1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
//! # Additional photo processing algorithms
use crate::{mod_prelude::*, core, sys, types};
use crate::core::{_InputArrayTrait, _OutputArrayTrait};

pub const BM3D_STEP1: i32 = 1;
pub const BM3D_STEP2: i32 = 2;
pub const BM3D_STEPALL: i32 = 0;
pub const HAAR: i32 = 0;
pub const INPAINT_FSR_BEST: i32 = 1;
/// See #INPAINT_FSR_BEST
pub const INPAINT_FSR_FAST: i32 = 2;
pub const INPAINT_SHIFTMAP: i32 = 0;

/// Implements an efficient fixed-point approximation for applying channel gains, which is
/// the last step of multiple white balance algorithms.
///
/// ## Parameters
/// * src: Input three-channel image in the BGR color space (either CV_8UC3 or CV_16UC3)
/// * dst: Output image of the same size and type as src.
/// * gainB: gain for the B channel
/// * gainG: gain for the G channel
/// * gainR: gain for the R channel
pub fn apply_channel_gains(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, gain_b: f32, gain_g: f32, gain_r: f32) -> Result<()> {
    input_array_arg!(src);
    output_array_arg!(dst);
    unsafe { sys::cv_xphoto_applyChannelGains__InputArray__OutputArray_float_float_float(src.as_raw__InputArray(), dst.as_raw__OutputArray(), gain_b, gain_g, gain_r) }.into_result()
}

/// Performs image denoising using the Block-Matching and 3D-filtering algorithm
/// <http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D_TIP_2007.pdf> with several computational
/// optimizations. Noise expected to be a gaussian white noise.
///
/// ## Parameters
/// * src: Input 8-bit or 16-bit 1-channel image.
/// * dstStep1: Output image of the first step of BM3D with the same size and type as src.
/// * dstStep2: Output image of the second step of BM3D with the same size and type as src.
/// * h: Parameter regulating filter strength. Big h value perfectly removes noise but also
/// removes image details, smaller h value preserves details but also preserves some noise.
/// * templateWindowSize: Size in pixels of the template patch that is used for block-matching.
/// Should be power of 2.
/// * searchWindowSize: Size in pixels of the window that is used to perform block-matching.
/// Affect performance linearly: greater searchWindowsSize - greater denoising time.
/// Must be larger than templateWindowSize.
/// * blockMatchingStep1: Block matching threshold for the first step of BM3D (hard thresholding),
/// i.e. maximum distance for which two blocks are considered similar.
/// Value expressed in euclidean distance.
/// * blockMatchingStep2: Block matching threshold for the second step of BM3D (Wiener filtering),
/// i.e. maximum distance for which two blocks are considered similar.
/// Value expressed in euclidean distance.
/// * groupSize: Maximum size of the 3D group for collaborative filtering.
/// * slidingStep: Sliding step to process every next reference block.
/// * beta: Kaiser window parameter that affects the sidelobe attenuation of the transform of the
/// window. Kaiser window is used in order to reduce border effects. To prevent usage of the window,
/// set beta to zero.
/// * normType: Norm used to calculate distance between blocks. L2 is slower than L1
/// but yields more accurate results.
/// * step: Step of BM3D to be executed. Possible variants are: step 1, step 2, both steps.
/// * transformType: Type of the orthogonal transform used in collaborative filtering step.
/// Currently only Haar transform is supported.
///
/// This function expected to be applied to grayscale images. Advanced usage of this function
/// can be manual denoising of colored image in different colorspaces.
///
/// ## See also
/// fastNlMeansDenoising
///
/// ## C++ default parameters
/// * h: 1
/// * template_window_size: 4
/// * search_window_size: 16
/// * block_matching_step1: 2500
/// * block_matching_step2: 400
/// * group_size: 8
/// * sliding_step: 1
/// * beta: 2.0f
/// * norm_type: cv::NORM_L2
/// * step: cv::xphoto::BM3D_STEPALL
/// * transform_type: cv::xphoto::HAAR
pub fn bm3d_denoising(src: &dyn core::ToInputArray, dst_step1: &mut dyn core::ToInputOutputArray, dst_step2: &mut dyn core::ToOutputArray, h: f32, template_window_size: i32, search_window_size: i32, block_matching_step1: i32, block_matching_step2: i32, group_size: i32, sliding_step: i32, beta: f32, norm_type: i32, step: i32, transform_type: i32) -> Result<()> {
    input_array_arg!(src);
    input_output_array_arg!(dst_step1);
    output_array_arg!(dst_step2);
    unsafe { sys::cv_xphoto_bm3dDenoising__InputArray__InputOutputArray__OutputArray_float_int_int_int_int_int_int_float_int_int_int(src.as_raw__InputArray(), dst_step1.as_raw__InputOutputArray(), dst_step2.as_raw__OutputArray(), h, template_window_size, search_window_size, block_matching_step1, block_matching_step2, group_size, sliding_step, beta, norm_type, step, transform_type) }.into_result()
}

