!(points2);
	input_array_arg!(f);
	output_array_arg!(h1);
	output_array_arg!(h2);
	unsafe { sys::cv_stereoRectifyUncalibrated_const__InputArrayR_const__InputArrayR_const__InputArrayR_Size_const__OutputArrayR_const__OutputArrayR_double(points1.as_raw__InputArray(), points2.as_raw__InputArray(), f.as_raw__InputArray(), img_size.opencv_as_extern(), h1.as_raw__OutputArray(), h2.as_raw__OutputArray(), threshold) }.into_result()
}

/// Computes rectification transforms for each head of a calibrated stereo camera.
/// 
/// ## Parameters
/// * cameraMatrix1: First camera intrinsic matrix.
/// * distCoeffs1: First camera distortion parameters.
/// * cameraMatrix2: Second camera intrinsic matrix.
/// * distCoeffs2: Second camera distortion parameters.
/// * imageSize: Size of the image used for stereo calibration.
/// * R: Rotation matrix from the coordinate system of the first camera to the second camera,
/// see @ref stereoCalibrate.
/// * T: Translation vector from the coordinate system of the first camera to the second camera,
/// see @ref stereoCalibrate.
/// * R1: Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix
/// brings points given in the unrectified first camera's coordinate system to points in the rectified
/// first camera's coordinate system. In more technical terms, it performs a change of basis from the
/// unrectified first camera's coordinate system to the rectified first camera's coordinate system.
/// * R2: Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix
/// brings points given in the unrectified second camera's coordinate system to points in the rectified
/// second camera's coordinate system. In more technical terms, it performs a change of basis from the
/// unrectified second camera's coordinate system to the rectified second camera's coordinate system.
/// * P1: Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
/// camera, i.e. it projects points given in the rectified first camera coordinate system into the
/// rectified first camera's image.
/// * P2: Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
/// camera, i.e. it projects points given in the rectified first camera coordinate system into the
/// rectified second camera's image.
/// * Q: Output ![inline formula](https://latex.codecogs.com/png.latex?4%20%5Ctimes%204) disparity-to-depth mapping matrix (see @ref reprojectImageTo3D).
/// * flags: Operation flags that may be zero or @ref CALIB_ZERO_DISPARITY . If the flag is set,
/// the function makes the principal points of each camera have the same pixel coordinates in the
/// rectified views. And if the flag is not set, the function may still shift the images in the
/// horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
/// useful image area.
/// * alpha: Free scaling parameter. If it is -1 or absent, the function performs the default
/// scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
/// images are zoomed and shifted so that only valid pixels are visible (no black areas after
/// rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
/// pixels from the original images from the cameras are retained in the rectified images (no source
/// image pixels are lost). Any intermediate value yields an intermediate result between
/// those two extreme cases.
/// * newImageSize: New image resolution after rectification. The same size should be passed to
/// initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
/// is passed (default), it is set to the original imageSize . Setting it to a larger value can help you
/// preserve details in the original image, especially when there is a big radial distortion.
/// * validPixROI1: Optional output rectangles inside the rectified images where all the pixels
/// are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
/// (see the picture below).
/// * validPixROI2: Optional output rectangles inside the rectified images where all the pixels
/// are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
/// (see the picture below).
/// 
/// The function computes the rotation matrices for each camera that (virtually) make both camera image
/// planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
/// the dense stereo correspondence problem. The function takes the matrices computed by stereoCalibrate
/// as input. As output, it provides two rotation matrices and also two projection matrices in the new
/// coordinates. The function distinguishes the following two cases:
/// 
/// *   **Horizontal stereo**: the first and the second camera views are shifted relative to each other
///    mainly along the x-axis (with possible small vertical shift). In the rectified images, the
///    corresponding epipolar lines in the left and right cameras are horizontal and have the same
///    y-coordinate. P1 and P2 look like:
/// 
///    ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BP1%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20f%20%26%200%20%26%20cx%5F1%20%26%200%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%20f%20%26%20cy%20%26%200%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%201%20%26%200%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cend%7Bbmatrix%7D)
/// 
///    ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BP2%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20f%20%26%200%20%26%20cx%5F2%20%26%20T%5Fx%2Af%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%20f%20%26%20cy%20%26%200%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%201%20%26%200%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cend%7Bbmatrix%7D%20%2C)
/// 
///    where ![inline formula](https://latex.codecogs.com/png.latex?T%5Fx) is a horizontal shift between the cameras and ![inline formula](https://latex.codecogs.com/png.latex?cx%5F1%3Dcx%5F2) if
///    @ref CALIB_ZERO_DISPARITY is set.
/// 
/// *   **Vertical stereo**: the first and the second camera views are shifted relative to each other
///    mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar
///    lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
/// 
///    ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BP1%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20f%20%26%200%20%26%20cx%20%26%200%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%20f%20%26%20cy%5F1%20%26%200%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%201%20%26%200%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cend%7Bbmatrix%7D)
/// 
///    ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BP2%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20f%20%26%200%20%26%20cx%20%26%200%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%20f%20%26%20cy%5F2%20%26%20T%5Fy%2Af%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%201%20%26%200%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cend%7Bbmatrix%7D%2C)
/// 
///    where ![inline formula](https://latex.codecogs.com/png.latex?T%5Fy) is a vertical shift between the cameras and ![inline formula](https://latex.codecogs.com/png.latex?cy%5F1%3Dcy%5F2) if
///    @ref CALIB_ZERO_DISPARITY is set.
/// 
/// As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
/// matrices. The matrices, together with R1 and R2 , can then be passed to initUndistortRectifyMap to
/// initialize the rectification map for each camera.
/// 
/// See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
/// the corresponding image regions. This means that the images are well rectified, which is what most
/// stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
/// their interiors are all valid pixels.
/// 
/// ![image](https://docs.opencv.org/4.3.0/stereo_undistort.jpg)
/// 
/// ## C++ default parameters
/// * flags: CALIB_ZERO_DISPARITY
/// * alpha: -1
/// * new_image_size: Size()
/// * valid_pix_roi1: 0
/// * valid_pix_roi2: 0
pub fn stereo_rectify(camera_matrix1: &dyn core::ToInputArray, dist_coeffs1: &dyn core::ToInputArray, camera_matrix2: &dyn core::ToInputArray, dist_coeffs2: &dyn core::ToInputArray, image_size: core::Size, r: &dyn core::ToInputArray, t: &dyn core::ToInputArray, r1: &mut dyn core::ToOutputArray, r2: &mut dyn core::ToOutputArray, p1: &mut dyn core::ToOutputArray, p2: &mut dyn core::ToOutputArray, q: &mut dyn core::ToOutputArray, flags: i32, alpha: f64, new_image_size: core::Size, valid_pix_roi1: &mut core::Rect, valid_pix_roi2: &mut core::Rect) -> Result<()> {
	input_array_arg!(camera_matrix1);
	input_array_arg!(dist_coeffs1);
	input_array_arg!(camera_matrix2);
	input_array_arg!(dist_coeffs2);
	input_array_arg!(r);
	input_array_arg!(t);
	output_array_arg!(r1);
	output_array_arg!(r2);
	output_array_arg!(p1);
	output_array_arg!(p2);
	output_array_arg!(q);
	unsafe { sys::cv_stereoRectify_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_Size_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_double_Size_RectX_RectX(camera_matrix1.as_raw__InputArray(), dist_coeffs1.as_raw__InputArray(), camera_matrix2.as_raw__InputArray(), dist_coeffs2.as_raw__InputArray(), image_size.opencv_as_extern(), r.as_raw__InputArray(), t.as_raw__InputArray(), r1.as_raw__OutputArray(), r2.as_raw__OutputArray(), p1.as_raw__OutputArray(), p2.as_raw__OutputArray(), q.as_raw__OutputArray(), flags, alpha, new_image_size.opencv_as_extern(), valid_pix_roi1, valid_pix_roi2) }.into_result()
}

