1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
//! # Video Analysis
//! # Motion Analysis
//! # Object Tracking
//! # C API
use std::os::raw::{c_char, c_void};
use libc::{ptrdiff_t, size_t};
use crate::{Error, Result, core, sys, types};
use crate::core::{_InputArrayTrait, _OutputArrayTrait};

pub const MOTION_AFFINE: i32 = 2;
pub const MOTION_EUCLIDEAN: i32 = 1;
pub const MOTION_HOMOGRAPHY: i32 = 3;
pub const MOTION_TRANSLATION: i32 = 0;
pub const OPTFLOW_FARNEBACK_GAUSSIAN: i32 = 256;
pub const OPTFLOW_LK_GET_MIN_EIGENVALS: i32 = 8;
pub const OPTFLOW_USE_INITIAL_FLOW: i32 = 4;

/// Finds an object center, size, and orientation.
///
/// ## Parameters
/// * probImage: Back projection of the object histogram. See calcBackProject.
/// * window: Initial search window.
/// * criteria: Stop criteria for the underlying meanShift.
/// returns
/// (in old interfaces) Number of iterations CAMSHIFT took to converge
/// The function implements the CAMSHIFT object tracking algorithm [Bradski98](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_Bradski98) . First, it finds an
/// object center using meanShift and then adjusts the window size and finds the optimal rotation. The
/// function returns the rotated rectangle structure that includes the object position, size, and
/// orientation. The next position of the search window can be obtained with RotatedRect::boundingRect()
///
/// See the OpenCV sample camshiftdemo.c that tracks colored objects.
///
///
/// Note:
/// *   (Python) A sample explaining the camshift tracking algorithm can be found at
/// opencv_source_code/samples/python/camshift.py
pub fn cam_shift(prob_image: &dyn core::ToInputArray, window: &mut core::Rect, criteria: &core::TermCriteria) -> Result<core::RotatedRect> {
    input_array_arg!(prob_image);
    unsafe { sys::cv_CamShift__InputArray_Rect_TermCriteria(prob_image.as_raw__InputArray(), window, criteria.as_raw_TermCriteria()) }.into_result().map(|ptr| core::RotatedRect { ptr })
}

/// Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
///
/// ## Parameters
/// * img: 8-bit input image.
/// * pyramid: output pyramid.
/// * winSize: window size of optical flow algorithm. Must be not less than winSize argument of
/// calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
/// * maxLevel: 0-based maximal pyramid level number.
/// * withDerivatives: set to precompute gradients for the every pyramid level. If pyramid is
/// constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
/// * pyrBorder: the border mode for pyramid layers.
/// * derivBorder: the border mode for gradients.
/// * tryReuseInputImage: put ROI of input image into the pyramid if possible. You can pass false
/// to force data copying.
/// ## Returns
/// number of levels in constructed pyramid. Can be less than maxLevel.
///
/// ## C++ default parameters
/// * with_derivatives: true
/// * pyr_border: BORDER_REFLECT_101
/// * deriv_border: BORDER_CONSTANT
/// * try_reuse_input_image: true
pub fn build_optical_flow_pyramid(img: &dyn core::ToInputArray, pyramid: &mut dyn core::ToOutputArray, win_size: core::Size, max_level: i32, with_derivatives: bool, pyr_border: i32, deriv_border: i32, try_reuse_input_image: bool) -> Result<i32> {
    input_array_arg!(img);
    output_array_arg!(pyramid);
    unsafe { sys::cv_buildOpticalFlowPyramid__InputArray__OutputArray_Size_int_bool_int_int_bool(img.as_raw__InputArray(), pyramid.as_raw__OutputArray(), win_size, max_level, with_derivatives, pyr_border, deriv_border, try_reuse_input_image) }.into_result()
}

/// Computes a dense optical flow using the Gunnar Farneback's algorithm.
///
/// ## Parameters
/// * prev: first 8-bit single-channel input image.
/// * next: second input image of the same size and the same type as prev.
/// * flow: computed flow image that has the same size as prev and type CV_32FC2.
/// * pyr_scale: parameter, specifying the image scale (\<1) to build pyramids for each image;
/// pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous
/// one.
/// * levels: number of pyramid layers including the initial image; levels=1 means that no extra
/// layers are created and only the original images are used.
/// * winsize: averaging window size; larger values increase the algorithm robustness to image
/// noise and give more chances for fast motion detection, but yield more blurred motion field.
/// * iterations: number of iterations the algorithm does at each pyramid level.
/// * poly_n: size of the pixel neighborhood used to find polynomial expansion in each pixel;
/// larger values mean that the image will be approximated with smoother surfaces, yielding more
/// robust algorithm and more blurred motion field, typically poly_n =5 or 7.
/// * poly_sigma: standard deviation of the Gaussian that is used to smooth derivatives used as a
/// basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a
/// good value would be poly_sigma=1.5.
/// * flags: operation flags that can be a combination of the following:
/// *   **OPTFLOW_USE_INITIAL_FLOW** uses the input flow as an initial flow approximation.
/// *   **OPTFLOW_FARNEBACK_GAUSSIAN** uses the Gaussian ![inline formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7Bwinsize%7D%5Ctimes%5Ctexttt%7Bwinsize%7D)
/// filter instead of a box filter of the same size for optical flow estimation; usually, this
/// option gives z more accurate flow than with a box filter, at the cost of lower speed;
/// normally, winsize for a Gaussian window should be set to a larger value to achieve the same
/// level of robustness.
///
/// The function finds an optical flow for each prev pixel using the [Farneback2003](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_Farneback2003) algorithm so that
///
/// ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7Bprev%7D%20%28y%2Cx%29%20%20%5Csim%20%5Ctexttt%7Bnext%7D%20%28%20y%20%2B%20%5Ctexttt%7Bflow%7D%20%28y%2Cx%29%5B1%5D%2C%20%20x%20%2B%20%5Ctexttt%7Bflow%7D%20%28y%2Cx%29%5B0%5D%29)
///
///
/// Note:
///
/// *   An example using the optical flow algorithm described by Gunnar Farneback can be found at
/// opencv_source_code/samples/cpp/fback.cpp
/// *   (Python) An example using the optical flow algorithm described by Gunnar Farneback can be
/// found at opencv_source_code/samples/python/opt_flow.py
pub fn calc_optical_flow_farneback(prev: &dyn core::ToInputArray, next: &dyn core::ToInputArray, flow: &mut dyn core::ToInputOutputArray, pyr_scale: f64, levels: i32, winsize: i32, iterations: i32, poly_n: i32, poly_sigma: f64, flags: i32) -> Result<()> {
    input_array_arg!(prev);
    input_array_arg!(next);
    input_output_array_arg!(flow);
    unsafe { sys::cv_calcOpticalFlowFarneback__InputArray__InputArray__InputOutputArray_double_int_int_int_int_double_int(prev.as_raw__InputArray(), next.as_raw__InputArray(), flow.as_raw__InputOutputArray(), pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags) }.into_result()
}

/// Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
/// pyramids.
///
/// ## Parameters
/// * prevImg: first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
/// * nextImg: second input image or pyramid of the same size and the same type as prevImg.
/// * prevPts: vector of 2D points for which the flow needs to be found; point coordinates must be
/// single-precision floating-point numbers.
/// * nextPts: output vector of 2D points (with single-precision floating-point coordinates)
/// containing the calculated new positions of input features in the second image; when
/// OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
/// * status: output status vector (of unsigned chars); each element of the vector is set to 1 if
/// the flow for the corresponding features has been found, otherwise, it is set to 0.
/// * err: output vector of errors; each element of the vector is set to an error for the
/// corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
/// found then the error is not defined (use the status parameter to find such cases).
/// * winSize: size of the search window at each pyramid level.
/// * maxLevel: 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
/// level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
/// algorithm will use as many levels as pyramids have but no more than maxLevel.
/// * criteria: parameter, specifying the termination criteria of the iterative search algorithm
/// (after the specified maximum number of iterations criteria.maxCount or when the search window
/// moves by less than criteria.epsilon.
/// * flags: operation flags:
/// *   **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
/// not set, then prevPts is copied to nextPts and is considered the initial estimate.
/// *   **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
/// minEigThreshold description); if the flag is not set, then L1 distance between patches
/// around the original and a moved point, divided by number of pixels in a window, is used as a
/// error measure.
/// * minEigThreshold: the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
/// optical flow equations (this matrix is called a spatial gradient matrix in [Bouguet00](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_Bouguet00)), divided
/// by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
/// feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
/// performance boost.
///
/// The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
/// [Bouguet00](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_Bouguet00) . The function is parallelized with the TBB library.
///
///
/// Note:
///
/// *   An example using the Lucas-Kanade optical flow algorithm can be found at
/// opencv_source_code/samples/cpp/lkdemo.cpp
/// *   (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
/// opencv_source_code/samples/python/lk_track.py
/// *   (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
/// opencv_source_code/samples/python/lk_homography.py
///
/// ## C++ default parameters
/// * win_size: Size(21,21)
/// * max_level: 3
/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01)
/// * flags: 0
/// * min_eig_threshold: 1e-4
pub fn calc_optical_flow_pyr_lk(prev_img: &dyn core::ToInputArray, next_img: &dyn core::ToInputArray, prev_pts: &dyn core::ToInputArray, next_pts: &mut dyn core::ToInputOutputArray, status: &mut dyn core::ToOutputArray, err: &mut dyn core::ToOutputArray, win_size: core::Size, max_level: i32, criteria: &core::TermCriteria, flags: i32, min_eig_threshold: f64) -> Result<()> {
    input_array_arg!(prev_img);
    input_array_arg!(next_img);
    input_array_arg!(prev_pts);
    input_output_array_arg!(next_pts);
    output_array_arg!(status);
    output_array_arg!(err);
    unsafe { sys::cv_calcOpticalFlowPyrLK__InputArray__InputArray__InputArray__InputOutputArray__OutputArray__OutputArray_Size_int_TermCriteria_int_double(prev_img.as_raw__InputArray(), next_img.as_raw__InputArray(), prev_pts.as_raw__InputArray(), next_pts.as_raw__InputOutputArray(), status.as_raw__OutputArray(), err.as_raw__OutputArray(), win_size, max_level, criteria.as_raw_TermCriteria(), flags, min_eig_threshold) }.into_result()
}

/// Computes the Enhanced Correlation Coefficient value between two images [EP08](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_EP08) .
///
/// ## Parameters
/// * templateImage: single-channel template image; CV_8U or CV_32F array.
/// * inputImage: single-channel input image to be warped to provide an image similar to
/// templateImage, same type as templateImage.
/// * inputMask: An optional mask to indicate valid values of inputImage.
///
/// ## See also
/// findTransformECC
///
/// ## C++ default parameters
/// * input_mask: noArray()
pub fn compute_ecc(template_image: &dyn core::ToInputArray, input_image: &dyn core::ToInputArray, input_mask: &dyn core::ToInputArray) -> Result<f64> {
    input_array_arg!(template_image);
    input_array_arg!(input_image);
    input_array_arg!(input_mask);
    unsafe { sys::cv_computeECC__InputArray__InputArray__InputArray(template_image.as_raw__InputArray(), input_image.as_raw__InputArray(), input_mask.as_raw__InputArray()) }.into_result()
}

/// Creates KNN Background Subtractor
///
/// ## Parameters
/// * history: Length of the history.
/// * dist2Threshold: Threshold on the squared distance between the pixel and the sample to decide
/// whether a pixel is close to that sample. This parameter does not affect the background update.
/// * detectShadows: If true, the algorithm will detect shadows and mark them. It decreases the
/// speed a bit, so if you do not need this feature, set the parameter to false.
///
/// ## C++ default parameters
/// * history: 500
/// * dist2_threshold: 400.0
/// * detect_shadows: true
pub fn create_background_subtractor_knn(history: i32, dist2_threshold: f64, detect_shadows: bool) -> Result<types::PtrOfBackgroundSubtractorKNN> {
    unsafe { sys::cv_createBackgroundSubtractorKNN_int_double_bool(history, dist2_threshold, detect_shadows) }.into_result().map(|ptr| types::PtrOfBackgroundSubtractorKNN { ptr })
}