/// Performs image denoising using the Block-Matching and 3D-filtering algorithm
/// <http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D_TIP_2007.pdf> with several computational
/// optimizations. Noise expected to be a gaussian white noise.
///
/// ## Parameters
/// * src: Input 8-bit or 16-bit 1-channel image.
/// * dst: Output image with the same size and type as src.
/// * h: Parameter regulating filter strength. Big h value perfectly removes noise but also
/// removes image details, smaller h value preserves details but also preserves some noise.
/// * templateWindowSize: Size in pixels of the template patch that is used for block-matching.
/// Should be power of 2.
/// * searchWindowSize: Size in pixels of the window that is used to perform block-matching.
/// Affect performance linearly: greater searchWindowsSize - greater denoising time.
/// Must be larger than templateWindowSize.
/// * blockMatchingStep1: Block matching threshold for the first step of BM3D (hard thresholding),
/// i.e. maximum distance for which two blocks are considered similar.
/// Value expressed in euclidean distance.
/// * blockMatchingStep2: Block matching threshold for the second step of BM3D (Wiener filtering),
/// i.e. maximum distance for which two blocks are considered similar.
/// Value expressed in euclidean distance.
/// * groupSize: Maximum size of the 3D group for collaborative filtering.
/// * slidingStep: Sliding step to process every next reference block.
/// * beta: Kaiser window parameter that affects the sidelobe attenuation of the transform of the
/// window. Kaiser window is used in order to reduce border effects. To prevent usage of the window,
/// set beta to zero.
/// * normType: Norm used to calculate distance between blocks. L2 is slower than L1
/// but yields more accurate results.
/// * step: Step of BM3D to be executed. Allowed are only BM3D_STEP1 and BM3D_STEPALL.
/// BM3D_STEP2 is not allowed as it requires basic estimate to be present.
/// * transformType: Type of the orthogonal transform used in collaborative filtering step.
/// Currently only Haar transform is supported.
///
/// This function expected to be applied to grayscale images. Advanced usage of this function
/// can be manual denoising of colored image in different colorspaces.
///
/// ## See also
/// fastNlMeansDenoising
///
/// ## C++ default parameters
/// * h: 1
/// * template_window_size: 4
/// * search_window_size: 16
/// * block_matching_step1: 2500
/// * block_matching_step2: 400
/// * group_size: 8
/// * sliding_step: 1
/// * beta: 2.0f
/// * norm_type: cv::NORM_L2
/// * step: cv::xphoto::BM3D_STEPALL
/// * transform_type: cv::xphoto::HAAR
pub fn bm3d_denoising_1(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, h: f32, template_window_size: i32, search_window_size: i32, block_matching_step1: i32, block_matching_step2: i32, group_size: i32, sliding_step: i32, beta: f32, norm_type: i32, step: i32, transform_type: i32) -> Result<()> {
    input_array_arg!(src);
    output_array_arg!(dst);
    unsafe { sys::cv_xphoto_bm3dDenoising__InputArray__OutputArray_float_int_int_int_int_int_int_float_int_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), h, template_window_size, search_window_size, block_matching_step1, block_matching_step2, group_size, sliding_step, beta, norm_type, step, transform_type) }.into_result()
}