/// This function reconstructs 3-dimensional points (in homogeneous coordinates) by using
/// their observations with a stereo camera.
/// 
/// ## Parameters
/// * projMatr1: 3x4 projection matrix of the first camera, i.e. this matrix projects 3D points
/// given in the world's coordinate system into the first image.
/// * projMatr2: 3x4 projection matrix of the second camera, i.e. this matrix projects 3D points
/// given in the world's coordinate system into the second image.
/// * projPoints1: 2xN array of feature points in the first image. In the case of the c++ version,
/// it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
/// * projPoints2: 2xN array of corresponding points in the second image. In the case of the c++
/// version, it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
/// * points4D: 4xN array of reconstructed points in homogeneous coordinates. These points are
/// returned in the world's coordinate system.
/// 
/// 
/// Note:
///    Keep in mind that all input data should be of float type in order for this function to work.
/// 
/// 
/// Note:
///    If the projection matrices from @ref stereoRectify are used, then the returned points are
///    represented in the first camera's rectified coordinate system.
/// ## See also
/// reprojectImageTo3D
pub fn triangulate_points(proj_matr1: &dyn core::ToInputArray, proj_matr2: &dyn core::ToInputArray, proj_points1: &dyn core::ToInputArray, proj_points2: &dyn core::ToInputArray, points4_d: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(proj_matr1);
	input_array_arg!(proj_matr2);
	input_array_arg!(proj_points1);
	input_array_arg!(proj_points2);
	output_array_arg!(points4_d);
	unsafe { sys::cv_triangulatePoints_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR(proj_matr1.as_raw__InputArray(), proj_matr2.as_raw__InputArray(), proj_points1.as_raw__InputArray(), proj_points2.as_raw__InputArray(), points4_d.as_raw__OutputArray()) }.into_result()
}