/// Creates MOG2 Background Subtractor
///
/// ## Parameters
/// * history: Length of the history.
/// * varThreshold: Threshold on the squared Mahalanobis distance between the pixel and the model
/// to decide whether a pixel is well described by the background model. This parameter does not
/// affect the background update.
/// * detectShadows: If true, the algorithm will detect shadows and mark them. It decreases the
/// speed a bit, so if you do not need this feature, set the parameter to false.
///
/// ## C++ default parameters
/// * history: 500
/// * var_threshold: 16
/// * detect_shadows: true
pub fn create_background_subtractor_mog2(history: i32, var_threshold: f64, detect_shadows: bool) -> Result<types::PtrOfBackgroundSubtractorMOG2> {
    unsafe { sys::cv_createBackgroundSubtractorMOG2_int_double_bool(history, var_threshold, detect_shadows) }.into_result().map(|ptr| types::PtrOfBackgroundSubtractorMOG2 { ptr })
}

/// Creates instance of cv::DenseOpticalFlow
pub fn create_opt_flow_dual_tvl1() -> Result<types::PtrOfDualTVL1OpticalFlow> {
    unsafe { sys::cv_createOptFlow_DualTVL1() }.into_result().map(|ptr| types::PtrOfDualTVL1OpticalFlow { ptr })
}

/// Computes an optimal affine transformation between two 2D point sets.
///
/// ## Parameters
/// * src: First input 2D point set stored in std::vector or Mat, or an image stored in Mat.
/// * dst: Second input 2D point set of the same size and the same type as A, or another image.
/// * fullAffine: If true, the function finds an optimal affine transformation with no additional
/// restrictions (6 degrees of freedom). Otherwise, the class of transformations to choose from is
/// limited to combinations of translation, rotation, and uniform scaling (4 degrees of freedom).
///
/// The function finds an optimal affine transform *[A|b]* (a 2 x 3 floating-point matrix) that
/// approximates best the affine transformation between:
///
///   Two point sets
///   Two raster images. In this case, the function first finds some features in the src image and
/// finds the corresponding features in dst image. After that, the problem is reduced to the first
/// case.
/// In case of point sets, the problem is formulated as follows: you need to find a 2x2 matrix *A* and
/// 2x1 vector *b* so that:
///
/// ![block formula](https://latex.codecogs.com/png.latex?%5BA%5E%2A%7Cb%5E%2A%5D%20%3D%20arg%20%20%5Cmin%20_%7B%5BA%7Cb%5D%7D%20%20%5Csum%20_i%20%20%5C%7C%20%5Ctexttt%7Bdst%7D%5Bi%5D%20-%20A%20%7B%20%5Ctexttt%7Bsrc%7D%5Bi%5D%7D%5ET%20-%20b%20%20%5C%7C%20%5E2)
/// where src[i] and dst[i] are the i-th points in src and dst, respectively
/// ![inline formula](https://latex.codecogs.com/png.latex?%5BA%7Cb%5D) can be either arbitrary (when fullAffine=true ) or have a form of
/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20a_%7B11%7D%20%26%20a_%7B12%7D%20%26%20b_1%20%20%5C%5C%20-a_%7B12%7D%20%26%20a_%7B11%7D%20%26%20b_2%20%20%5Cend%7Bbmatrix%7D)
/// when fullAffine=false.
///
/// ## See also
/// estimateAffine2D, estimateAffinePartial2D, getAffineTransform, getPerspectiveTransform, findHomography
pub fn estimate_rigid_transform(src: &dyn core::ToInputArray, dst: &dyn core::ToInputArray, full_affine: bool) -> Result<core::Mat> {
    input_array_arg!(src);
    input_array_arg!(dst);
    unsafe { sys::cv_estimateRigidTransform__InputArray__InputArray_bool(src.as_raw__InputArray(), dst.as_raw__InputArray(), full_affine) }.into_result().map(|ptr| core::Mat { ptr })
}

pub fn estimate_rigid_transform_1(src: &dyn core::ToInputArray, dst: &dyn core::ToInputArray, full_affine: bool, ransac_max_iters: i32, ransac_good_ratio: f64, ransac_size0: i32) -> Result<core::Mat> {
    input_array_arg!(src);
    input_array_arg!(dst);
    unsafe { sys::cv_estimateRigidTransform__InputArray__InputArray_bool_int_double_int(src.as_raw__InputArray(), dst.as_raw__InputArray(), full_affine, ransac_max_iters, ransac_good_ratio, ransac_size0) }.into_result().map(|ptr| core::Mat { ptr })
}

