1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
//! # Computational Photography
//!
//! This module includes photo processing algorithms
//! # Inpainting
//! # Denoising
//! # HDR imaging
//!
//! This section describes high dynamic range imaging algorithms namely tonemapping, exposure alignment,
//! camera calibration with multiple exposures and exposure fusion.
//!
//! # Contrast Preserving Decolorization
//!
//! Useful links:
//!
//! http://www.cse.cuhk.edu.hk/leojia/projects/color2gray/index.html
//!
//! # Seamless Cloning
//!
//! Useful links:
//!
//! https://www.learnopencv.com/seamless-cloning-using-opencv-python-cpp
//!
//! # Non-Photorealistic Rendering
//!
//! Useful links:
//!
//! http://www.inf.ufrgs.br/~eslgastal/DomainTransform
//!
//! https://www.learnopencv.com/non-photorealistic-rendering-using-opencv-python-c/
//!
//! # C API
use crate::{mod_prelude::*, core, sys, types};
use crate::core::{_InputArrayTrait, _OutputArrayTrait};

/// Use Navier-Stokes based method
pub const INPAINT_NS: i32 = 0;
/// Use the algorithm proposed by Alexandru Telea [Telea04](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_Telea04)
pub const INPAINT_TELEA: i32 = 1;
pub const LDR_SIZE: i32 = 256;
pub const MIXED_CLONE: i32 = 2;
pub const MONOCHROME_TRANSFER: i32 = 3;
pub const NORMAL_CLONE: i32 = 1;
/// Normalized Convolution Filtering
pub const NORMCONV_FILTER: i32 = 2;
/// Recursive Filtering
pub const RECURS_FILTER: i32 = 1;

/// Given an original color image, two differently colored versions of this image can be mixed
/// seamlessly.
///
/// ## Parameters
/// * src: Input 8-bit 3-channel image.
/// * mask: Input 8-bit 1 or 3-channel image.
/// * dst: Output image with the same size and type as src .
/// * red_mul: R-channel multiply factor.
/// * green_mul: G-channel multiply factor.
/// * blue_mul: B-channel multiply factor.
///
/// Multiplication factor is between .5 to 2.5.
///
/// ## C++ default parameters
/// * red_mul: 1.0f
/// * green_mul: 1.0f
/// * blue_mul: 1.0f
pub fn color_change(src: &dyn core::ToInputArray, mask: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, red_mul: f32, green_mul: f32, blue_mul: f32) -> Result<()> {
    input_array_arg!(src);
    input_array_arg!(mask);
    output_array_arg!(dst);
    unsafe { sys::cv_colorChange__InputArray__InputArray__OutputArray_float_float_float(src.as_raw__InputArray(), mask.as_raw__InputArray(), dst.as_raw__OutputArray(), red_mul, green_mul, blue_mul) }.into_result()
}

/// Creates AlignMTB object
///
/// ## Parameters
/// * max_bits: logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are
/// usually good enough (31 and 63 pixels shift respectively).
/// * exclude_range: range for exclusion bitmap that is constructed to suppress noise around the
/// median value.
/// * cut: if true cuts images, otherwise fills the new regions with zeros.
///
/// ## C++ default parameters
/// * max_bits: 6
/// * exclude_range: 4
/// * cut: true
pub fn create_align_mtb(max_bits: i32, exclude_range: i32, cut: bool) -> Result<types::PtrOfAlignMTB> {
    unsafe { sys::cv_createAlignMTB_int_int_bool(max_bits, exclude_range, cut) }.into_result().map(|ptr| types::PtrOfAlignMTB { ptr })
}

/// Creates CalibrateDebevec object
///
/// ## Parameters
/// * samples: number of pixel locations to use
/// * lambda: smoothness term weight. Greater values produce smoother results, but can alter the
/// response.
/// * random: if true sample pixel locations are chosen at random, otherwise they form a
/// rectangular grid.
///
/// ## C++ default parameters
/// * samples: 70
/// * lambda: 10.0f
/// * random: false
pub fn create_calibrate_debevec(samples: i32, lambda: f32, random: bool) -> Result<types::PtrOfCalibrateDebevec> {
    unsafe { sys::cv_createCalibrateDebevec_int_float_bool(samples, lambda, random) }.into_result().map(|ptr| types::PtrOfCalibrateDebevec { ptr })
}

/// Creates CalibrateRobertson object
///
/// ## Parameters
/// * max_iter: maximal number of Gauss-Seidel solver iterations.
/// * threshold: target difference between results of two successive steps of the minimization.
///
/// ## C++ default parameters
/// * max_iter: 30
/// * threshold: 0.01f
pub fn create_calibrate_robertson(max_iter: i32, threshold: f32) -> Result<types::PtrOfCalibrateRobertson> {
    unsafe { sys::cv_createCalibrateRobertson_int_float(max_iter, threshold) }.into_result().map(|ptr| types::PtrOfCalibrateRobertson { ptr })
}

/// Creates MergeDebevec object
pub fn create_merge_debevec() -> Result<types::PtrOfMergeDebevec> {
    unsafe { sys::cv_createMergeDebevec() }.into_result().map(|ptr| types::PtrOfMergeDebevec { ptr })
}

/// Creates MergeMertens object
///
/// ## Parameters
/// * contrast_weight: contrast measure weight. See MergeMertens.
/// * saturation_weight: saturation measure weight
/// * exposure_weight: well-exposedness measure weight
///
/// ## C++ default parameters
/// * contrast_weight: 1.0f
/// * saturation_weight: 1.0f
/// * exposure_weight: 0.0f
pub fn create_merge_mertens(contrast_weight: f32, saturation_weight: f32, exposure_weight: f32) -> Result<types::PtrOfMergeMertens> {
    unsafe { sys::cv_createMergeMertens_float_float_float(contrast_weight, saturation_weight, exposure_weight) }.into_result().map(|ptr| types::PtrOfMergeMertens { ptr })
}

/// Creates MergeRobertson object
pub fn create_merge_robertson() -> Result<types::PtrOfMergeRobertson> {
    unsafe { sys::cv_createMergeRobertson() }.into_result().map(|ptr| types::PtrOfMergeRobertson { ptr })
}

/// Creates TonemapDrago object
///
/// ## Parameters
/// * gamma: gamma value for gamma correction. See createTonemap
/// * saturation: positive saturation enhancement value. 1.0 preserves saturation, values greater
/// than 1 increase saturation and values less than 1 decrease it.
/// * bias: value for bias function in [0, 1] range. Values from 0.7 to 0.9 usually give best
/// results, default value is 0.85.
///
/// ## C++ default parameters
/// * gamma: 1.0f
/// * saturation: 1.0f
/// * bias: 0.85f
pub fn create_tonemap_drago(gamma: f32, saturation: f32, bias: f32) -> Result<types::PtrOfTonemapDrago> {
    unsafe { sys::cv_createTonemapDrago_float_float_float(gamma, saturation, bias) }.into_result().map(|ptr| types::PtrOfTonemapDrago { ptr })
}