/// Computes the ideal point coordinates from the observed point coordinates.
/// 
/// The function is similar to #undistort and #initUndistortRectifyMap but it operates on a
/// sparse set of points instead of a raster image. Also the function performs a reverse transformation
/// to projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
/// planar object, it does, up to a translation vector, if the proper R is specified.
/// 
/// For each observed point coordinate ![inline formula](https://latex.codecogs.com/png.latex?%28u%2C%20v%29) the function computes:
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Barray%7D%7Bl%7D%0Ax%5E%7B%22%7D%20%20%5Cleftarrow%20%28u%20%2D%20c%5Fx%29%2Ff%5Fx%20%20%5C%5C%0Ay%5E%7B%22%7D%20%20%5Cleftarrow%20%28v%20%2D%20c%5Fy%29%2Ff%5Fy%20%20%5C%5C%0A%28x%27%2Cy%27%29%20%3D%20undistort%28x%5E%7B%22%7D%2Cy%5E%7B%22%7D%2C%20%5Ctexttt%7BdistCoeffs%7D%29%20%5C%5C%0A%7B%5BX%5C%2CY%5C%2CW%5D%7D%20%5ET%20%20%5Cleftarrow%20R%2A%5Bx%27%20%5C%2C%20y%27%20%5C%2C%201%5D%5ET%20%20%5C%5C%0Ax%20%20%5Cleftarrow%20X%2FW%20%20%5C%5C%0Ay%20%20%5Cleftarrow%20Y%2FW%20%20%5C%5C%0A%5Ctext%7Bonly%20performed%20if%20P%20is%20specified%3A%7D%20%5C%5C%0Au%27%20%20%5Cleftarrow%20x%20%7Bf%27%7D%5Fx%20%2B%20%7Bc%27%7D%5Fx%20%20%5C%5C%0Av%27%20%20%5Cleftarrow%20y%20%7Bf%27%7D%5Fy%20%2B%20%7Bc%27%7D%5Fy%0A%5Cend%7Barray%7D%0A)
/// 
/// where *undistort* is an approximate iterative algorithm that estimates the normalized original
/// point coordinates out of the normalized distorted point coordinates ("normalized" means that the
/// coordinates do not depend on the camera matrix).
/// 
/// The function can be used for both a stereo camera head or a monocular camera (when R is empty).
/// ## Parameters
/// * src: Observed point coordinates, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or
/// vector\<Point2f\> ).
/// * dst: Output ideal point coordinates (1xN/Nx1 2-channel or vector\<Point2f\> ) after undistortion and reverse perspective
/// transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.
/// * cameraMatrix: Camera matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
/// * distCoeffs: Input vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
/// of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
/// * R: Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
/// #stereoRectify can be passed here. If the matrix is empty, the identity transformation is used.
/// * P: New camera matrix (3x3) or new projection matrix (3x4) ![inline formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20%7Bf%27%7D%5Fx%20%26%200%20%26%20%7Bc%27%7D%5Fx%20%26%20t%5Fx%20%5C%5C%200%20%26%20%7Bf%27%7D%5Fy%20%26%20%7Bc%27%7D%5Fy%20%26%20t%5Fy%20%5C%5C%200%20%26%200%20%26%201%20%26%20t%5Fz%20%5Cend%7Bbmatrix%7D). P1 or P2 computed by
/// #stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used.
/// 
/// ## C++ default parameters
/// * r: noArray()
/// * p: noArray()
pub fn undistort_points(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, r: &dyn core::ToInputArray, p: &dyn core::ToInputArray) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	input_array_arg!(r);
	input_array_arg!(p);
	unsafe { sys::cv_undistortPoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), r.as_raw__InputArray(), p.as_raw__InputArray()) }.into_result()
}

/// Computes the ideal point coordinates from the observed point coordinates.
/// 
/// The function is similar to #undistort and #initUndistortRectifyMap but it operates on a
/// sparse set of points instead of a raster image. Also the function performs a reverse transformation
/// to projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
/// planar object, it does, up to a translation vector, if the proper R is specified.
/// 
/// For each observed point coordinate ![inline formula](https://latex.codecogs.com/png.latex?%28u%2C%20v%29) the function computes:
/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Barray%7D%7Bl%7D%0Ax%5E%7B%22%7D%20%20%5Cleftarrow%20%28u%20%2D%20c%5Fx%29%2Ff%5Fx%20%20%5C%5C%0Ay%5E%7B%22%7D%20%20%5Cleftarrow%20%28v%20%2D%20c%5Fy%29%2Ff%5Fy%20%20%5C%5C%0A%28x%27%2Cy%27%29%20%3D%20undistort%28x%5E%7B%22%7D%2Cy%5E%7B%22%7D%2C%20%5Ctexttt%7BdistCoeffs%7D%29%20%5C%5C%0A%7B%5BX%5C%2CY%5C%2CW%5D%7D%20%5ET%20%20%5Cleftarrow%20R%2A%5Bx%27%20%5C%2C%20y%27%20%5C%2C%201%5D%5ET%20%20%5C%5C%0Ax%20%20%5Cleftarrow%20X%2FW%20%20%5C%5C%0Ay%20%20%5Cleftarrow%20Y%2FW%20%20%5C%5C%0A%5Ctext%7Bonly%20performed%20if%20P%20is%20specified%3A%7D%20%5C%5C%0Au%27%20%20%5Cleftarrow%20x%20%7Bf%27%7D%5Fx%20%2B%20%7Bc%27%7D%5Fx%20%20%5C%5C%0Av%27%20%20%5Cleftarrow%20y%20%7Bf%27%7D%5Fy%20%2B%20%7Bc%27%7D%5Fy%0A%5Cend%7Barray%7D%0A)
/// 
/// where *undistort* is an approximate iterative algorithm that estimates the normalized original
/// point coordinates out of the normalized distorted point coordinates ("normalized" means that the
/// coordinates do not depend on the camera matrix).
/// 
/// The function can be used for both a stereo camera head or a monocular camera (when R is empty).
/// ## Parameters
/// * src: Observed point coordinates, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or
/// vector\<Point2f\> ).
/// * dst: Output ideal point coordinates (1xN/Nx1 2-channel or vector\<Point2f\> ) after undistortion and reverse perspective
/// transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.
/// * cameraMatrix: Camera matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
/// * distCoeffs: Input vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
/// of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
/// * R: Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
/// #stereoRectify can be passed here. If the matrix is empty, the identity transformation is used.
/// * P: New camera matrix (3x3) or new projection matrix (3x4) ![inline formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20%7Bf%27%7D%5Fx%20%26%200%20%26%20%7Bc%27%7D%5Fx%20%26%20t%5Fx%20%5C%5C%200%20%26%20%7Bf%27%7D%5Fy%20%26%20%7Bc%27%7D%5Fy%20%26%20t%5Fy%20%5C%5C%200%20%26%200%20%26%201%20%26%20t%5Fz%20%5Cend%7Bbmatrix%7D). P1 or P2 computed by
/// #stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used.
/// 
/// ## Overloaded parameters
/// 
///     
/// Note: Default version of #undistortPoints does 5 iterations to compute undistorted points.
pub fn undistort_points_iter(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, r: &dyn core::ToInputArray, p: &dyn core::ToInputArray, criteria: core::TermCriteria) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	input_array_arg!(r);
	input_array_arg!(p);
	unsafe { sys::cv_undistortPoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_TermCriteria(src.as_raw__InputArray(), dst.as_raw__OutputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), r.as_raw__InputArray(), p.as_raw__InputArray(), criteria.opencv_as_extern()) }.into_result()
}