/// Creates an instance of GrayworldWB
pub fn create_grayworld_wb() -> Result<types::PtrOfGrayworldWB> {
    unsafe { sys::cv_xphoto_createGrayworldWB() }.into_result().map(|ptr| types::PtrOfGrayworldWB { ptr })
}

/// Creates an instance of LearningBasedWB
///
/// ## Parameters
/// * path_to_model: Path to a .yml file with the model. If not specified, the default model is used
///
/// ## C++ default parameters
/// * path_to_model: String()
pub fn create_learning_based_wb(path_to_model: &str) -> Result<types::PtrOfLearningBasedWB> {
    string_arg!(path_to_model);
    unsafe { sys::cv_xphoto_createLearningBasedWB_String(path_to_model.as_ptr()) }.into_result().map(|ptr| types::PtrOfLearningBasedWB { ptr })
}

/// Creates an instance of SimpleWB
pub fn create_simple_wb() -> Result<types::PtrOfSimpleWB> {
    unsafe { sys::cv_xphoto_createSimpleWB() }.into_result().map(|ptr| types::PtrOfSimpleWB { ptr })
}

/// Creates TonemapDurand object
///
/// You need to set the OPENCV_ENABLE_NONFREE option in cmake to use those. Use them at your own risk.
///
/// ## Parameters
/// * gamma: gamma value for gamma correction. See createTonemap
/// * contrast: resulting contrast on logarithmic scale, i. e. log(max / min), where max and min
/// are maximum and minimum luminance values of the resulting image.
/// * saturation: saturation enhancement value. See createTonemapDrago
/// * sigma_space: bilateral filter sigma in color space
/// * sigma_color: bilateral filter sigma in coordinate space
///
/// ## C++ default parameters
/// * gamma: 1.0f
/// * contrast: 4.0f
/// * saturation: 1.0f
/// * sigma_space: 2.0f
/// * sigma_color: 2.0f
pub fn create_tonemap_durand(gamma: f32, contrast: f32, saturation: f32, sigma_space: f32, sigma_color: f32) -> Result<types::PtrOfTonemapDurand> {
    unsafe { sys::cv_xphoto_createTonemapDurand_float_float_float_float_float(gamma, contrast, saturation, sigma_space, sigma_color) }.into_result().map(|ptr| types::PtrOfTonemapDurand { ptr })
}

/// The function implements simple dct-based denoising
///
/// <http://www.ipol.im/pub/art/2011/ys-dct/>.
/// ## Parameters
/// * src: source image
/// * dst: destination image
/// * sigma: expected noise standard deviation
/// * psize: size of block side where dct is computed
///
/// ## See also
/// fastNlMeansDenoising
///
/// ## C++ default parameters
/// * psize: 16
pub fn dct_denoising(src: &core::Mat, dst: &mut core::Mat, sigma: f64, psize: i32) -> Result<()> {
    unsafe { sys::cv_xphoto_dctDenoising_Mat_Mat_double_int(src.as_raw_Mat(), dst.as_raw_Mat(), sigma, psize) }.into_result()
}