/// Creates TonemapMantiuk object
///
/// ## Parameters
/// * gamma: gamma value for gamma correction. See createTonemap
/// * scale: contrast scale factor. HVS response is multiplied by this parameter, thus compressing
/// dynamic range. Values from 0.6 to 0.9 produce best results.
/// * saturation: saturation enhancement value. See createTonemapDrago
///
/// ## C++ default parameters
/// * gamma: 1.0f
/// * scale: 0.7f
/// * saturation: 1.0f
pub fn create_tonemap_mantiuk(gamma: f32, scale: f32, saturation: f32) -> Result<types::PtrOfTonemapMantiuk> {
    unsafe { sys::cv_createTonemapMantiuk_float_float_float(gamma, scale, saturation) }.into_result().map(|ptr| types::PtrOfTonemapMantiuk { ptr })
}

/// Creates TonemapReinhard object
///
/// ## Parameters
/// * gamma: gamma value for gamma correction. See createTonemap
/// * intensity: result intensity in [-8, 8] range. Greater intensity produces brighter results.
/// * light_adapt: light adaptation in [0, 1] range. If 1 adaptation is based only on pixel
/// value, if 0 it's global, otherwise it's a weighted mean of this two cases.
/// * color_adapt: chromatic adaptation in [0, 1] range. If 1 channels are treated independently,
/// if 0 adaptation level is the same for each channel.
///
/// ## C++ default parameters
/// * gamma: 1.0f
/// * intensity: 0.0f
/// * light_adapt: 1.0f
/// * color_adapt: 0.0f
pub fn create_tonemap_reinhard(gamma: f32, intensity: f32, light_adapt: f32, color_adapt: f32) -> Result<types::PtrOfTonemapReinhard> {
    unsafe { sys::cv_createTonemapReinhard_float_float_float_float(gamma, intensity, light_adapt, color_adapt) }.into_result().map(|ptr| types::PtrOfTonemapReinhard { ptr })
}

/// Creates simple linear mapper with gamma correction
///
/// ## Parameters
/// * gamma: positive value for gamma correction. Gamma value of 1.0 implies no correction, gamma
/// equal to 2.2f is suitable for most displays.
/// Generally gamma \> 1 brightens the image and gamma \< 1 darkens it.
///
/// ## C++ default parameters
/// * gamma: 1.0f
pub fn create_tonemap(gamma: f32) -> Result<types::PtrOfTonemap> {
    unsafe { sys::cv_createTonemap_float(gamma) }.into_result().map(|ptr| types::PtrOfTonemap { ptr })
}

/// Transforms a color image to a grayscale image. It is a basic tool in digital printing, stylized
/// black-and-white photograph rendering, and in many single channel image processing applications
/// [CL12](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_CL12) .
///
/// ## Parameters
/// * src: Input 8-bit 3-channel image.
/// * grayscale: Output 8-bit 1-channel image.
/// * color_boost: Output 8-bit 3-channel image.
///
/// This function is to be applied on color images.
pub fn decolor(src: &dyn core::ToInputArray, grayscale: &mut dyn core::ToOutputArray, color_boost: &mut dyn core::ToOutputArray) -> Result<()> {
    input_array_arg!(src);
    output_array_arg!(grayscale);
    output_array_arg!(color_boost);
    unsafe { sys::cv_decolor__InputArray__OutputArray__OutputArray(src.as_raw__InputArray(), grayscale.as_raw__OutputArray(), color_boost.as_raw__OutputArray()) }.into_result()
}

/// Primal-dual algorithm is an algorithm for solving special types of variational problems (that is,
/// finding a function to minimize some functional). As the image denoising, in particular, may be seen
/// as the variational problem, primal-dual algorithm then can be used to perform denoising and this is
/// exactly what is implemented.
///
/// It should be noted, that this implementation was taken from the July 2013 blog entry
/// [MA13](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_MA13) , which also contained (slightly more general) ready-to-use source code on Python.
/// Subsequently, that code was rewritten on C++ with the usage of openCV by Vadim Pisarevsky at the end
/// of July 2013 and finally it was slightly adapted by later authors.
///
/// Although the thorough discussion and justification of the algorithm involved may be found in
/// [ChambolleEtAl](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_ChambolleEtAl), it might make sense to skim over it here, following [MA13](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_MA13) . To begin
/// with, we consider the 1-byte gray-level images as the functions from the rectangular domain of
/// pixels (it may be seen as set
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cleft%5C%7B%28x%2Cy%29%5Cin%5Cmathbb%7BN%7D%5Ctimes%5Cmathbb%7BN%7D%5Cmid%201%5Cleq%20x%5Cleq%20n%2C%5C%3B1%5Cleq%20y%5Cleq%20m%5Cright%5C%7D) for some
/// ![inline formula](https://latex.codecogs.com/png.latex?m%2C%5C%3Bn%5Cin%5Cmathbb%7BN%7D)) into ![inline formula](https://latex.codecogs.com/png.latex?%5C%7B0%2C1%2C%5Cdots%2C255%5C%7D). We shall denote the noised images as ![inline formula](https://latex.codecogs.com/png.latex?f_i) and with
/// this view, given some image ![inline formula](https://latex.codecogs.com/png.latex?x) of the same size, we may measure how bad it is by the formula
///
/// ![block formula](https://latex.codecogs.com/png.latex?%5Cleft%5C%7C%5Cleft%5C%7C%5Cnabla%20x%5Cright%5C%7C%5Cright%5C%7C%20%2B%20%5Clambda%5Csum_i%5Cleft%5C%7C%5Cleft%5C%7Cx-f_i%5Cright%5C%7C%5Cright%5C%7C)
///
/// ![inline formula](https://latex.codecogs.com/png.latex?%5C%7C%5C%7C%5Ccdot%5C%7C%5C%7C) here denotes ![inline formula](https://latex.codecogs.com/png.latex?L_2)-norm and as you see, the first addend states that we want our
/// image to be smooth (ideally, having zero gradient, thus being constant) and the second states that
/// we want our result to be close to the observations we've got. If we treat ![inline formula](https://latex.codecogs.com/png.latex?x) as a function, this is
/// exactly the functional what we seek to minimize and here the Primal-Dual algorithm comes into play.
///
/// ## Parameters
/// * observations: This array should contain one or more noised versions of the image that is to
/// be restored.
/// * result: Here the denoised image will be stored. There is no need to do pre-allocation of
/// storage space, as it will be automatically allocated, if necessary.
/// * lambda: Corresponds to ![inline formula](https://latex.codecogs.com/png.latex?%5Clambda) in the formulas above. As it is enlarged, the smooth
/// (blurred) images are treated more favorably than detailed (but maybe more noised) ones. Roughly
/// speaking, as it becomes smaller, the result will be more blur but more sever outliers will be
/// removed.
/// * niters: Number of iterations that the algorithm will run. Of course, as more iterations as
/// better, but it is hard to quantitatively refine this statement, so just use the default and
/// increase it if the results are poor.
///
/// ## C++ default parameters
/// * lambda: 1.0
/// * niters: 30
pub fn denoise_tvl1(observations: &types::VectorOfMat, result: &mut core::Mat, lambda: f64, niters: i32) -> Result<()> {
    unsafe { sys::cv_denoise_TVL1_VectorOfMat_Mat_double_int(observations.as_raw_VectorOfMat(), result.as_raw_Mat(), lambda, niters) }.into_result()
}

