[][src]Module opencv::objdetect

Object Detection

Haar Feature-based Cascade Classifier for Object Detection

The object detector described below has been initially proposed by Paul Viola Viola01 and improved by Rainer Lienhart Lienhart02 .

First, a classifier (namely a cascade of boosted classifiers working with haar-like features) is trained with a few hundred sample views of a particular object (i.e., a face or a car), called positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary images of the same size.

After a classifier is trained, it can be applied to a region of interest (of the same size as used during the training) in an input image. The classifier outputs a "1" if the region is likely to show the object (i.e., face/car), and "0" otherwise. To search for the object in the whole image one can move the search window across the image and check every location using the classifier. The classifier is designed so that it can be easily "resized" in order to be able to find the objects of interest at different sizes, which is more efficient than resizing the image itself. So, to find an object of an unknown size in the image the scan procedure should be done several times at different scales.

The word "cascade" in the classifier name means that the resultant classifier consists of several simpler classifiers (stages) that are applied subsequently to a region of interest until at some stage the candidate is rejected or all the stages are passed. The word "boosted" means that the classifiers at every stage of the cascade are complex themselves and they are built out of basic classifiers using one of four different boosting techniques (weighted voting). Currently Discrete Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic classifiers, and are calculated as described below. The current algorithm uses the following Haar-like features:

image

The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within the region of interest and the scale (this scale is not the same as the scale used at the detection stage, though these two scales are multiplied). For example, in the case of the third line feature (2c) the response is calculated as the difference between the sum of image pixels under the rectangle covering the whole feature (including the two white stripes and the black stripe in the middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to compensate for the differences in the size of areas. The sums of pixel values over a rectangular regions are calculated rapidly using integral images (see below and the integral description).

To see the object detector at work, have a look at the facedetect demo: https://github.com/opencv/opencv/tree/master/samples/cpp/dbt_face_detection.cpp

The following reference is for the detection part only. There is a separate application called opencv_traincascade that can train a cascade of boosted classifiers from a set of samples.

Note: In the new C++ interface it is also possible to use LBP (local binary pattern) features in addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at http://research.microsoft.com/en-us/um/people/viola/Pubs/Detect/violaJones_CVPR2001.pdf

C API

Structs

CascadeClassifier

Cascade classifier class for object detection.

DetectionBasedTracker
DetectionBasedTracker_ExtObject
DetectionBasedTracker_Parameters
DetectionROI

struct for detection region of interest (ROI)

HOGDescriptor

Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector.

QRCodeDetector
SimilarRects

class for grouping object candidates, detected by Cascade Classifier, HOG etc. instance of the class is to be passed to cv::partition (see cxoperations.hpp)

Enums

DetectionBasedTracker_ObjectStatus
HOGDescriptor_HistogramNormType

Constants

CASCADE_DO_CANNY_PRUNING
CASCADE_DO_ROUGH_SEARCH
CASCADE_FIND_BIGGEST_OBJECT
CASCADE_SCALE_IMAGE
DetectionBasedTracker_DETECTED
DetectionBasedTracker_DETECTED_NOT_SHOWN_YET
DetectionBasedTracker_DETECTED_TEMPORARY_LOST
DetectionBasedTracker_WRONG_OBJECT
HOGDescriptor_DEFAULT_NLEVELS

Default nlevels value.

HOGDescriptor_DESCR_FORMAT_COL_BY_COL
HOGDescriptor_DESCR_FORMAT_ROW_BY_ROW
HOGDescriptor_L2Hys

Default histogramNormType

Traits

BaseCascadeClassifier
BaseCascadeClassifier_MaskGenerator
DetectionBasedTracker_IDetector

Functions

create_face_detection_mask_generator
group_rectangles

Groups the object candidate rectangles.

group_rectangles_levels

Groups the object candidate rectangles.

group_rectangles_levelweights

Groups the object candidate rectangles.

group_rectangles_meanshift

C++ default parameters

group_rectangles_weights

Groups the object candidate rectangles.