/// Finds the geometric transform (warp) between two images in terms of the ECC criterion [EP08](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_EP08) .
///
/// ## Parameters
/// * templateImage: single-channel template image; CV_8U or CV_32F array.
/// * inputImage: single-channel input image which should be warped with the final warpMatrix in
/// order to provide an image similar to templateImage, same type as templateImage.
/// * warpMatrix: floating-point ![inline formula](https://latex.codecogs.com/png.latex?2%5Ctimes%203) or ![inline formula](https://latex.codecogs.com/png.latex?3%5Ctimes%203) mapping matrix (warp).
/// * motionType: parameter, specifying the type of motion:
/// *   **MOTION_TRANSLATION** sets a translational motion model; warpMatrix is ![inline formula](https://latex.codecogs.com/png.latex?2%5Ctimes%203) with
/// the first ![inline formula](https://latex.codecogs.com/png.latex?2%5Ctimes%202) part being the unity matrix and the rest two parameters being
/// estimated.
/// *   **MOTION_EUCLIDEAN** sets a Euclidean (rigid) transformation as motion model; three
/// parameters are estimated; warpMatrix is ![inline formula](https://latex.codecogs.com/png.latex?2%5Ctimes%203).
/// *   **MOTION_AFFINE** sets an affine motion model (DEFAULT); six parameters are estimated;
/// warpMatrix is ![inline formula](https://latex.codecogs.com/png.latex?2%5Ctimes%203).
/// *   **MOTION_HOMOGRAPHY** sets a homography as a motion model; eight parameters are
/// estimated;\`warpMatrix\` is ![inline formula](https://latex.codecogs.com/png.latex?3%5Ctimes%203).
/// * criteria: parameter, specifying the termination criteria of the ECC algorithm;
/// criteria.epsilon defines the threshold of the increment in the correlation coefficient between two
/// iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion).
/// Default values are shown in the declaration above.
/// * inputMask: An optional mask to indicate valid values of inputImage.
/// * gaussFiltSize: An optional value indicating size of gaussian blur filter; (DEFAULT: 5)
///
/// The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion
/// ([EP08](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_EP08)), that is
///
/// ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BwarpMatrix%7D%20%3D%20%5Ctexttt%7BwarpMatrix%7D%20%3D%20%5Carg%5Cmax_%7BW%7D%20%5Ctexttt%7BECC%7D%28%5Ctexttt%7BtemplateImage%7D%28x%2Cy%29%2C%5Ctexttt%7BinputImage%7D%28x%27%2Cy%27%29%29)
///
/// where
///
/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20x%27%20%5C%5C%20y%27%20%5Cend%7Bbmatrix%7D%20%3D%20W%20%5Ccdot%20%5Cbegin%7Bbmatrix%7D%20x%20%5C%5C%20y%20%5C%5C%201%20%5Cend%7Bbmatrix%7D)
///
/// (the equation holds with homogeneous coordinates for homography). It returns the final enhanced
/// correlation coefficient, that is the correlation coefficient between the template image and the
/// final warped input image. When a ![inline formula](https://latex.codecogs.com/png.latex?3%5Ctimes%203) matrix is given with motionType =0, 1 or 2, the third
/// row is ignored.
///
/// Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an
/// area-based alignment that builds on intensity similarities. In essence, the function updates the
/// initial transformation that roughly aligns the images. If this information is missing, the identity
/// warp (unity matrix) is used as an initialization. Note that if images undergo strong
/// displacements/rotations, an initial transformation that roughly aligns the images is necessary
/// (e.g., a simple euclidean/similarity transform that allows for the images showing the same image
/// content approximately). Use inverse warping in the second image to take an image close to the first
/// one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV
/// sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws
/// an exception if algorithm does not converges.
///
/// ## See also
/// computeECC, estimateAffine2D, estimateAffinePartial2D, findHomography
///
/// ## Overloaded parameters
///
/// ## C++ default parameters
/// * motion_type: MOTION_AFFINE
/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001)
/// * input_mask: noArray()
pub fn find_transform_ecc(template_image: &dyn core::ToInputArray, input_image: &dyn core::ToInputArray, warp_matrix: &mut dyn core::ToInputOutputArray, motion_type: i32, criteria: &core::TermCriteria, input_mask: &dyn core::ToInputArray) -> Result<f64> {
    input_array_arg!(template_image);
    input_array_arg!(input_image);
    input_output_array_arg!(warp_matrix);
    input_array_arg!(input_mask);
    unsafe { sys::cv_findTransformECC__InputArray__InputArray__InputOutputArray_int_TermCriteria__InputArray(template_image.as_raw__InputArray(), input_image.as_raw__InputArray(), warp_matrix.as_raw__InputOutputArray(), motion_type, criteria.as_raw_TermCriteria(), input_mask.as_raw__InputArray()) }.into_result()
}

/// Finds the geometric transform (warp) between two images in terms of the ECC criterion [EP08](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_EP08) .
///
/// ## Parameters
/// * templateImage: single-channel template image; CV_8U or CV_32F array.
/// * inputImage: single-channel input image which should be warped with the final warpMatrix in
/// order to provide an image similar to templateImage, same type as templateImage.
/// * warpMatrix: floating-point ![inline formula](https://latex.codecogs.com/png.latex?2%5Ctimes%203) or ![inline formula](https://latex.codecogs.com/png.latex?3%5Ctimes%203) mapping matrix (warp).
/// * motionType: parameter, specifying the type of motion:
/// *   **MOTION_TRANSLATION** sets a translational motion model; warpMatrix is ![inline formula](https://latex.codecogs.com/png.latex?2%5Ctimes%203) with
/// the first ![inline formula](https://latex.codecogs.com/png.latex?2%5Ctimes%202) part being the unity matrix and the rest two parameters being
/// estimated.
/// *   **MOTION_EUCLIDEAN** sets a Euclidean (rigid) transformation as motion model; three
/// parameters are estimated; warpMatrix is ![inline formula](https://latex.codecogs.com/png.latex?2%5Ctimes%203).
/// *   **MOTION_AFFINE** sets an affine motion model (DEFAULT); six parameters are estimated;
/// warpMatrix is ![inline formula](https://latex.codecogs.com/png.latex?2%5Ctimes%203).
/// *   **MOTION_HOMOGRAPHY** sets a homography as a motion model; eight parameters are
/// estimated;\`warpMatrix\` is ![inline formula](https://latex.codecogs.com/png.latex?3%5Ctimes%203).
/// * criteria: parameter, specifying the termination criteria of the ECC algorithm;
/// criteria.epsilon defines the threshold of the increment in the correlation coefficient between two
/// iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion).
/// Default values are shown in the declaration above.
/// * inputMask: An optional mask to indicate valid values of inputImage.
/// * gaussFiltSize: An optional value indicating size of gaussian blur filter; (DEFAULT: 5)
///
/// The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion
/// ([EP08](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_EP08)), that is
///
/// ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BwarpMatrix%7D%20%3D%20%5Ctexttt%7BwarpMatrix%7D%20%3D%20%5Carg%5Cmax_%7BW%7D%20%5Ctexttt%7BECC%7D%28%5Ctexttt%7BtemplateImage%7D%28x%2Cy%29%2C%5Ctexttt%7BinputImage%7D%28x%27%2Cy%27%29%29)
///
/// where
///
/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20x%27%20%5C%5C%20y%27%20%5Cend%7Bbmatrix%7D%20%3D%20W%20%5Ccdot%20%5Cbegin%7Bbmatrix%7D%20x%20%5C%5C%20y%20%5C%5C%201%20%5Cend%7Bbmatrix%7D)
///
/// (the equation holds with homogeneous coordinates for homography). It returns the final enhanced
/// correlation coefficient, that is the correlation coefficient between the template image and the
/// final warped input image. When a ![inline formula](https://latex.codecogs.com/png.latex?3%5Ctimes%203) matrix is given with motionType =0, 1 or 2, the third
/// row is ignored.
///
/// Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an
/// area-based alignment that builds on intensity similarities. In essence, the function updates the
/// initial transformation that roughly aligns the images. If this information is missing, the identity
/// warp (unity matrix) is used as an initialization. Note that if images undergo strong
/// displacements/rotations, an initial transformation that roughly aligns the images is necessary
/// (e.g., a simple euclidean/similarity transform that allows for the images showing the same image
/// content approximately). Use inverse warping in the second image to take an image close to the first
/// one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV
/// sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws
/// an exception if algorithm does not converges.
///
/// ## See also
/// computeECC, estimateAffine2D, estimateAffinePartial2D, findHomography
pub fn find_transform_ecc_1(template_image: &dyn core::ToInputArray, input_image: &dyn core::ToInputArray, warp_matrix: &mut dyn core::ToInputOutputArray, motion_type: i32, criteria: &core::TermCriteria, input_mask: &dyn core::ToInputArray, gauss_filt_size: i32) -> Result<f64> {
    input_array_arg!(template_image);
    input_array_arg!(input_image);
    input_output_array_arg!(warp_matrix);
    input_array_arg!(input_mask);
    unsafe { sys::cv_findTransformECC__InputArray__InputArray__InputOutputArray_int_TermCriteria__InputArray_int(template_image.as_raw__InputArray(), input_image.as_raw__InputArray(), warp_matrix.as_raw__InputOutputArray(), motion_type, criteria.as_raw_TermCriteria(), input_mask.as_raw__InputArray(), gauss_filt_size) }.into_result()
}