/// This filter enhances the details of a particular image.
///
/// ## Parameters
/// * src: Input 8-bit 3-channel image.
/// * dst: Output image with the same size and type as src.
/// * sigma_s: %Range between 0 to 200.
/// * sigma_r: %Range between 0 to 1.
///
/// ## C++ default parameters
/// * sigma_s: 10
/// * sigma_r: 0.15f
pub fn detail_enhance(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, sigma_s: f32, sigma_r: f32) -> Result<()> {
    input_array_arg!(src);
    output_array_arg!(dst);
    unsafe { sys::cv_detailEnhance__InputArray__OutputArray_float_float(src.as_raw__InputArray(), dst.as_raw__OutputArray(), sigma_s, sigma_r) }.into_result()
}

/// Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing
/// filters are used in many different applications [EM11](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_EM11) .
///
/// ## Parameters
/// * src: Input 8-bit 3-channel image.
/// * dst: Output 8-bit 3-channel image.
/// * flags: Edge preserving filters: cv::RECURS_FILTER or cv::NORMCONV_FILTER
/// * sigma_s: %Range between 0 to 200.
/// * sigma_r: %Range between 0 to 1.
///
/// ## C++ default parameters
/// * flags: 1
/// * sigma_s: 60
/// * sigma_r: 0.4f
pub fn edge_preserving_filter(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, flags: i32, sigma_s: f32, sigma_r: f32) -> Result<()> {
    input_array_arg!(src);
    output_array_arg!(dst);
    unsafe { sys::cv_edgePreservingFilter__InputArray__OutputArray_int_float_float(src.as_raw__InputArray(), dst.as_raw__OutputArray(), flags, sigma_s, sigma_r) }.into_result()
}

/// Modification of fastNlMeansDenoisingMulti function for colored images sequences
///
/// ## Parameters
/// * srcImgs: Input 8-bit 3-channel images sequence. All images should have the same type and
/// size.
/// * imgToDenoiseIndex: Target image to denoise index in srcImgs sequence
/// * temporalWindowSize: Number of surrounding images to use for target image denoising. Should
/// be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
/// imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
/// srcImgs[imgToDenoiseIndex] image.
/// * dst: Output image with the same size and type as srcImgs images.
/// * templateWindowSize: Size in pixels of the template patch that is used to compute weights.
/// Should be odd. Recommended value 7 pixels
/// * searchWindowSize: Size in pixels of the window that is used to compute weighted average for
/// given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
/// denoising time. Recommended value 21 pixels
/// * h: Parameter regulating filter strength for luminance component. Bigger h value perfectly
/// removes noise but also removes image details, smaller h value preserves details but also preserves
/// some noise.
/// * hColor: The same as h but for color components.
///
/// The function converts images to CIELAB colorspace and then separately denoise L and AB components
/// with given h parameters using fastNlMeansDenoisingMulti function.
///
/// ## C++ default parameters
/// * h: 3
/// * h_color: 3
/// * template_window_size: 7
/// * search_window_size: 21
pub fn fast_nl_means_denoising_colored_multi(src_imgs: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, img_to_denoise_index: i32, temporal_window_size: i32, h: f32, h_color: f32, template_window_size: i32, search_window_size: i32) -> Result<()> {
    input_array_arg!(src_imgs);
    output_array_arg!(dst);
    unsafe { sys::cv_fastNlMeansDenoisingColoredMulti__InputArray__OutputArray_int_int_float_float_int_int(src_imgs.as_raw__InputArray(), dst.as_raw__OutputArray(), img_to_denoise_index, temporal_window_size, h, h_color, template_window_size, search_window_size) }.into_result()
}

/// Modification of fastNlMeansDenoising function for colored images
///
/// ## Parameters
/// * src: Input 8-bit 3-channel image.
/// * dst: Output image with the same size and type as src .
/// * templateWindowSize: Size in pixels of the template patch that is used to compute weights.
/// Should be odd. Recommended value 7 pixels
/// * searchWindowSize: Size in pixels of the window that is used to compute weighted average for
/// given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
/// denoising time. Recommended value 21 pixels
/// * h: Parameter regulating filter strength for luminance component. Bigger h value perfectly
/// removes noise but also removes image details, smaller h value preserves details but also preserves
/// some noise
/// * hColor: The same as h but for color components. For most images value equals 10
/// will be enough to remove colored noise and do not distort colors
///
/// The function converts image to CIELAB colorspace and then separately denoise L and AB components
/// with given h parameters using fastNlMeansDenoising function.
///
/// ## C++ default parameters
/// * h: 3
/// * h_color: 3
/// * template_window_size: 7
/// * search_window_size: 21
pub fn fast_nl_means_denoising_colored(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, h: f32, h_color: f32, template_window_size: i32, search_window_size: i32) -> Result<()> {
    input_array_arg!(src);
    output_array_arg!(dst);
    unsafe { sys::cv_fastNlMeansDenoisingColored__InputArray__OutputArray_float_float_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), h, h_color, template_window_size, search_window_size) }.into_result()
}

/// Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
/// captured in small period of time. For example video. This version of the function is for grayscale
/// images or for manual manipulation with colorspaces. For more details see
/// <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
///
/// ## Parameters
/// * srcImgs: Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
/// 2-channel, 3-channel or 4-channel images sequence. All images should
/// have the same type and size.
/// * imgToDenoiseIndex: Target image to denoise index in srcImgs sequence
/// * temporalWindowSize: Number of surrounding images to use for target image denoising. Should
/// be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
/// imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
/// srcImgs[imgToDenoiseIndex] image.
/// * dst: Output image with the same size and type as srcImgs images.
/// * templateWindowSize: Size in pixels of the template patch that is used to compute weights.
/// Should be odd. Recommended value 7 pixels
/// * searchWindowSize: Size in pixels of the window that is used to compute weighted average for
/// given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
/// denoising time. Recommended value 21 pixels
/// * h: Array of parameters regulating filter strength, either one
/// parameter applied to all channels or one per channel in dst. Big h value
/// perfectly removes noise but also removes image details, smaller h
/// value preserves details but also preserves some noise
/// * normType: Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1
///
/// ## C++ default parameters
/// * template_window_size: 7
/// * search_window_size: 21
/// * norm_type: NORM_L2
pub fn fast_nl_means_denoising_multi(src_imgs: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, img_to_denoise_index: i32, temporal_window_size: i32, h: &types::VectorOffloat, template_window_size: i32, search_window_size: i32, norm_type: i32) -> Result<()> {
    input_array_arg!(src_imgs);
    output_array_arg!(dst);
    unsafe { sys::cv_fastNlMeansDenoisingMulti__InputArray__OutputArray_int_int_VectorOffloat_int_int_int(src_imgs.as_raw__InputArray(), dst.as_raw__OutputArray(), img_to_denoise_index, temporal_window_size, h.as_raw_VectorOffloat(), template_window_size, search_window_size, norm_type) }.into_result()
}

/// Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
/// captured in small period of time. For example video. This version of the function is for grayscale
/// images or for manual manipulation with colorspaces. For more details see
/// <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
///
/// ## Parameters
/// * srcImgs: Input 8-bit 1-channel, 2-channel, 3-channel or
/// 4-channel images sequence. All images should have the same type and
/// size.
/// * imgToDenoiseIndex: Target image to denoise index in srcImgs sequence
/// * temporalWindowSize: Number of surrounding images to use for target image denoising. Should
/// be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
/// imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
/// srcImgs[imgToDenoiseIndex] image.
/// * dst: Output image with the same size and type as srcImgs images.
/// * templateWindowSize: Size in pixels of the template patch that is used to compute weights.
/// Should be odd. Recommended value 7 pixels
/// * searchWindowSize: Size in pixels of the window that is used to compute weighted average for
/// given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
/// denoising time. Recommended value 21 pixels
/// * h: Parameter regulating filter strength. Bigger h value
/// perfectly removes noise but also removes image details, smaller h
/// value preserves details but also preserves some noise
///
/// ## C++ default parameters
/// * h: 3
/// * template_window_size: 7
/// * search_window_size: 21
pub fn fast_nl_means_denoising_multi_vec(src_imgs: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, img_to_denoise_index: i32, temporal_window_size: i32, h: f32, template_window_size: i32, search_window_size: i32) -> Result<()> {
    input_array_arg!(src_imgs);
    output_array_arg!(dst);
    unsafe { sys::cv_fastNlMeansDenoisingMulti__InputArray__OutputArray_int_int_float_int_int(src_imgs.as_raw__InputArray(), dst.as_raw__OutputArray(), img_to_denoise_index, temporal_window_size, h, template_window_size, search_window_size) }.into_result()
}

/// Perform image denoising using Non-local Means Denoising algorithm
/// <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
/// optimizations. Noise expected to be a gaussian white noise
///
/// ## Parameters
/// * src: Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
/// 2-channel, 3-channel or 4-channel image.
/// * dst: Output image with the same size and type as src .
/// * templateWindowSize: Size in pixels of the template patch that is used to compute weights.
/// Should be odd. Recommended value 7 pixels
/// * searchWindowSize: Size in pixels of the window that is used to compute weighted average for
/// given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
/// denoising time. Recommended value 21 pixels
/// * h: Array of parameters regulating filter strength, either one
/// parameter applied to all channels or one per channel in dst. Big h value
/// perfectly removes noise but also removes image details, smaller h
/// value preserves details but also preserves some noise
/// * normType: Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1
///
/// This function expected to be applied to grayscale images. For colored images look at
/// fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
/// image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
/// image to CIELAB colorspace and then separately denoise L and AB components with different h
/// parameter.
///
/// ## C++ default parameters
/// * template_window_size: 7
/// * search_window_size: 21
/// * norm_type: NORM_L2
pub fn fast_nl_means_denoising_vec(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, h: &types::VectorOffloat, template_window_size: i32, search_window_size: i32, norm_type: i32) -> Result<()> {
    input_array_arg!(src);
    output_array_arg!(dst);
    unsafe { sys::cv_fastNlMeansDenoising__InputArray__OutputArray_VectorOffloat_int_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), h.as_raw_VectorOffloat(), template_window_size, search_window_size, norm_type) }.into_result()
}

/// Perform image denoising using Non-local Means Denoising algorithm
/// <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
/// optimizations. Noise expected to be a gaussian white noise
///
/// ## Parameters
/// * src: Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.
/// * dst: Output image with the same size and type as src .
/// * templateWindowSize: Size in pixels of the template patch that is used to compute weights.
/// Should be odd. Recommended value 7 pixels
/// * searchWindowSize: Size in pixels of the window that is used to compute weighted average for
/// given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
/// denoising time. Recommended value 21 pixels
/// * h: Parameter regulating filter strength. Big h value perfectly removes noise but also
/// removes image details, smaller h value preserves details but also preserves some noise
///
/// This function expected to be applied to grayscale images. For colored images look at
/// fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
/// image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
/// image to CIELAB colorspace and then separately denoise L and AB components with different h
/// parameter.
///
/// ## C++ default parameters
/// * h: 3
/// * template_window_size: 7
/// * search_window_size: 21
pub fn fast_nl_means_denoising(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, h: f32, template_window_size: i32, search_window_size: i32) -> Result<()> {
    input_array_arg!(src);
    output_array_arg!(dst);
    unsafe { sys::cv_fastNlMeansDenoising__InputArray__OutputArray_float_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), h, template_window_size, search_window_size) }.into_result()
}

/// Applying an appropriate non-linear transformation to the gradient field inside the selection and
/// then integrating back with a Poisson solver, modifies locally the apparent illumination of an image.
///
/// ## Parameters
/// * src: Input 8-bit 3-channel image.
/// * mask: Input 8-bit 1 or 3-channel image.
/// * dst: Output image with the same size and type as src.
/// * alpha: Value ranges between 0-2.
/// * beta: Value ranges between 0-2.
///
/// This is useful to highlight under-exposed foreground objects or to reduce specular reflections.
///
/// ## C++ default parameters
/// * alpha: 0.2f
/// * beta: 0.4f
pub fn illumination_change(src: &dyn core::ToInputArray, mask: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, alpha: f32, beta: f32) -> Result<()> {
    input_array_arg!(src);
    input_array_arg!(mask);
    output_array_arg!(dst);
    unsafe { sys::cv_illuminationChange__InputArray__InputArray__OutputArray_float_float(src.as_raw__InputArray(), mask.as_raw__InputArray(), dst.as_raw__OutputArray(), alpha, beta) }.into_result()
}

/// Restores the selected region in an image using the region neighborhood.
///
/// ## Parameters
/// * src: Input 8-bit, 16-bit unsigned or 32-bit float 1-channel or 8-bit 3-channel image.
/// * inpaintMask: Inpainting mask, 8-bit 1-channel image. Non-zero pixels indicate the area that
/// needs to be inpainted.
/// * dst: Output image with the same size and type as src .
/// * inpaintRadius: Radius of a circular neighborhood of each point inpainted that is considered
/// by the algorithm.
/// * flags: Inpainting method that could be cv::INPAINT_NS or cv::INPAINT_TELEA
///
/// The function reconstructs the selected image area from the pixel near the area boundary. The
/// function may be used to remove dust and scratches from a scanned photo, or to remove undesirable
/// objects from still images or video. See <http://en.wikipedia.org/wiki/Inpainting> for more details.
///
///
/// Note:
/// *   An example using the inpainting technique can be found at
/// opencv_source_code/samples/cpp/inpaint.cpp
/// *   (Python) An example using the inpainting technique can be found at
/// opencv_source_code/samples/python/inpaint.py
pub fn inpaint(src: &dyn core::ToInputArray, inpaint_mask: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, inpaint_radius: f64, flags: i32) -> Result<()> {
    input_array_arg!(src);
    input_array_arg!(inpaint_mask);
    output_array_arg!(dst);
    unsafe { sys::cv_inpaint__InputArray__InputArray__OutputArray_double_int(src.as_raw__InputArray(), inpaint_mask.as_raw__InputArray(), dst.as_raw__OutputArray(), inpaint_radius, flags) }.into_result()
}