/// Transforms an image to compensate for lens distortion.
/// 
/// The function transforms an image to compensate radial and tangential lens distortion.
/// 
/// The function is simply a combination of #initUndistortRectifyMap (with unity R ) and #remap
/// (with bilinear interpolation). See the former function for details of the transformation being
/// performed.
/// 
/// Those pixels in the destination image, for which there is no correspondent pixels in the source
/// image, are filled with zeros (black color).
/// 
/// A particular subset of the source image that will be visible in the corrected image can be regulated
/// by newCameraMatrix. You can use #getOptimalNewCameraMatrix to compute the appropriate
/// newCameraMatrix depending on your requirements.
/// 
/// The camera matrix and the distortion parameters can be determined using #calibrateCamera. If
/// the resolution of images is different from the resolution used at the calibration stage, ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx%2C%0Af%5Fy%2C%20c%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?c%5Fy) need to be scaled accordingly, while the distortion coefficients remain
/// the same.
/// 
/// ## Parameters
/// * src: Input (distorted) image.
/// * dst: Output (corrected) image that has the same size and type as src .
/// * cameraMatrix: Input camera matrix ![inline formula](https://latex.codecogs.com/png.latex?A%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
/// * distCoeffs: Input vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
/// of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
/// * newCameraMatrix: Camera matrix of the distorted image. By default, it is the same as
/// cameraMatrix but you may additionally scale and shift the result by using a different matrix.
/// 
/// ## C++ default parameters
/// * new_camera_matrix: noArray()
pub fn undistort(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, new_camera_matrix: &dyn core::ToInputArray) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	input_array_arg!(new_camera_matrix);
	unsafe { sys::cv_undistort_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), new_camera_matrix.as_raw__InputArray()) }.into_result()
}

/// validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
/// 
/// ## C++ default parameters
/// * disp12_max_disp: 1
pub fn validate_disparity(disparity: &mut dyn core::ToInputOutputArray, cost: &dyn core::ToInputArray, min_disparity: i32, number_of_disparities: i32, disp12_max_disp: i32) -> Result<()> {
	input_output_array_arg!(disparity);
	input_array_arg!(cost);
	unsafe { sys::cv_validateDisparity_const__InputOutputArrayR_const__InputArrayR_int_int_int(disparity.as_raw__InputOutputArray(), cost.as_raw__InputArray(), min_disparity, number_of_disparities, disp12_max_disp) }.into_result()
}

#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct CirclesGridFinderParameters {
	pub density_neighborhood_size: core::Size2f,
	pub min_density: f32,
	pub kmeans_attempts: i32,
	pub min_distance_to_add_keypoint: i32,
	pub keypoint_scale: i32,
	pub min_graph_confidence: f32,
	pub vertex_gain: f32,
	pub vertex_penalty: f32,
	pub existing_vertex_gain: f32,
	pub edge_gain: f32,
	pub edge_penalty: f32,
	pub convex_hull_factor: f32,
	pub min_rng_edge_switch_dist: f32,
	pub grid_type: crate::calib3d::CirclesGridFinderParameters_GridType,
	/// Distance between two adjacent points. Used by CALIB_CB_CLUSTERING.
	pub square_size: f32,
	/// Max deviation from prediction. Used by CALIB_CB_CLUSTERING.
	pub max_rectified_distance: f32,
}

opencv_type_simple! { crate::calib3d::CirclesGridFinderParameters }

impl CirclesGridFinderParameters {
	pub fn default() -> Result<crate::calib3d::CirclesGridFinderParameters> {
		unsafe { sys::cv_CirclesGridFinderParameters_CirclesGridFinderParameters() }.into_result()
	}
	