/// The function implements different single-image inpainting algorithms.
///
/// See the original papers [He2012](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_He2012) (Shiftmap) or [GenserPCS2018](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_GenserPCS2018) and [SeilerTIP2015](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_SeilerTIP2015) (FSR) for details.
///
/// ## Parameters
/// * src: source image
/// - #INPAINT_SHIFTMAP: it could be of any type and any number of channels from 1 to 4. In case of
/// 3- and 4-channels images the function expect them in CIELab colorspace or similar one, where first
/// color component shows intensity, while second and third shows colors. Nonetheless you can try any
/// colorspaces.
/// - #INPAINT_FSR_BEST or #INPAINT_FSR_FAST: 1-channel grayscale or 3-channel BGR image.
/// * mask: mask (#CV_8UC1), where non-zero pixels indicate valid image area, while zero pixels
/// indicate area to be inpainted
/// * dst: destination image
/// * algorithmType: see xphoto::InpaintTypes
pub fn inpaint(src: &core::Mat, mask: &core::Mat, dst: &mut core::Mat, algorithm_type: i32) -> Result<()> {
    unsafe { sys::cv_xphoto_inpaint_Mat_Mat_Mat_int(src.as_raw_Mat(), mask.as_raw_Mat(), dst.as_raw_Mat(), algorithm_type) }.into_result()
}

/// oilPainting
/// See the book [Holzmann1988](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_Holzmann1988) for details.
/// ## Parameters
/// * src: Input three-channel or one channel image (either CV_8UC3 or CV_8UC1)
/// * dst: Output image of the same size and type as src.
/// * size: neighbouring size is 2-size+1
/// * dynRatio: image is divided by dynRatio before histogram processing
pub fn oil_painting(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, size: i32, dyn_ratio: i32) -> Result<()> {
    input_array_arg!(src);
    output_array_arg!(dst);
    unsafe { sys::cv_xphoto_oilPainting__InputArray__OutputArray_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), size, dyn_ratio) }.into_result()
}

/// oilPainting
/// See the book [Holzmann1988](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_Holzmann1988) for details.
/// ## Parameters
/// * src: Input three-channel or one channel image (either CV_8UC3 or CV_8UC1)
/// * dst: Output image of the same size and type as src.
/// * size: neighbouring size is 2-size+1
/// * dynRatio: image is divided by dynRatio before histogram processing
/// * code: 	color space conversion code(see ColorConversionCodes). Histogram will used only first plane
pub fn oil_painting_1(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, size: i32, dyn_ratio: i32, code: i32) -> Result<()> {
    input_array_arg!(src);
    output_array_arg!(dst);
    unsafe { sys::cv_xphoto_oilPainting__InputArray__OutputArray_int_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), size, dyn_ratio, code) }.into_result()
}

// Generating impl for trait crate::xphoto::GrayworldWB
/// Gray-world white balance algorithm
///
/// This algorithm scales the values of pixels based on a
/// gray-world assumption which states that the average of all channels
/// should result in a gray image.
///
/// It adds a modification which thresholds pixels based on their
/// saturation value and only uses pixels below the provided threshold in
/// finding average pixel values.
///
/// Saturation is calculated using the following for a 3-channel RGB image per
/// pixel I and is in the range [0, 1]:
///
/// ![block formula](https://latex.codecogs.com/png.latex?%20%5Ctexttt%7BSaturation%7D%20%5BI%5D%20%3D%20%5Cfrac%7B%5Ctextrm%7Bmax%7D%28R%2CG%2CB%29%20-%20%5Ctextrm%7Bmin%7D%28R%2CG%2CB%29%0A%7D%7B%5Ctextrm%7Bmax%7D%28R%2CG%2CB%29%7D%20)
///
/// A threshold of 1 means that all pixels are used to white-balance, while a
/// threshold of 0 means no pixels are used. Lower thresholds are useful in
/// white-balancing saturated images.
///
/// Currently supports images of type @ref CV_8UC3 and @ref CV_16UC3.
pub trait GrayworldWB: crate::xphoto::WhiteBalancer {
    fn as_raw_GrayworldWB(&self) -> *mut c_void;
    /// Maximum saturation for a pixel to be included in the
    /// gray-world assumption
    /// @see setSaturationThreshold
    fn get_saturation_threshold(&self) -> Result<f32> {
        unsafe { sys::cv_xphoto_GrayworldWB_getSaturationThreshold_const(self.as_raw_GrayworldWB()) }.into_result()
    }
    
