[−][src]Trait opencv::ml::LogisticRegression
Required methods
fn as_raw_LogisticRegression(&self) -> *const c_void
fn as_raw_mut_LogisticRegression(&mut self) -> *mut c_void
Provided methods
fn get_learning_rate(&self) -> Result<f64>
fn set_learning_rate(&mut self, val: f64) -> Result<()>
fn get_iterations(&self) -> Result<i32>
fn set_iterations(&mut self, val: i32) -> Result<()>
fn get_regularization(&self) -> Result<i32>
fn set_regularization(&mut self, val: i32) -> Result<()>
Kind of regularization to be applied. See LogisticRegression::RegKinds.
See also
setRegularization getRegularization
fn get_train_method(&self) -> Result<i32>
fn set_train_method(&mut self, val: i32) -> Result<()>
Kind of training method used. See LogisticRegression::Methods.
See also
setTrainMethod getTrainMethod
fn get_mini_batch_size(&self) -> Result<i32>
Specifies the number of training samples taken in each step of Mini-Batch Gradient Descent. Will only be used if using LogisticRegression::MINI_BATCH training algorithm. It has to take values less than the total number of training samples.
See also
setMiniBatchSize
fn set_mini_batch_size(&mut self, val: i32) -> Result<()>
Specifies the number of training samples taken in each step of Mini-Batch Gradient Descent. Will only be used if using LogisticRegression::MINI_BATCH training algorithm. It has to take values less than the total number of training samples.
See also
setMiniBatchSize getMiniBatchSize
fn get_term_criteria(&self) -> Result<TermCriteria>
fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>
fn predict(
&self,
samples: &dyn ToInputArray,
results: &mut dyn ToOutputArray,
flags: i32
) -> Result<f32>
&self,
samples: &dyn ToInputArray,
results: &mut dyn ToOutputArray,
flags: i32
) -> Result<f32>
Predicts responses for input samples and returns a float type.
Parameters
- samples: The input data for the prediction algorithm. Matrix [m x n], where each row contains variables (features) of one object being classified. Should have data type CV_32F.
- results: Predicted labels as a column matrix of type CV_32S.
- flags: Not used.
C++ default parameters
- results: noArray()
- flags: 0
fn get_learnt_thetas(&self) -> Result<Mat>
This function returns the trained parameters arranged across rows.
For a two class classification problem, it returns a row matrix. It returns learnt parameters of the Logistic Regression as a matrix of type CV_32F.
Implementations
impl<'_> dyn LogisticRegression + '_
[src]
pub fn create() -> Result<Ptr<dyn LogisticRegression>>
[src]
Creates empty model.
Creates Logistic Regression model with parameters given.
pub fn load(
filepath: &str,
node_name: &str
) -> Result<Ptr<dyn LogisticRegression>>
[src]
filepath: &str,
node_name: &str
) -> Result<Ptr<dyn LogisticRegression>>
Loads and creates a serialized LogisticRegression from a file
Use LogisticRegression::save to serialize and store an LogisticRegression to disk. Load the LogisticRegression from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
Parameters
- filepath: path to serialized LogisticRegression
- nodeName: name of node containing the classifier
C++ default parameters
- node_name: String()