/// Pencil-like non-photorealistic line drawing
///
/// ## Parameters
/// * src: Input 8-bit 3-channel image.
/// * dst1: Output 8-bit 1-channel image.
/// * dst2: Output image with the same size and type as src.
/// * sigma_s: %Range between 0 to 200.
/// * sigma_r: %Range between 0 to 1.
/// * shade_factor: %Range between 0 to 0.1.
///
/// ## C++ default parameters
/// * sigma_s: 60
/// * sigma_r: 0.07f
/// * shade_factor: 0.02f
pub fn pencil_sketch(src: &dyn core::ToInputArray, dst1: &mut dyn core::ToOutputArray, dst2: &mut dyn core::ToOutputArray, sigma_s: f32, sigma_r: f32, shade_factor: f32) -> Result<()> {
    input_array_arg!(src);
    output_array_arg!(dst1);
    output_array_arg!(dst2);
    unsafe { sys::cv_pencilSketch__InputArray__OutputArray__OutputArray_float_float_float(src.as_raw__InputArray(), dst1.as_raw__OutputArray(), dst2.as_raw__OutputArray(), sigma_s, sigma_r, shade_factor) }.into_result()
}

/// Image editing tasks concern either global changes (color/intensity corrections, filters,
/// deformations) or local changes concerned to a selection. Here we are interested in achieving local
/// changes, ones that are restricted to a region manually selected (ROI), in a seamless and effortless
/// manner. The extent of the changes ranges from slight distortions to complete replacement by novel
/// content [PM03](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_PM03) .
///
/// ## Parameters
/// * src: Input 8-bit 3-channel image.
/// * dst: Input 8-bit 3-channel image.
/// * mask: Input 8-bit 1 or 3-channel image.
/// * p: Point in dst image where object is placed.
/// * blend: Output image with the same size and type as dst.
/// * flags: Cloning method that could be cv::NORMAL_CLONE, cv::MIXED_CLONE or cv::MONOCHROME_TRANSFER
pub fn seamless_clone(src: &dyn core::ToInputArray, dst: &dyn core::ToInputArray, mask: &dyn core::ToInputArray, p: core::Point, blend: &mut dyn core::ToOutputArray, flags: i32) -> Result<()> {
    input_array_arg!(src);
    input_array_arg!(dst);
    input_array_arg!(mask);
    output_array_arg!(blend);
    unsafe { sys::cv_seamlessClone__InputArray__InputArray__InputArray_Point__OutputArray_int(src.as_raw__InputArray(), dst.as_raw__InputArray(), mask.as_raw__InputArray(), p, blend.as_raw__OutputArray(), flags) }.into_result()
}

/// Stylization aims to produce digital imagery with a wide variety of effects not focused on
/// photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low
/// contrast while preserving, or enhancing, high-contrast features.
///
/// ## Parameters
/// * src: Input 8-bit 3-channel image.
/// * dst: Output image with the same size and type as src.
/// * sigma_s: %Range between 0 to 200.
/// * sigma_r: %Range between 0 to 1.
///
/// ## C++ default parameters
/// * sigma_s: 60
/// * sigma_r: 0.45f
pub fn stylization(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, sigma_s: f32, sigma_r: f32) -> Result<()> {
    input_array_arg!(src);
    output_array_arg!(dst);
    unsafe { sys::cv_stylization__InputArray__OutputArray_float_float(src.as_raw__InputArray(), dst.as_raw__OutputArray(), sigma_s, sigma_r) }.into_result()
}

/// By retaining only the gradients at edge locations, before integrating with the Poisson solver, one
/// washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used.
///
/// ## Parameters
/// * src: Input 8-bit 3-channel image.
/// * mask: Input 8-bit 1 or 3-channel image.
/// * dst: Output image with the same size and type as src.
/// * low_threshold: %Range from 0 to 100.
/// * high_threshold: Value \> 100.
/// * kernel_size: The size of the Sobel kernel to be used.
///
///
/// Note:
/// The algorithm assumes that the color of the source image is close to that of the destination. This
/// assumption means that when the colors don't match, the source image color gets tinted toward the
/// color of the destination image.
///
/// ## C++ default parameters
/// * low_threshold: 30
/// * high_threshold: 45
/// * kernel_size: 3
pub fn texture_flattening(src: &dyn core::ToInputArray, mask: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, low_threshold: f32, high_threshold: f32, kernel_size: i32) -> Result<()> {
    input_array_arg!(src);
    input_array_arg!(mask);
    output_array_arg!(dst);
    unsafe { sys::cv_textureFlattening__InputArray__InputArray__OutputArray_float_float_int(src.as_raw__InputArray(), mask.as_raw__InputArray(), dst.as_raw__OutputArray(), low_threshold, high_threshold, kernel_size) }.into_result()
}

// Generating impl for trait crate::photo::AlignExposures
/// The base class for algorithms that align images of the same scene with different exposures
pub trait AlignExposures: core::AlgorithmTrait {
    fn as_raw_AlignExposures(&self) -> *mut c_void;
    /// Aligns images
    ///
    /// ## Parameters
    /// * src: vector of input images
    /// * dst: vector of aligned images
    /// * times: vector of exposure time values for each image
    /// * response: 256x1 matrix with inverse camera response function for each pixel value, it should
    /// have the same number of channels as images.
    fn process(&mut self, src: &dyn core::ToInputArray, dst: &mut types::VectorOfMat, times: &dyn core::ToInputArray, response: &dyn core::ToInputArray) -> Result<()> {
        input_array_arg!(src);
        input_array_arg!(times);
        input_array_arg!(response);
        unsafe { sys::cv_AlignExposures_process__InputArray_VectorOfMat__InputArray__InputArray(self.as_raw_AlignExposures(), src.as_raw__InputArray(), dst.as_raw_VectorOfMat(), times.as_raw__InputArray(), response.as_raw__InputArray()) }.into_result()
    }
    