}

/// Levenberg-Marquardt solver. Starting with the specified vector of parameters it
/// optimizes the target vector criteria "err"
/// (finds local minima of each target vector component absolute value).
/// 
/// When needed, it calls user-provided callback.
pub trait LMSolver: core::AlgorithmTrait {
	fn as_raw_LMSolver(&self) -> *const c_void;
	fn as_raw_mut_LMSolver(&mut self) -> *mut c_void;

	/// Runs Levenberg-Marquardt algorithm using the passed vector of parameters as the start point.
	/// The final vector of parameters (whether the algorithm converged or not) is stored at the same
	/// vector. The method returns the number of iterations used. If it's equal to the previously specified
	/// maxIters, there is a big chance the algorithm did not converge.
	/// 
	/// ## Parameters
	/// * param: initial/final vector of parameters.
	/// 
	/// Note that the dimensionality of parameter space is defined by the size of param vector,
	/// and the dimensionality of optimized criteria is defined by the size of err vector
	/// computed by the callback.
	fn run(&self, param: &mut dyn core::ToInputOutputArray) -> Result<i32> {
		input_output_array_arg!(param);
		unsafe { sys::cv_LMSolver_run_const_const__InputOutputArrayR(self.as_raw_LMSolver(), param.as_raw__InputOutputArray()) }.into_result()
	}
	
	/// Sets the maximum number of iterations
	/// ## Parameters
	/// * maxIters: the number of iterations
	fn set_max_iters(&mut self, max_iters: i32) -> Result<()> {
		unsafe { sys::cv_LMSolver_setMaxIters_int(self.as_raw_mut_LMSolver(), max_iters) }.into_result()
	}
	
	/// Retrieves the current maximum number of iterations
	fn get_max_iters(&self) -> Result<i32> {
		unsafe { sys::cv_LMSolver_getMaxIters_const(self.as_raw_LMSolver()) }.into_result()
	}
	
}

impl dyn LMSolver + '_ {
	/// Creates Levenberg-Marquard solver
	/// 
	/// ## Parameters
	/// * cb: callback
	/// * maxIters: maximum number of iterations that can be further
	///   modified using setMaxIters() method.
	pub fn create(cb: &core::Ptr::<dyn crate::calib3d::LMSolver_Callback>, max_iters: i32) -> Result<core::Ptr::<dyn crate::calib3d::LMSolver>> {
		unsafe { sys::cv_LMSolver_create_const_Ptr_Callback_R_int(cb.as_raw_PtrOfLMSolver_Callback(), max_iters) }.into_result().map(|r| unsafe { core::Ptr::<dyn crate::calib3d::LMSolver>::opencv_from_extern(r) } )
	}
	
	pub fn create_ext(cb: &core::Ptr::<dyn crate::calib3d::LMSolver_Callback>, max_iters: i32, eps: f64) -> Result<core::Ptr::<dyn crate::calib3d::LMSolver>> {
		unsafe { sys::cv_LMSolver_create_const_Ptr_Callback_R_int_double(cb.as_raw_PtrOfLMSolver_Callback(), max_iters, eps) }.into_result().map(|r| unsafe { core::Ptr::<dyn crate::calib3d::LMSolver>::opencv_from_extern(r) } )
	}
	
}
pub trait LMSolver_Callback {
	fn as_raw_LMSolver_Callback(&self) -> *const c_void;
	fn as_raw_mut_LMSolver_Callback(&mut self) -> *mut c_void;

	/// computes error and Jacobian for the specified vector of parameters
	/// 
	/// ## Parameters
	/// * param: the current vector of parameters
	/// * err: output vector of errors: err_i = actual_f_i - ideal_f_i
	/// * J: output Jacobian: J_ij = d(err_i)/d(param_j)
	/// 
	/// when J=noArray(), it means that it does not need to be computed.
	/// Dimensionality of error vector and param vector can be different.
	/// The callback should explicitly allocate (with "create" method) each output array
	/// (unless it's noArray()).
	fn compute(&self, param: &dyn core::ToInputArray, err: &mut dyn core::ToOutputArray, j: &mut dyn core::ToOutputArray) -> Result<bool> {
		input_array_arg!(param);
		output_array_arg!(err);
		output_array_arg!(j);
		unsafe { sys::cv_LMSolver_Callback_compute_const_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(self.as_raw_LMSolver_Callback(), param.as_raw__InputArray(), err.as_raw__OutputArray(), j.as_raw__OutputArray()) }.into_result()
	}
	