/// Finds an object on a back projection image.
///
/// ## Parameters
/// * probImage: Back projection of the object histogram. See calcBackProject for details.
/// * window: Initial search window.
/// * criteria: Stop criteria for the iterative search algorithm.
/// returns
/// :   Number of iterations CAMSHIFT took to converge.
/// The function implements the iterative object search algorithm. It takes the input back projection of
/// an object and the initial position. The mass center in window of the back projection image is
/// computed and the search window center shifts to the mass center. The procedure is repeated until the
/// specified number of iterations criteria.maxCount is done or until the window center shifts by less
/// than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search
/// window size or orientation do not change during the search. You can simply pass the output of
/// calcBackProject to this function. But better results can be obtained if you pre-filter the back
/// projection and remove the noise. For example, you can do this by retrieving connected components
/// with findContours , throwing away contours with small area ( contourArea ), and rendering the
/// remaining contours with drawContours.
pub fn mean_shift(prob_image: &dyn core::ToInputArray, window: &mut core::Rect, criteria: &core::TermCriteria) -> Result<i32> {
    input_array_arg!(prob_image);
    unsafe { sys::cv_meanShift__InputArray_Rect_TermCriteria(prob_image.as_raw__InputArray(), window, criteria.as_raw_TermCriteria()) }.into_result()
}

// Generating impl for trait crate::video::BackgroundSubtractor
/// Base class for background/foreground segmentation. :
///
/// The class is only used to define the common interface for the whole family of background/foreground
/// segmentation algorithms.
pub trait BackgroundSubtractor: core::AlgorithmTrait {
    #[inline(always)] fn as_raw_BackgroundSubtractor(&self) -> *mut c_void;
    /// Computes a foreground mask.
    ///
    /// ## Parameters
    /// * image: Next video frame.
    /// * fgmask: The output foreground mask as an 8-bit binary image.
    /// * learningRate: The value between 0 and 1 that indicates how fast the background model is
    /// learnt. Negative parameter value makes the algorithm to use some automatically chosen learning
    /// rate. 0 means that the background model is not updated at all, 1 means that the background model
    /// is completely reinitialized from the last frame.
    ///
    /// ## C++ default parameters
    /// * learning_rate: -1
    fn apply(&mut self, image: &dyn core::ToInputArray, fgmask: &mut dyn core::ToOutputArray, learning_rate: f64) -> Result<()> {
        input_array_arg!(image);
        output_array_arg!(fgmask);
        unsafe { sys::cv_BackgroundSubtractor_apply__InputArray__OutputArray_double(self.as_raw_BackgroundSubtractor(), image.as_raw__InputArray(), fgmask.as_raw__OutputArray(), learning_rate) }.into_result()
    }
    
    /// Computes a background image.
    ///
    /// ## Parameters
    /// * backgroundImage: The output background image.
    ///
    ///
    /// Note: Sometimes the background image can be very blurry, as it contain the average background
    /// statistics.
    fn get_background_image(&self, background_image: &mut dyn core::ToOutputArray) -> Result<()> {
        output_array_arg!(background_image);
        unsafe { sys::cv_BackgroundSubtractor_getBackgroundImage_const__OutputArray(self.as_raw_BackgroundSubtractor(), background_image.as_raw__OutputArray()) }.into_result()
    }
    
}

// Generating impl for trait crate::video::BackgroundSubtractorKNN
/// K-nearest neighbours - based Background/Foreground Segmentation Algorithm.
///
/// The class implements the K-nearest neighbours background subtraction described in [Zivkovic2006](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_Zivkovic2006) .
/// Very efficient if number of foreground pixels is low.
pub trait BackgroundSubtractorKNN: crate::video::BackgroundSubtractor {
    #[inline(always)] fn as_raw_BackgroundSubtractorKNN(&self) -> *mut c_void;
    /// Returns the number of last frames that affect the background model
    fn get_history(&self) -> Result<i32> {
        unsafe { sys::cv_BackgroundSubtractorKNN_getHistory_const(self.as_raw_BackgroundSubtractorKNN()) }.into_result()
    }
    
    /// Sets the number of last frames that affect the background model
    fn set_history(&mut self, history: i32) -> Result<()> {
        unsafe { sys::cv_BackgroundSubtractorKNN_setHistory_int(self.as_raw_BackgroundSubtractorKNN(), history) }.into_result()
    }
    