}

// Generating impl for trait crate::photo::AlignMTB
/// This algorithm converts images to median threshold bitmaps (1 for pixels brighter than median
/// luminance and 0 otherwise) and than aligns the resulting bitmaps using bit operations.
///
/// It is invariant to exposure, so exposure values and camera response are not necessary.
///
/// In this implementation new image regions are filled with zeros.
///
/// For more information see [GW03](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_GW03) .
pub trait AlignMTB: crate::photo::AlignExposures {
    fn as_raw_AlignMTB(&self) -> *mut c_void;
    fn process_with_response(&mut self, src: &dyn core::ToInputArray, dst: &mut types::VectorOfMat, times: &dyn core::ToInputArray, response: &dyn core::ToInputArray) -> Result<()> {
        input_array_arg!(src);
        input_array_arg!(times);
        input_array_arg!(response);
        unsafe { sys::cv_AlignMTB_process__InputArray_VectorOfMat__InputArray__InputArray(self.as_raw_AlignMTB(), src.as_raw__InputArray(), dst.as_raw_VectorOfMat(), times.as_raw__InputArray(), response.as_raw__InputArray()) }.into_result()
    }
    
    /// Short version of process, that doesn't take extra arguments.
    ///
    /// ## Parameters
    /// * src: vector of input images
    /// * dst: vector of aligned images
    fn process(&mut self, src: &dyn core::ToInputArray, dst: &mut types::VectorOfMat) -> Result<()> {
        input_array_arg!(src);
        unsafe { sys::cv_AlignMTB_process__InputArray_VectorOfMat(self.as_raw_AlignMTB(), src.as_raw__InputArray(), dst.as_raw_VectorOfMat()) }.into_result()
    }
    
    /// Calculates shift between two images, i. e. how to shift the second image to correspond it with the
    /// first.
    ///
    /// ## Parameters
    /// * img0: first image
    /// * img1: second image
    fn calculate_shift(&mut self, img0: &dyn core::ToInputArray, img1: &dyn core::ToInputArray) -> Result<core::Point> {
        input_array_arg!(img0);
        input_array_arg!(img1);
        unsafe { sys::cv_AlignMTB_calculateShift__InputArray__InputArray(self.as_raw_AlignMTB(), img0.as_raw__InputArray(), img1.as_raw__InputArray()) }.into_result()
    }
    
    /// Helper function, that shift Mat filling new regions with zeros.
    ///
    /// ## Parameters
    /// * src: input image
    /// * dst: result image
    /// * shift: shift value
    fn shift_mat(&mut self, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, shift: core::Point) -> Result<()> {
        input_array_arg!(src);
        output_array_arg!(dst);
        unsafe { sys::cv_AlignMTB_shiftMat__InputArray__OutputArray_Point(self.as_raw_AlignMTB(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), shift) }.into_result()
    }
    
    /// Computes median threshold and exclude bitmaps of given image.
    ///
    /// ## Parameters
    /// * img: input image
    /// * tb: median threshold bitmap
    /// * eb: exclude bitmap
    fn compute_bitmaps(&mut self, img: &dyn core::ToInputArray, tb: &mut dyn core::ToOutputArray, eb: &mut dyn core::ToOutputArray) -> Result<()> {
        input_array_arg!(img);
        output_array_arg!(tb);
        output_array_arg!(eb);
        unsafe { sys::cv_AlignMTB_computeBitmaps__InputArray__OutputArray__OutputArray(self.as_raw_AlignMTB(), img.as_raw__InputArray(), tb.as_raw__OutputArray(), eb.as_raw__OutputArray()) }.into_result()
    }
    
    fn get_max_bits(&self) -> Result<i32> {
        unsafe { sys::cv_AlignMTB_getMaxBits_const(self.as_raw_AlignMTB()) }.into_result()
    }
    
    fn set_max_bits(&mut self, max_bits: i32) -> Result<()> {
        unsafe { sys::cv_AlignMTB_setMaxBits_int(self.as_raw_AlignMTB(), max_bits) }.into_result()
    }
    
    fn get_exclude_range(&self) -> Result<i32> {
        unsafe { sys::cv_AlignMTB_getExcludeRange_const(self.as_raw_AlignMTB()) }.into_result()
    }
    
    fn set_exclude_range(&mut self, exclude_range: i32) -> Result<()> {
        unsafe { sys::cv_AlignMTB_setExcludeRange_int(self.as_raw_AlignMTB(), exclude_range) }.into_result()
    }
    
    fn get_cut(&self) -> Result<bool> {
        unsafe { sys::cv_AlignMTB_getCut_const(self.as_raw_AlignMTB()) }.into_result()
    }
    
    fn set_cut(&mut self, value: bool) -> Result<()> {
        unsafe { sys::cv_AlignMTB_setCut_bool(self.as_raw_AlignMTB(), value) }.into_result()
    }
    
}

// Generating impl for trait crate::photo::CalibrateCRF
/// The base class for camera response calibration algorithms.
pub trait CalibrateCRF: core::AlgorithmTrait {
    fn as_raw_CalibrateCRF(&self) -> *mut c_void;
    /// Recovers inverse camera response.
    ///
    /// ## Parameters
    /// * src: vector of input images
    /// * dst: 256x1 matrix with inverse camera response function
    /// * times: vector of exposure time values for each image
    fn process(&mut self, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, times: &dyn core::ToInputArray) -> Result<()> {
        input_array_arg!(src);
        output_array_arg!(dst);
        input_array_arg!(times);
        unsafe { sys::cv_CalibrateCRF_process__InputArray__OutputArray__InputArray(self.as_raw_CalibrateCRF(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), times.as_raw__InputArray()) }.into_result()
    }
    
}

// Generating impl for trait crate::photo::CalibrateDebevec
/// Inverse camera response function is extracted for each brightness value by minimizing an objective
/// function as linear system. Objective function is constructed using pixel values on the same position
/// in all images, extra term is added to make the result smoother.
///
/// For more information see [DM97](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_DM97) .
pub trait CalibrateDebevec: crate::photo::CalibrateCRF {
    fn as_raw_CalibrateDebevec(&self) -> *mut c_void;
    fn get_lambda(&self) -> Result<f32> {
        unsafe { sys::cv_CalibrateDebevec_getLambda_const(self.as_raw_CalibrateDebevec()) }.into_result()
    }
    
    fn set_lambda(&mut self, lambda: f32) -> Result<()> {
        unsafe { sys::cv_CalibrateDebevec_setLambda_float(self.as_raw_CalibrateDebevec(), lambda) }.into_result()
    }
    
    fn get_samples(&self) -> Result<i32> {
        unsafe { sys::cv_CalibrateDebevec_getSamples_const(self.as_raw_CalibrateDebevec()) }.into_result()
    }
    
    fn set_samples(&mut self, samples: i32) -> Result<()> {
        unsafe { sys::cv_CalibrateDebevec_setSamples_int(self.as_raw_CalibrateDebevec(), samples) }.into_result()
    }
    
    fn get_random(&self) -> Result<bool> {
        unsafe { sys::cv_CalibrateDebevec_getRandom_const(self.as_raw_CalibrateDebevec()) }.into_result()
    }
    
    fn set_random(&mut self, random: bool) -> Result<()> {
        unsafe { sys::cv_CalibrateDebevec_setRandom_bool(self.as_raw_CalibrateDebevec(), random) }.into_result()
    }
    