}

/// Class for computing stereo correspondence using the block matching algorithm, introduced and
/// contributed to OpenCV by K. Konolige.
pub trait StereoBM: crate::calib3d::StereoMatcher {
	fn as_raw_StereoBM(&self) -> *const c_void;
	fn as_raw_mut_StereoBM(&mut self) -> *mut c_void;

	fn get_pre_filter_type(&self) -> Result<i32> {
		unsafe { sys::cv_StereoBM_getPreFilterType_const(self.as_raw_StereoBM()) }.into_result()
	}
	
	fn set_pre_filter_type(&mut self, pre_filter_type: i32) -> Result<()> {
		unsafe { sys::cv_StereoBM_setPreFilterType_int(self.as_raw_mut_StereoBM(), pre_filter_type) }.into_result()
	}
	
	fn get_pre_filter_size(&self) -> Result<i32> {
		unsafe { sys::cv_StereoBM_getPreFilterSize_const(self.as_raw_StereoBM()) }.into_result()
	}
	
	fn set_pre_filter_size(&mut self, pre_filter_size: i32) -> Result<()> {
		unsafe { sys::cv_StereoBM_setPreFilterSize_int(self.as_raw_mut_StereoBM(), pre_filter_size) }.into_result()
	}
	
	fn get_pre_filter_cap(&self) -> Result<i32> {
		unsafe { sys::cv_StereoBM_getPreFilterCap_const(self.as_raw_StereoBM()) }.into_result()
	}
	
	fn set_pre_filter_cap(&mut self, pre_filter_cap: i32) -> Result<()> {
		unsafe { sys::cv_StereoBM_setPreFilterCap_int(self.as_raw_mut_StereoBM(), pre_filter_cap) }.into_result()
	}
	
	fn get_texture_threshold(&self) -> Result<i32> {
		unsafe { sys::cv_StereoBM_getTextureThreshold_const(self.as_raw_StereoBM()) }.into_result()
	}
	
	fn set_texture_threshold(&mut self, texture_threshold: i32) -> Result<()> {
		unsafe { sys::cv_StereoBM_setTextureThreshold_int(self.as_raw_mut_StereoBM(), texture_threshold) }.into_result()
	}
	
	fn get_uniqueness_ratio(&self) -> Result<i32> {
		unsafe { sys::cv_StereoBM_getUniquenessRatio_const(self.as_raw_StereoBM()) }.into_result()
	}
	
	fn set_uniqueness_ratio(&mut self, uniqueness_ratio: i32) -> Result<()> {
		unsafe { sys::cv_StereoBM_setUniquenessRatio_int(self.as_raw_mut_StereoBM(), uniqueness_ratio) }.into_result()
	}
	
	fn get_smaller_block_size(&self) -> Result<i32> {
		unsafe { sys::cv_StereoBM_getSmallerBlockSize_const(self.as_raw_StereoBM()) }.into_result()
	}
	
	fn set_smaller_block_size(&mut self, block_size: i32) -> Result<()> {
		unsafe { sys::cv_StereoBM_setSmallerBlockSize_int(self.as_raw_mut_StereoBM(), block_size) }.into_result()
	}
	
	fn get_roi1(&self) -> Result<core::Rect> {
		unsafe { sys::cv_StereoBM_getROI1_const(self.as_raw_StereoBM()) }.into_result()
	}
	
	fn set_roi1(&mut self, roi1: core::Rect) -> Result<()> {
		unsafe { sys::cv_StereoBM_setROI1_Rect(self.as_raw_mut_StereoBM(), roi1.opencv_as_extern()) }.into_result()
	}
	
	fn get_roi2(&self) -> Result<core::Rect> {
		unsafe { sys::cv_StereoBM_getROI2_const(self.as_raw_StereoBM()) }.into_result()
	}
	
	fn set_roi2(&mut self, roi2: core::Rect) -> Result<()> {
		unsafe { sys::cv_StereoBM_setROI2_Rect(self.as_raw_mut_StereoBM(), roi2.opencv_as_extern()) }.into_result()
	}
	
}

impl dyn StereoBM + '_ {
	/// Creates StereoBM object
	/// 
	/// ## Parameters
	/// * numDisparities: the disparity search range. For each pixel algorithm will find the best
	/// disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
	/// shifted by changing the minimum disparity.
	/// * blockSize: the linear size of the blocks compared by the algorithm. The size should be odd
	/// (as the block is centered at the current pixel). Larger block size implies smoother, though less
	/// accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
	/// chance for algorithm to find a wrong correspondence.
	/// 
	/// The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
	/// a specific stereo pair.
	/// 
	/// ## C++ default parameters
	/// * num_disparities: 0
	/// * block_size: 21
	pub fn create(num_disparities: i32, block_size: i32) -> Result<core::Ptr::<dyn crate::calib3d::StereoBM>> {
		unsafe { sys::cv_StereoBM_create_int_int(num_disparities, block_size) }.into_result().map(|r| unsafe { core::Ptr::<dyn crate::calib3d::StereoBM>::opencv_from_extern(r) } )
	}
	
}
/// The base class for stereo correspondence algorithms.
pub trait StereoMatcher: core::AlgorithmTrait {
	fn as_raw_StereoMatcher(&self) -> *const c_void;
	fn as_raw_mut_StereoMatcher(&mut self) -> *mut c_void;