    /// @copybrief getSaturationThreshold @see getSaturationThreshold
    fn set_saturation_threshold(&mut self, val: f32) -> Result<()> {
        unsafe { sys::cv_xphoto_GrayworldWB_setSaturationThreshold_float(self.as_raw_GrayworldWB(), val) }.into_result()
    }
    
}

// Generating impl for trait crate::xphoto::LearningBasedWB
/// More sophisticated learning-based automatic white balance algorithm.
///
/// As @ref GrayworldWB, this algorithm works by applying different gains to the input
/// image channels, but their computation is a bit more involved compared to the
/// simple gray-world assumption. More details about the algorithm can be found in
/// [Cheng2015](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_Cheng2015) .
///
/// To mask out saturated pixels this function uses only pixels that satisfy the
/// following condition:
///
/// ![block formula](https://latex.codecogs.com/png.latex?%20%5Cfrac%7B%5Ctextrm%7Bmax%7D%28R%2CG%2CB%29%7D%7B%5Ctexttt%7Brange_max_val%7D%7D%20%3C%20%5Ctexttt%7Bsaturation_thresh%7D%20)
///
/// Currently supports images of type @ref CV_8UC3 and @ref CV_16UC3.
pub trait LearningBasedWB: crate::xphoto::WhiteBalancer {
    fn as_raw_LearningBasedWB(&self) -> *mut c_void;
    /// Implements the feature extraction part of the algorithm.
    ///
    /// In accordance with [Cheng2015](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_Cheng2015) , computes the following features for the input image:
    /// 1. Chromaticity of an average (R,G,B) tuple
    /// 2. Chromaticity of the brightest (R,G,B) tuple (while ignoring saturated pixels)
    /// 3. Chromaticity of the dominant (R,G,B) tuple (the one that has the highest value in the RGB histogram)
    /// 4. Mode of the chromaticity palette, that is constructed by taking 300 most common colors according to
    /// the RGB histogram and projecting them on the chromaticity plane. Mode is the most high-density point
    /// of the palette, which is computed by a straightforward fixed-bandwidth kernel density estimator with
    /// a Epanechnikov kernel function.
    ///
    /// ## Parameters
    /// * src: Input three-channel image (BGR color space is assumed).
    /// * dst: An array of four (r,g) chromaticity tuples corresponding to the features listed above.
    fn extract_simple_features(&mut self, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray) -> Result<()> {
        input_array_arg!(src);
        output_array_arg!(dst);
        unsafe { sys::cv_xphoto_LearningBasedWB_extractSimpleFeatures__InputArray__OutputArray(self.as_raw_LearningBasedWB(), src.as_raw__InputArray(), dst.as_raw__OutputArray()) }.into_result()
    }
    
    /// Maximum possible value of the input image (e.g. 255 for 8 bit images,
    /// 4095 for 12 bit images)
    /// @see setRangeMaxVal
    fn get_range_max_val(&self) -> Result<i32> {
        unsafe { sys::cv_xphoto_LearningBasedWB_getRangeMaxVal_const(self.as_raw_LearningBasedWB()) }.into_result()
    }
    
    /// @copybrief getRangeMaxVal @see getRangeMaxVal
    fn set_range_max_val(&mut self, val: i32) -> Result<()> {
        unsafe { sys::cv_xphoto_LearningBasedWB_setRangeMaxVal_int(self.as_raw_LearningBasedWB(), val) }.into_result()
    }
    