}

// Generating impl for trait crate::photo::CalibrateRobertson
/// Inverse camera response function is extracted for each brightness value by minimizing an objective
/// function as linear system. This algorithm uses all image pixels.
///
/// For more information see [RB99](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_RB99) .
pub trait CalibrateRobertson: crate::photo::CalibrateCRF {
    fn as_raw_CalibrateRobertson(&self) -> *mut c_void;
    fn get_max_iter(&self) -> Result<i32> {
        unsafe { sys::cv_CalibrateRobertson_getMaxIter_const(self.as_raw_CalibrateRobertson()) }.into_result()
    }
    
    fn set_max_iter(&mut self, max_iter: i32) -> Result<()> {
        unsafe { sys::cv_CalibrateRobertson_setMaxIter_int(self.as_raw_CalibrateRobertson(), max_iter) }.into_result()
    }
    
    fn get_threshold(&self) -> Result<f32> {
        unsafe { sys::cv_CalibrateRobertson_getThreshold_const(self.as_raw_CalibrateRobertson()) }.into_result()
    }
    
    fn set_threshold(&mut self, threshold: f32) -> Result<()> {
        unsafe { sys::cv_CalibrateRobertson_setThreshold_float(self.as_raw_CalibrateRobertson(), threshold) }.into_result()
    }
    
    fn get_radiance(&self) -> Result<core::Mat> {
        unsafe { sys::cv_CalibrateRobertson_getRadiance_const(self.as_raw_CalibrateRobertson()) }.into_result().map(|ptr| core::Mat { ptr })
    }
    
}

// Generating impl for trait crate::photo::MergeDebevec
/// The resulting HDR image is calculated as weighted average of the exposures considering exposure
/// values and camera response.
///
/// For more information see [DM97](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_DM97) .
pub trait MergeDebevec: crate::photo::MergeExposures {
    fn as_raw_MergeDebevec(&self) -> *mut c_void;
    fn process_with_response(&mut self, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, times: &dyn core::ToInputArray, response: &dyn core::ToInputArray) -> Result<()> {
        input_array_arg!(src);
        output_array_arg!(dst);
        input_array_arg!(times);
        input_array_arg!(response);
        unsafe { sys::cv_MergeDebevec_process__InputArray__OutputArray__InputArray__InputArray(self.as_raw_MergeDebevec(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), times.as_raw__InputArray(), response.as_raw__InputArray()) }.into_result()
    }
    
    fn process(&mut self, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, times: &dyn core::ToInputArray) -> Result<()> {
        input_array_arg!(src);
        output_array_arg!(dst);
        input_array_arg!(times);
        unsafe { sys::cv_MergeDebevec_process__InputArray__OutputArray__InputArray(self.as_raw_MergeDebevec(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), times.as_raw__InputArray()) }.into_result()
    }
    
}

// Generating impl for trait crate::photo::MergeExposures
/// The base class algorithms that can merge exposure sequence to a single image.
pub trait MergeExposures: core::AlgorithmTrait {
    fn as_raw_MergeExposures(&self) -> *mut c_void;
    /// Merges images.
    ///
    /// ## Parameters
    /// * src: vector of input images
    /// * dst: result image
    /// * times: vector of exposure time values for each image
    /// * response: 256x1 matrix with inverse camera response function for each pixel value, it should
    /// have the same number of channels as images.
    fn process(&mut self, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, times: &dyn core::ToInputArray, response: &dyn core::ToInputArray) -> Result<()> {
        input_array_arg!(src);
        output_array_arg!(dst);
        input_array_arg!(times);
        input_array_arg!(response);
        unsafe { sys::cv_MergeExposures_process__InputArray__OutputArray__InputArray__InputArray(self.as_raw_MergeExposures(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), times.as_raw__InputArray(), response.as_raw__InputArray()) }.into_result()
    }
    
}

// Generating impl for trait crate::photo::MergeMertens
/// Pixels are weighted using contrast, saturation and well-exposedness measures, than images are
/// combined using laplacian pyramids.
///
/// The resulting image weight is constructed as weighted average of contrast, saturation and
/// well-exposedness measures.
///
/// The resulting image doesn't require tonemapping and can be converted to 8-bit image by multiplying
/// by 255, but it's recommended to apply gamma correction and/or linear tonemapping.
///
/// For more information see [MK07](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_MK07) .
pub trait MergeMertens: crate::photo::MergeExposures {
    fn as_raw_MergeMertens(&self) -> *mut c_void;
    fn process_with_response(&mut self, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, times: &dyn core::ToInputArray, response: &dyn core::ToInputArray) -> Result<()> {
        input_array_arg!(src);
        output_array_arg!(dst);
        input_array_arg!(times);
        input_array_arg!(response);
        unsafe { sys::cv_MergeMertens_process__InputArray__OutputArray__InputArray__InputArray(self.as_raw_MergeMertens(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), times.as_raw__InputArray(), response.as_raw__InputArray()) }.into_result()
    }
    
    /// Short version of process, that doesn't take extra arguments.
    ///
    /// ## Parameters
    /// * src: vector of input images
    /// * dst: result image
    fn process(&mut self, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray) -> Result<()> {
        input_array_arg!(src);
        output_array_arg!(dst);
        unsafe { sys::cv_MergeMertens_process__InputArray__OutputArray(self.as_raw_MergeMertens(), src.as_raw__InputArray(), dst.as_raw__OutputArray()) }.into_result()
    }
    
    fn get_contrast_weight(&self) -> Result<f32> {
        unsafe { sys::cv_MergeMertens_getContrastWeight_const(self.as_raw_MergeMertens()) }.into_result()
    }
    
    fn set_contrast_weight(&mut self, contrast_weiht: f32) -> Result<()> {
        unsafe { sys::cv_MergeMertens_setContrastWeight_float(self.as_raw_MergeMertens(), contrast_weiht) }.into_result()
    }
    
    fn get_saturation_weight(&self) -> Result<f32> {
        unsafe { sys::cv_MergeMertens_getSaturationWeight_const(self.as_raw_MergeMertens()) }.into_result()
    }
    
    fn set_saturation_weight(&mut self, saturation_weight: f32) -> Result<()> {
        unsafe { sys::cv_MergeMertens_setSaturationWeight_float(self.as_raw_MergeMertens(), saturation_weight) }.into_result()
    }
    
    fn get_exposure_weight(&self) -> Result<f32> {
        unsafe { sys::cv_MergeMertens_getExposureWeight_const(self.as_raw_MergeMertens()) }.into_result()
    }
    
    fn set_exposure_weight(&mut self, exposure_weight: f32) -> Result<()> {
        unsafe { sys::cv_MergeMertens_setExposureWeight_float(self.as_raw_MergeMertens(), exposure_weight) }.into_result()
    }
    