	/// Computes disparity map for the specified stereo pair
	/// 
	/// ## Parameters
	/// * left: Left 8-bit single-channel image.
	/// * right: Right image of the same size and the same type as the left one.
	/// * disparity: Output disparity map. It has the same size as the input images. Some algorithms,
	/// like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
	/// has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
	fn compute(&mut self, left: &dyn core::ToInputArray, right: &dyn core::ToInputArray, disparity: &mut dyn core::ToOutputArray) -> Result<()> {
		input_array_arg!(left);
		input_array_arg!(right);
		output_array_arg!(disparity);
		unsafe { sys::cv_StereoMatcher_compute_const__InputArrayR_const__InputArrayR_const__OutputArrayR(self.as_raw_mut_StereoMatcher(), left.as_raw__InputArray(), right.as_raw__InputArray(), disparity.as_raw__OutputArray()) }.into_result()
	}
	
	fn get_min_disparity(&self) -> Result<i32> {
		unsafe { sys::cv_StereoMatcher_getMinDisparity_const(self.as_raw_StereoMatcher()) }.into_result()
	}
	
	fn set_min_disparity(&mut self, min_disparity: i32) -> Result<()> {
		unsafe { sys::cv_StereoMatcher_setMinDisparity_int(self.as_raw_mut_StereoMatcher(), min_disparity) }.into_result()
	}
	
	fn get_num_disparities(&self) -> Result<i32> {
		unsafe { sys::cv_StereoMatcher_getNumDisparities_const(self.as_raw_StereoMatcher()) }.into_result()
	}
	
	fn set_num_disparities(&mut self, num_disparities: i32) -> Result<()> {
		unsafe { sys::cv_StereoMatcher_setNumDisparities_int(self.as_raw_mut_StereoMatcher(), num_disparities) }.into_result()
	}
	
	fn get_block_size(&self) -> Result<i32> {
		unsafe { sys::cv_StereoMatcher_getBlockSize_const(self.as_raw_StereoMatcher()) }.into_result()
	}
	
	fn set_block_size(&mut self, block_size: i32) -> Result<()> {
		unsafe { sys::cv_StereoMatcher_setBlockSize_int(self.as_raw_mut_StereoMatcher(), block_size) }.into_result()
	}
	
	fn get_speckle_window_size(&self) -> Result<i32> {
		unsafe { sys::cv_StereoMatcher_getSpeckleWindowSize_const(self.as_raw_StereoMatcher()) }.into_result()
	}
	
	fn set_speckle_window_size(&mut self, speckle_window_size: i32) -> Result<()> {
		unsafe { sys::cv_StereoMatcher_setSpeckleWindowSize_int(self.as_raw_mut_StereoMatcher(), speckle_window_size) }.into_result()
	}
	
	fn get_speckle_range(&self) -> Result<i32> {
		unsafe { sys::cv_StereoMatcher_getSpeckleRange_const(self.as_raw_StereoMatcher()) }.into_result()
	}
	
	fn set_speckle_range(&mut self, speckle_range: i32) -> Result<()> {
		unsafe { sys::cv_StereoMatcher_setSpeckleRange_int(self.as_raw_mut_StereoMatcher(), speckle_range) }.into_result()
	}
	
	fn get_disp12_max_diff(&self) -> Result<i32> {
		unsafe { sys::cv_StereoMatcher_getDisp12MaxDiff_const(self.as_raw_StereoMatcher()) }.into_result()
	}
	
	fn set_disp12_max_diff(&mut self, disp12_max_diff: i32) -> Result<()> {
		unsafe { sys::cv_StereoMatcher_setDisp12MaxDiff_int(self.as_raw_mut_StereoMatcher(), disp12_max_diff) }.into_result()
	}
	
}

/// The class implements the modified H. Hirschmuller algorithm [HH08](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_HH08) that differs from the original
/// one as follows:
/// 
/// *   By default, the algorithm is single-pass, which means that you consider only 5 directions
/// instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
/// algorithm but beware that it may consume a lot of memory.
/// *   The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
/// blocks to single pixels.
/// *   Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
/// sub-pixel metric from [BT98](https://docs.opencv.org/4.3.0/d0/de3/citelist.html#CITEREF_BT98) is used. Though, the color images are supported as well.
/// *   Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
/// example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
/// check, quadratic interpolation and speckle filtering).
/// 
/// 
/// Note:
///    *   (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
///        at opencv_source_code/samples/python/stereo_match.py
pub trait StereoSGBM: crate::calib3d::StereoMatcher {
	fn as_raw_StereoSGBM(&self) -> *const c_void;
	fn as_raw_mut_StereoSGBM(&mut self) -> *mut c_void;

	fn get_pre_filter_cap(&self) -> Result<i32> {
		unsafe { sys::cv_StereoSGBM_getPreFilterCap_const(self.as_raw_StereoSGBM()) }.into_result()
	}
	
	fn set_pre_filter_cap(&mut self, pre_filter_cap: i32) -> Result<()> {
		unsafe { sys::cv_StereoSGBM_setPreFilterCap_int(self.as_raw_mut_StereoSGBM(), pre_filter_cap) }.into_result()
	}
	
	fn get_uniqueness_ratio(&self) -> Result<i32> {
		unsafe { sys::cv_StereoSGBM_getUniquenessRatio_const(self.as_raw_StereoSGBM()) }.into_result()
	}
	
	fn set_uniqueness_ratio(&mut self, uniqueness_ratio: i32) -> Result<()> {
		unsafe { sys::cv_StereoSGBM_setUniquenessRatio_int(self.as_raw_mut_StereoSGBM(), uniqueness_ratio) }.into_result()
	}
	