    /// Threshold that is used to determine saturated pixels, i.e. pixels where at least one of the
    /// channels exceeds ![inline formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7Bsaturation_threshold%7D%5Ctimes%5Ctexttt%7Brange_max_val%7D) are ignored.
    /// @see setSaturationThreshold
    fn get_saturation_threshold(&self) -> Result<f32> {
        unsafe { sys::cv_xphoto_LearningBasedWB_getSaturationThreshold_const(self.as_raw_LearningBasedWB()) }.into_result()
    }
    
    /// @copybrief getSaturationThreshold @see getSaturationThreshold
    fn set_saturation_threshold(&mut self, val: f32) -> Result<()> {
        unsafe { sys::cv_xphoto_LearningBasedWB_setSaturationThreshold_float(self.as_raw_LearningBasedWB(), val) }.into_result()
    }
    
    /// Defines the size of one dimension of a three-dimensional RGB histogram that is used internally
    /// by the algorithm. It often makes sense to increase the number of bins for images with higher bit depth
    /// (e.g. 256 bins for a 12 bit image).
    /// @see setHistBinNum
    fn get_hist_bin_num(&self) -> Result<i32> {
        unsafe { sys::cv_xphoto_LearningBasedWB_getHistBinNum_const(self.as_raw_LearningBasedWB()) }.into_result()
    }
    
    /// @copybrief getHistBinNum @see getHistBinNum
    fn set_hist_bin_num(&mut self, val: i32) -> Result<()> {
        unsafe { sys::cv_xphoto_LearningBasedWB_setHistBinNum_int(self.as_raw_LearningBasedWB(), val) }.into_result()
    }
    
}

// Generating impl for trait crate::xphoto::SimpleWB
/// A simple white balance algorithm that works by independently stretching
/// each of the input image channels to the specified range. For increased robustness
/// it ignores the top and bottom ![inline formula](https://latex.codecogs.com/png.latex?p%5C%25) of pixel values.
pub trait SimpleWB: crate::xphoto::WhiteBalancer {
    fn as_raw_SimpleWB(&self) -> *mut c_void;
    /// Input image range minimum value
    /// @see setInputMin
    fn get_input_min(&self) -> Result<f32> {
        unsafe { sys::cv_xphoto_SimpleWB_getInputMin_const(self.as_raw_SimpleWB()) }.into_result()
    }
    
    /// @copybrief getInputMin @see getInputMin
    fn set_input_min(&mut self, val: f32) -> Result<()> {
        unsafe { sys::cv_xphoto_SimpleWB_setInputMin_float(self.as_raw_SimpleWB(), val) }.into_result()
    }
    
    /// Input image range maximum value
    /// @see setInputMax
    fn get_input_max(&self) -> Result<f32> {
        unsafe { sys::cv_xphoto_SimpleWB_getInputMax_const(self.as_raw_SimpleWB()) }.into_result()
    }
    
    /// @copybrief getInputMax @see getInputMax
    fn set_input_max(&mut self, val: f32) -> Result<()> {
        unsafe { sys::cv_xphoto_SimpleWB_setInputMax_float(self.as_raw_SimpleWB(), val) }.into_result()
    }
    
    /// Output image range minimum value
    /// @see setOutputMin
    fn get_output_min(&self) -> Result<f32> {
        unsafe { sys::cv_xphoto_SimpleWB_getOutputMin_const(self.as_raw_SimpleWB()) }.into_result()
    }
    
    /// @copybrief getOutputMin @see getOutputMin
    fn set_output_min(&mut self, val: f32) -> Result<()> {
        unsafe { sys::cv_xphoto_SimpleWB_setOutputMin_float(self.as_raw_SimpleWB(), val) }.into_result()
    }
    
    /// Output image range maximum value
    /// @see setOutputMax
    fn get_output_max(&self) -> Result<f32> {
        unsafe { sys::cv_xphoto_SimpleWB_getOutputMax_const(self.as_raw_SimpleWB()) }.into_result()
    }
    