}

// Generating impl for trait crate::photo::MergeRobertson
/// The resulting HDR image is calculated as weighted average of the exposures considering exposure
/// values and camera response.
///
/// For more information see [RB99](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_RB99) .
pub trait MergeRobertson: crate::photo::MergeExposures {
    fn as_raw_MergeRobertson(&self) -> *mut c_void;
    fn process_with_response(&mut self, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, times: &dyn core::ToInputArray, response: &dyn core::ToInputArray) -> Result<()> {
        input_array_arg!(src);
        output_array_arg!(dst);
        input_array_arg!(times);
        input_array_arg!(response);
        unsafe { sys::cv_MergeRobertson_process__InputArray__OutputArray__InputArray__InputArray(self.as_raw_MergeRobertson(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), times.as_raw__InputArray(), response.as_raw__InputArray()) }.into_result()
    }
    
    fn process(&mut self, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, times: &dyn core::ToInputArray) -> Result<()> {
        input_array_arg!(src);
        output_array_arg!(dst);
        input_array_arg!(times);
        unsafe { sys::cv_MergeRobertson_process__InputArray__OutputArray__InputArray(self.as_raw_MergeRobertson(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), times.as_raw__InputArray()) }.into_result()
    }
    
}

// Generating impl for trait crate::photo::Tonemap
/// Base class for tonemapping algorithms - tools that are used to map HDR image to 8-bit range.
pub trait Tonemap: core::AlgorithmTrait {
    fn as_raw_Tonemap(&self) -> *mut c_void;
    /// Tonemaps image
    ///
    /// ## Parameters
    /// * src: source image - CV_32FC3 Mat (float 32 bits 3 channels)
    /// * dst: destination image - CV_32FC3 Mat with values in [0, 1] range
    fn process(&mut self, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray) -> Result<()> {
        input_array_arg!(src);
        output_array_arg!(dst);
        unsafe { sys::cv_Tonemap_process__InputArray__OutputArray(self.as_raw_Tonemap(), src.as_raw__InputArray(), dst.as_raw__OutputArray()) }.into_result()
    }
    
    fn get_gamma(&self) -> Result<f32> {
        unsafe { sys::cv_Tonemap_getGamma_const(self.as_raw_Tonemap()) }.into_result()
    }
    
    fn set_gamma(&mut self, gamma: f32) -> Result<()> {
        unsafe { sys::cv_Tonemap_setGamma_float(self.as_raw_Tonemap(), gamma) }.into_result()
    }
    
}

// Generating impl for trait crate::photo::TonemapDrago
/// Adaptive logarithmic mapping is a fast global tonemapping algorithm that scales the image in
/// logarithmic domain.
///
/// Since it's a global operator the same function is applied to all the pixels, it is controlled by the
/// bias parameter.
///
/// Optional saturation enhancement is possible as described in [FL02](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_FL02) .
///
/// For more information see [DM03](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_DM03) .
pub trait TonemapDrago: crate::photo::Tonemap {
    fn as_raw_TonemapDrago(&self) -> *mut c_void;
    fn get_saturation(&self) -> Result<f32> {
        unsafe { sys::cv_TonemapDrago_getSaturation_const(self.as_raw_TonemapDrago()) }.into_result()
    }
    
    fn set_saturation(&mut self, saturation: f32) -> Result<()> {
        unsafe { sys::cv_TonemapDrago_setSaturation_float(self.as_raw_TonemapDrago(), saturation) }.into_result()
    }
    
    fn get_bias(&self) -> Result<f32> {
        unsafe { sys::cv_TonemapDrago_getBias_const(self.as_raw_TonemapDrago()) }.into_result()
    }
    
    fn set_bias(&mut self, bias: f32) -> Result<()> {
        unsafe { sys::cv_TonemapDrago_setBias_float(self.as_raw_TonemapDrago(), bias) }.into_result()
    }
    
}

// Generating impl for trait crate::photo::TonemapMantiuk
/// This algorithm transforms image to contrast using gradients on all levels of gaussian pyramid,
/// transforms contrast values to HVS response and scales the response. After this the image is
/// reconstructed from new contrast values.
///
/// For more information see [MM06](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_MM06) .
pub trait TonemapMantiuk: crate::photo::Tonemap {
    fn as_raw_TonemapMantiuk(&self) -> *mut c_void;
    fn get_scale(&self) -> Result<f32> {
        unsafe { sys::cv_TonemapMantiuk_getScale_const(self.as_raw_TonemapMantiuk()) }.into_result()
    }
    
    fn set_scale(&mut self, scale: f32) -> Result<()> {
        unsafe { sys::cv_TonemapMantiuk_setScale_float(self.as_raw_TonemapMantiuk(), scale) }.into_result()
    }
    
    fn get_saturation(&self) -> Result<f32> {
        unsafe { sys::cv_TonemapMantiuk_getSaturation_const(self.as_raw_TonemapMantiuk()) }.into_result()
    }
    
    fn set_saturation(&mut self, saturation: f32) -> Result<()> {
        unsafe { sys::cv_TonemapMantiuk_setSaturation_float(self.as_raw_TonemapMantiuk(), saturation) }.into_result()
    }
    
}

// Generating impl for trait crate::photo::TonemapReinhard
/// This is a global tonemapping operator that models human visual system.
///
/// Mapping function is controlled by adaptation parameter, that is computed using light adaptation and
/// color adaptation.
///
/// For more information see [RD05](https://docs.opencv.org/4.2.0/d0/de3/citelist.html#CITEREF_RD05) .
pub trait TonemapReinhard: crate::photo::Tonemap {
    fn as_raw_TonemapReinhard(&self) -> *mut c_void;
    fn get_intensity(&self) -> Result<f32> {
        unsafe { sys::cv_TonemapReinhard_getIntensity_const(self.as_raw_TonemapReinhard()) }.into_result()
    }
    
    fn set_intensity(&mut self, intensity: f32) -> Result<()> {
        unsafe { sys::cv_TonemapReinhard_setIntensity_float(self.as_raw_TonemapReinhard(), intensity) }.into_result()
    }
    
    fn get_light_adaptation(&self) -> Result<f32> {
        unsafe { sys::cv_TonemapReinhard_getLightAdaptation_const(self.as_raw_TonemapReinhard()) }.into_result()
    }
    
    fn set_light_adaptation(&mut self, light_adapt: f32) -> Result<()> {
        unsafe { sys::cv_TonemapReinhard_setLightAdaptation_float(self.as_raw_TonemapReinhard(), light_adapt) }.into_result()
    }
    
    fn get_color_adaptation(&self) -> Result<f32> {
        unsafe { sys::cv_TonemapReinhard_getColorAdaptation_const(self.as_raw_TonemapReinhard()) }.into_result()
    }
    
    fn set_color_adaptation(&mut self, color_adapt: f32) -> Result<()> {
        unsafe { sys::cv_TonemapReinhard_setColorAdaptation_float(self.as_raw_TonemapReinhard(), color_adapt) }.into_result()
    }
    
}