	fn get_p1(&self) -> Result<i32> {
		unsafe { sys::cv_StereoSGBM_getP1_const(self.as_raw_StereoSGBM()) }.into_result()
	}
	
	fn set_p1(&mut self, p1: i32) -> Result<()> {
		unsafe { sys::cv_StereoSGBM_setP1_int(self.as_raw_mut_StereoSGBM(), p1) }.into_result()
	}
	
	fn get_p2(&self) -> Result<i32> {
		unsafe { sys::cv_StereoSGBM_getP2_const(self.as_raw_StereoSGBM()) }.into_result()
	}
	
	fn set_p2(&mut self, p2: i32) -> Result<()> {
		unsafe { sys::cv_StereoSGBM_setP2_int(self.as_raw_mut_StereoSGBM(), p2) }.into_result()
	}
	
	fn get_mode(&self) -> Result<i32> {
		unsafe { sys::cv_StereoSGBM_getMode_const(self.as_raw_StereoSGBM()) }.into_result()
	}
	
	fn set_mode(&mut self, mode: i32) -> Result<()> {
		unsafe { sys::cv_StereoSGBM_setMode_int(self.as_raw_mut_StereoSGBM(), mode) }.into_result()
	}
	
}

impl dyn StereoSGBM + '_ {
	/// Creates StereoSGBM object
	/// 
	/// ## Parameters
	/// * minDisparity: Minimum possible disparity value. Normally, it is zero but sometimes
	/// rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
	/// * numDisparities: Maximum disparity minus minimum disparity. The value is always greater than
	/// zero. In the current implementation, this parameter must be divisible by 16.
	/// * blockSize: Matched block size. It must be an odd number \>=1 . Normally, it should be
	/// somewhere in the 3..11 range.
	/// * P1: The first parameter controlling the disparity smoothness. See below.
	/// * P2: The second parameter controlling the disparity smoothness. The larger the values are,
	/// the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
	/// between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
	/// pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
	/// P1 and P2 values are shown (like 8\*number_of_image_channels\*blockSize\*blockSize and
	/// 32\*number_of_image_channels\*blockSize\*blockSize , respectively).
	/// * disp12MaxDiff: Maximum allowed difference (in integer pixel units) in the left-right
	/// disparity check. Set it to a non-positive value to disable the check.
	/// * preFilterCap: Truncation value for the prefiltered image pixels. The algorithm first
	/// computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
	/// The result values are passed to the Birchfield-Tomasi pixel cost function.
	/// * uniquenessRatio: Margin in percentage by which the best (minimum) computed cost function
	/// value should "win" the second best value to consider the found match correct. Normally, a value
	/// within the 5-15 range is good enough.
	/// * speckleWindowSize: Maximum size of smooth disparity regions to consider their noise speckles
	/// and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
	/// 50-200 range.
	/// * speckleRange: Maximum disparity variation within each connected component. If you do speckle
	/// filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
	/// Normally, 1 or 2 is good enough.
	/// * mode: Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
	/// algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
	/// huge for HD-size pictures. By default, it is set to false .
	/// 
	/// The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
	/// set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
	/// to a custom value.
	/// 
	/// ## C++ default parameters
	/// * min_disparity: 0
	/// * num_disparities: 16
	/// * block_size: 3
	/// * p1: 0
	/// * p2: 0
	/// * disp12_max_diff: 0
	/// * pre_filter_cap: 0
	/// * uniqueness_ratio: 0
	/// * speckle_window_size: 0
	/// * speckle_range: 0
	/// * mode: StereoSGBM::MODE_SGBM
	pub fn create(min_disparity: i32, num_disparities: i32, block_size: i32, p1: i32, p2: i32, disp12_max_diff: i32, pre_filter_cap: i32, uniqueness_ratio: i32, speckle_window_size: i32, speckle_range: i32, mode: i32) -> Result<core::Ptr::<dyn crate::calib3d::StereoSGBM>> {
		unsafe { sys::cv_StereoSGBM_create_int_int_int_int_int_int_int_int_int_int_int(min_disparity, num_disparities, block_size, p1, p2, disp12_max_diff, pre_filter_cap, uniqueness_ratio, speckle_window_size, speckle_range, mode) }.into_result().map(|r| unsafe { core::Ptr::<dyn crate::calib3d::StereoSGBM>::opencv_from_extern(r) } )
	}
	
}
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct UsacParams {
	pub confidence: f64,
	pub is_parallel: bool,
	pub lo_iterations: i32,
	pub lo_method: crate::calib3d::LocalOptimMethod,
	pub lo_sample_size: i32,
	pub max_iterations: i32,
	pub neighbors_search: crate::calib3d::NeighborSearchMethod,
	pub random_generator_state: i32,
	pub sampler: crate::calib3d::SamplingMethod,
	pub score: crate::calib3d::ScoreMethod,
	pub threshold: f64,
}

opencv_type_simple! { crate::calib3d::UsacParams }

impl UsacParams {
	pub fn default() -> Result<crate::calib3d::UsacParams> {
		unsafe { sys::cv_UsacParams_UsacParams() }.into_result()
	}
	
}