    /// Returns the number of data samples in the background model
    fn get_n_samples(&self) -> Result<i32> {
        unsafe { sys::cv_BackgroundSubtractorKNN_getNSamples_const(self.as_raw_BackgroundSubtractorKNN()) }.into_result()
    }
    
    /// Sets the number of data samples in the background model.
    ///
    /// The model needs to be reinitalized to reserve memory.
    fn set_n_samples(&mut self, _n_n: i32) -> Result<()> {
        unsafe { sys::cv_BackgroundSubtractorKNN_setNSamples_int(self.as_raw_BackgroundSubtractorKNN(), _n_n) }.into_result()
    }
    
    /// Returns the threshold on the squared distance between the pixel and the sample
    ///
    /// The threshold on the squared distance between the pixel and the sample to decide whether a pixel is
    /// close to a data sample.
    fn get_dist2_threshold(&self) -> Result<f64> {
        unsafe { sys::cv_BackgroundSubtractorKNN_getDist2Threshold_const(self.as_raw_BackgroundSubtractorKNN()) }.into_result()
    }
    
    /// Sets the threshold on the squared distance
    fn set_dist2_threshold(&mut self, _dist2_threshold: f64) -> Result<()> {
        unsafe { sys::cv_BackgroundSubtractorKNN_setDist2Threshold_double(self.as_raw_BackgroundSubtractorKNN(), _dist2_threshold) }.into_result()
    }
    
    /// Returns the number of neighbours, the k in the kNN.
    ///
    /// K is the number of samples that need to be within dist2Threshold in order to decide that that
    /// pixel is matching the kNN background model.
    fn getk_nn_samples(&self) -> Result<i32> {
        unsafe { sys::cv_BackgroundSubtractorKNN_getkNNSamples_const(self.as_raw_BackgroundSubtractorKNN()) }.into_result()
    }
    
    /// Sets the k in the kNN. How many nearest neighbours need to match.
    fn setk_nn_samples(&mut self, _nk_nn: i32) -> Result<()> {
        unsafe { sys::cv_BackgroundSubtractorKNN_setkNNSamples_int(self.as_raw_BackgroundSubtractorKNN(), _nk_nn) }.into_result()
    }
    
    /// Returns the shadow detection flag
    ///
    /// If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorKNN for
    /// details.
    fn get_detect_shadows(&self) -> Result<bool> {
        unsafe { sys::cv_BackgroundSubtractorKNN_getDetectShadows_const(self.as_raw_BackgroundSubtractorKNN()) }.into_result()
    }
    
    /// Enables or disables shadow detection
    fn set_detect_shadows(&mut self, detect_shadows: bool) -> Result<()> {
        unsafe { sys::cv_BackgroundSubtractorKNN_setDetectShadows_bool(self.as_raw_BackgroundSubtractorKNN(), detect_shadows) }.into_result()
    }
    
    /// Returns the shadow value
    ///
    /// Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0
    /// in the mask always means background, 255 means foreground.
    fn get_shadow_value(&self) -> Result<i32> {
        unsafe { sys::cv_BackgroundSubtractorKNN_getShadowValue_const(self.as_raw_BackgroundSubtractorKNN()) }.into_result()
    }
    
    /// Sets the shadow value
    fn set_shadow_value(&mut self, value: i32) -> Result<()> {
        unsafe { sys::cv_BackgroundSubtractorKNN_setShadowValue_int(self.as_raw_BackgroundSubtractorKNN(), value) }.into_result()
    }
    
    /// Returns the shadow threshold
    ///
    /// A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in
    /// the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel
    /// is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiara,
    /// *Detecting Moving Shadows...*, IEEE PAMI,2003.
    fn get_shadow_threshold(&self) -> Result<f64> {
        unsafe { sys::cv_BackgroundSubtractorKNN_getShadowThreshold_const(self.as_raw_BackgroundSubtractorKNN()) }.into_result()
    }
    
    /// Sets the shadow threshold
    fn set_shadow_threshold(&mut self, threshold: f64) -> Result<()> {
        unsafe { sys::cv_BackgroundSubtractorKNN_setShadowThreshold_double(self.as_raw_BackgroundSubtractorKNN(), threshold) }.into_result()
    }
    
}

// Generating impl for trait crate::video::BackgroundSubtractorMOG2
/// Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
///
/// The class implements the Gaussian mixture model background subtraction described in [Zivkovic2004](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_Zivkovic2004)
/// and [Zivkovic2006](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_Zivkovic2006) .
pub trait BackgroundSubtractorMOG2: crate::video::BackgroundSubtractor {
    #[inline(always)] fn as_raw_BackgroundSubtractorMOG2(&self) -> *mut c_void;
    /// Returns the number of last frames that affect the background model
    fn get_history(&self) -> Result<i32> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_getHistory_const(self.as_raw_BackgroundSubtractorMOG2()) }.into_result()
    }
    
    /// Sets the number of last frames that affect the background model
    fn set_history(&mut self, history: i32) -> Result<()> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_setHistory_int(self.as_raw_BackgroundSubtractorMOG2(), history) }.into_result()
    }
    
    /// Returns the number of gaussian components in the background model
    fn get_n_mixtures(&self) -> Result<i32> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_getNMixtures_const(self.as_raw_BackgroundSubtractorMOG2()) }.into_result()
    }
    
    /// Sets the number of gaussian components in the background model.
    ///
    /// The model needs to be reinitalized to reserve memory.
    fn set_n_mixtures(&mut self, nmixtures: i32) -> Result<()> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_setNMixtures_int(self.as_raw_BackgroundSubtractorMOG2(), nmixtures) }.into_result()
    }
    
    /// Returns the "background ratio" parameter of the algorithm
    ///
    /// If a foreground pixel keeps semi-constant value for about backgroundRatio\*history frames, it's
    /// considered background and added to the model as a center of a new component. It corresponds to TB
    /// parameter in the paper.
    fn get_background_ratio(&self) -> Result<f64> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_getBackgroundRatio_const(self.as_raw_BackgroundSubtractorMOG2()) }.into_result()
    }
    