    /// @copybrief getOutputMax @see getOutputMax
    fn set_output_max(&mut self, val: f32) -> Result<()> {
        unsafe { sys::cv_xphoto_SimpleWB_setOutputMax_float(self.as_raw_SimpleWB(), val) }.into_result()
    }
    
    /// Percent of top/bottom values to ignore
    /// @see setP
    fn get_p(&self) -> Result<f32> {
        unsafe { sys::cv_xphoto_SimpleWB_getP_const(self.as_raw_SimpleWB()) }.into_result()
    }
    
    /// @copybrief getP @see getP
    fn set_p(&mut self, val: f32) -> Result<()> {
        unsafe { sys::cv_xphoto_SimpleWB_setP_float(self.as_raw_SimpleWB(), val) }.into_result()
    }
    
}

// Generating impl for trait crate::xphoto::TonemapDurand
/// This algorithm decomposes image into two layers: base layer and detail layer using bilateral filter
/// and compresses contrast of the base layer thus preserving all the details.
///
/// This implementation uses regular bilateral filter from OpenCV.
///
/// Saturation enhancement is possible as in cv::TonemapDrago.
///
/// For more information see [DD02](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_DD02) .
pub trait TonemapDurand {
    fn as_raw_TonemapDurand(&self) -> *mut c_void;
    fn get_saturation(&self) -> Result<f32> {
        unsafe { sys::cv_xphoto_TonemapDurand_getSaturation_const(self.as_raw_TonemapDurand()) }.into_result()
    }
    
    fn set_saturation(&mut self, saturation: f32) -> Result<()> {
        unsafe { sys::cv_xphoto_TonemapDurand_setSaturation_float(self.as_raw_TonemapDurand(), saturation) }.into_result()
    }
    
    fn get_contrast(&self) -> Result<f32> {
        unsafe { sys::cv_xphoto_TonemapDurand_getContrast_const(self.as_raw_TonemapDurand()) }.into_result()
    }
    
    fn set_contrast(&mut self, contrast: f32) -> Result<()> {
        unsafe { sys::cv_xphoto_TonemapDurand_setContrast_float(self.as_raw_TonemapDurand(), contrast) }.into_result()
    }
    
    fn get_sigma_space(&self) -> Result<f32> {
        unsafe { sys::cv_xphoto_TonemapDurand_getSigmaSpace_const(self.as_raw_TonemapDurand()) }.into_result()
    }
    
    fn set_sigma_space(&mut self, sigma_space: f32) -> Result<()> {
        unsafe { sys::cv_xphoto_TonemapDurand_setSigmaSpace_float(self.as_raw_TonemapDurand(), sigma_space) }.into_result()
    }
    
    fn get_sigma_color(&self) -> Result<f32> {
        unsafe { sys::cv_xphoto_TonemapDurand_getSigmaColor_const(self.as_raw_TonemapDurand()) }.into_result()
    }
    
    fn set_sigma_color(&mut self, sigma_color: f32) -> Result<()> {
        unsafe { sys::cv_xphoto_TonemapDurand_setSigmaColor_float(self.as_raw_TonemapDurand(), sigma_color) }.into_result()
    }
    
}

// Generating impl for trait crate::xphoto::WhiteBalancer
/// The base class for auto white balance algorithms.
pub trait WhiteBalancer: core::AlgorithmTrait {
    fn as_raw_WhiteBalancer(&self) -> *mut c_void;
    /// Applies white balancing to the input image
    ///
    /// ## Parameters
    /// * src: Input image
    /// * dst: White balancing result
    /// ## See also
    /// cvtColor, equalizeHist
    fn balance_white(&mut self, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray) -> Result<()> {
        input_array_arg!(src);
        output_array_arg!(dst);
        unsafe { sys::cv_xphoto_WhiteBalancer_balanceWhite__InputArray__OutputArray(self.as_raw_WhiteBalancer(), src.as_raw__InputArray(), dst.as_raw__OutputArray()) }.into_result()
    }
    
}