    /// Sets the "background ratio" parameter of the algorithm
    fn set_background_ratio(&mut self, ratio: f64) -> Result<()> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_setBackgroundRatio_double(self.as_raw_BackgroundSubtractorMOG2(), ratio) }.into_result()
    }
    
    /// Returns the variance threshold for the pixel-model match
    ///
    /// The main threshold on the squared Mahalanobis distance to decide if the sample is well described by
    /// the background model or not. Related to Cthr from the paper.
    fn get_var_threshold(&self) -> Result<f64> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_getVarThreshold_const(self.as_raw_BackgroundSubtractorMOG2()) }.into_result()
    }
    
    /// Sets the variance threshold for the pixel-model match
    fn set_var_threshold(&mut self, var_threshold: f64) -> Result<()> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_setVarThreshold_double(self.as_raw_BackgroundSubtractorMOG2(), var_threshold) }.into_result()
    }
    
    /// Returns the variance threshold for the pixel-model match used for new mixture component generation
    ///
    /// Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the
    /// existing components (corresponds to Tg in the paper). If a pixel is not close to any component, it
    /// is considered foreground or added as a new component. 3 sigma =\> Tg=3\*3=9 is default. A smaller Tg
    /// value generates more components. A higher Tg value may result in a small number of components but
    /// they can grow too large.
    fn get_var_threshold_gen(&self) -> Result<f64> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_getVarThresholdGen_const(self.as_raw_BackgroundSubtractorMOG2()) }.into_result()
    }
    
    /// Sets the variance threshold for the pixel-model match used for new mixture component generation
    fn set_var_threshold_gen(&mut self, var_threshold_gen: f64) -> Result<()> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_setVarThresholdGen_double(self.as_raw_BackgroundSubtractorMOG2(), var_threshold_gen) }.into_result()
    }
    
    /// Returns the initial variance of each gaussian component
    fn get_var_init(&self) -> Result<f64> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_getVarInit_const(self.as_raw_BackgroundSubtractorMOG2()) }.into_result()
    }
    
    /// Sets the initial variance of each gaussian component
    fn set_var_init(&mut self, var_init: f64) -> Result<()> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_setVarInit_double(self.as_raw_BackgroundSubtractorMOG2(), var_init) }.into_result()
    }
    
    fn get_var_min(&self) -> Result<f64> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_getVarMin_const(self.as_raw_BackgroundSubtractorMOG2()) }.into_result()
    }
    
    fn set_var_min(&mut self, var_min: f64) -> Result<()> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_setVarMin_double(self.as_raw_BackgroundSubtractorMOG2(), var_min) }.into_result()
    }
    
    fn get_var_max(&self) -> Result<f64> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_getVarMax_const(self.as_raw_BackgroundSubtractorMOG2()) }.into_result()
    }
    
    fn set_var_max(&mut self, var_max: f64) -> Result<()> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_setVarMax_double(self.as_raw_BackgroundSubtractorMOG2(), var_max) }.into_result()
    }
    
    /// Returns the complexity reduction threshold
    ///
    /// This parameter defines the number of samples needed to accept to prove the component exists. CT=0.05
    /// is a default value for all the samples. By setting CT=0 you get an algorithm very similar to the
    /// standard Stauffer&Grimson algorithm.
    fn get_complexity_reduction_threshold(&self) -> Result<f64> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_getComplexityReductionThreshold_const(self.as_raw_BackgroundSubtractorMOG2()) }.into_result()
    }
    
    /// Sets the complexity reduction threshold
    fn set_complexity_reduction_threshold(&mut self, ct: f64) -> Result<()> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_setComplexityReductionThreshold_double(self.as_raw_BackgroundSubtractorMOG2(), ct) }.into_result()
    }
    
    /// Returns the shadow detection flag
    ///
    /// If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorMOG2 for
    /// details.
    fn get_detect_shadows(&self) -> Result<bool> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_getDetectShadows_const(self.as_raw_BackgroundSubtractorMOG2()) }.into_result()
    }
    
    /// Enables or disables shadow detection
    fn set_detect_shadows(&mut self, detect_shadows: bool) -> Result<()> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_setDetectShadows_bool(self.as_raw_BackgroundSubtractorMOG2(), detect_shadows) }.into_result()
    }
    
    /// Returns the shadow value
    ///
    /// Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0
    /// in the mask always means background, 255 means foreground.
    fn get_shadow_value(&self) -> Result<i32> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_getShadowValue_const(self.as_raw_BackgroundSubtractorMOG2()) }.into_result()
    }
    
    /// Sets the shadow value
    fn set_shadow_value(&mut self, value: i32) -> Result<()> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_setShadowValue_int(self.as_raw_BackgroundSubtractorMOG2(), value) }.into_result()
    }
    
    /// Returns the shadow threshold
    ///
    /// A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in
    /// the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel
    /// is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiara,
    /// *Detecting Moving Shadows...*, IEEE PAMI,2003.
    fn get_shadow_threshold(&self) -> Result<f64> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_getShadowThreshold_const(self.as_raw_BackgroundSubtractorMOG2()) }.into_result()
    }
    
    /// Sets the shadow threshold
    fn set_shadow_threshold(&mut self, threshold: f64) -> Result<()> {
        unsafe { sys::cv_BackgroundSubtractorMOG2_setShadowThreshold_double(self.as_raw_BackgroundSubtractorMOG2(), threshold) }.into_result()
    }
    
    /// Computes a foreground mask.
    ///
    /// ## Parameters
    /// * image: Next video frame. Floating point frame will be used without scaling and should be in range ![inline formula](https://latex.codecogs.com/png.latex?%5B0%2C255%5D).
    /// * fgmask: The output foreground mask as an 8-bit binary image.
    /// * learningRate: The value between 0 and 1 that indicates how fast the background model is
    /// learnt. Negative parameter value makes the algorithm to use some automatically chosen learning
    /// rate. 0 means that the background model is not updated at all, 1 means that the background model
    /// is completely reinitialized from the last frame.
    ///
    /// ## C++ default parameters
    /// * learning_rate: -1
    fn apply(&mut self, image: &dyn core::ToInputArray, fgmask: &mut dyn core::ToOutputArray, learning_rate: f64) -> Result<()> {
        input_array_arg!(image);
        output_array_arg!(fgmask);
        unsafe { sys::cv_BackgroundSubtractorMOG2_apply__InputArray__OutputArray_double(self.as_raw_BackgroundSubtractorMOG2(), image.as_raw__InputArray(), fgmask.as_raw__OutputArray(), learning_rate) }.into_result()
    }
    
}

// Generating impl for trait crate::video::DenseOpticalFlow
pub trait DenseOpticalFlow: core::AlgorithmTrait {
    #[inline(always)] fn as_raw_DenseOpticalFlow(&self) -> *mut c_void;
    /// Calculates an optical flow.
    ///
    /// ## Parameters
    /// * I0: first 8-bit single-channel input image.
    /// * I1: second input image of the same size and the same type as prev.
    /// * flow: computed flow image that has the same size as prev and type CV_32FC2.
    fn calc(&mut self, i0: &dyn core::ToInputArray, i1: &dyn core::ToInputArray, flow: &mut dyn core::ToInputOutputArray) -> Result<()> {
        input_array_arg!(i0);
        input_array_arg!(i1);
        input_output_array_arg!(flow);
        unsafe { sys::cv_DenseOpticalFlow_calc__InputArray__InputArray__InputOutputArray(self.as_raw_DenseOpticalFlow(), i0.as_raw__InputArray(), i1.as_raw__InputArray(), flow.as_raw__InputOutputArray()) }.into_result()
    }
    
    /// Releases all inner buffers.
    fn collect_garbage(&mut self) -> Result<()> {
        unsafe { sys::cv_DenseOpticalFlow_collectGarbage(self.as_raw_DenseOpticalFlow()) }.into_result()
    }
    
}

// Generating impl for trait crate::video::DualTVL1OpticalFlow
/// "Dual TV L1" Optical Flow Algorithm.
///
/// The class implements the "Dual TV L1" optical flow algorithm described in [Zach2007](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_Zach2007) and
/// [Javier2012](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_Javier2012) .
/// Here are important members of the class that control the algorithm, which you can set after
/// constructing the class instance:
///
/// *   member double tau
/// Time step of the numerical scheme.
///
/// *   member double lambda
/// Weight parameter for the data term, attachment parameter. This is the most relevant
/// parameter, which determines the smoothness of the output. The smaller this parameter is,
/// the smoother the solutions we obtain. It depends on the range of motions of the images, so
/// its value should be adapted to each image sequence.
///
/// *   member double theta
/// Weight parameter for (u - v)\^2, tightness parameter. It serves as a link between the
/// attachment and the regularization terms. In theory, it should have a small value in order
/// to maintain both parts in correspondence. The method is stable for a large range of values
/// of this parameter.
///
/// *   member int nscales
/// Number of scales used to create the pyramid of images.
///
/// *   member int warps
/// Number of warpings per scale. Represents the number of times that I1(x+u0) and grad(
/// I1(x+u0) ) are computed per scale. This is a parameter that assures the stability of the
/// method. It also affects the running time, so it is a compromise between speed and
/// accuracy.
///
/// *   member double epsilon
/// Stopping criterion threshold used in the numerical scheme, which is a trade-off between
/// precision and running time. A small value will yield more accurate solutions at the
/// expense of a slower convergence.
///
/// *   member int iterations
/// Stopping criterion iterations number used in the numerical scheme.
///
/// C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
/// Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
pub trait DualTVL1OpticalFlow: crate::video::DenseOpticalFlow {
    #[inline(always)] fn as_raw_DualTVL1OpticalFlow(&self) -> *mut c_void;
    /// @see setTau
    fn get_tau(&self) -> Result<f64> {
        unsafe { sys::cv_DualTVL1OpticalFlow_getTau_const(self.as_raw_DualTVL1OpticalFlow()) }.into_result()
    }
    
    /// @copybrief getTau @see getTau
    fn set_tau(&mut self, val: f64) -> Result<()> {
        unsafe { sys::cv_DualTVL1OpticalFlow_setTau_double(self.as_raw_DualTVL1OpticalFlow(), val) }.into_result()
    }
    
    /// @see setLambda
    fn get_lambda(&self) -> Result<f64> {
        unsafe { sys::cv_DualTVL1OpticalFlow_getLambda_const(self.as_raw_DualTVL1OpticalFlow()) }.into_result()
    }
    
    /// @copybrief getLambda @see getLambda
    fn set_lambda(&mut self, val: f64) -> Result<()> {
        unsafe { sys::cv_DualTVL1OpticalFlow_setLambda_double(self.as_raw_DualTVL1OpticalFlow(), val) }.into_result()
    }
    
    /// @see setTheta
    fn get_theta(&self) -> Result<f64> {
        unsafe { sys::cv_DualTVL1OpticalFlow_getTheta_const(self.as_raw_DualTVL1OpticalFlow()) }.into_result()
    }
    
    /// @copybrief getTheta @see getTheta
    fn set_theta(&mut self, val: f64) -> Result<()> {
        unsafe { sys::cv_DualTVL1OpticalFlow_setTheta_double(self.as_raw_DualTVL1OpticalFlow(), val) }.into_result()
    }
    
    /// @see setGamma
    fn get_gamma(&self) -> Result<f64> {
        unsafe { sys::cv_DualTVL1OpticalFlow_getGamma_const(self.as_raw_DualTVL1OpticalFlow()) }.into_result()
    }
    
    /// @copybrief getGamma @see getGamma
    fn set_gamma(&mut self, val: f64) -> Result<()> {
        unsafe { sys::cv_DualTVL1OpticalFlow_setGamma_double(self.as_raw_DualTVL1OpticalFlow(), val) }.into_result()
    }
    
    /// @see setScalesNumber
    fn get_scales_number(&self) -> Result<i32> {
        unsafe { sys::cv_DualTVL1OpticalFlow_getScalesNumber_const(self.as_raw_DualTVL1OpticalFlow()) }.into_result()
    }
    
    /// @copybrief getScalesNumber @see getScalesNumber
    fn set_scales_number(&mut self, val: i32) -> Result<()> {
        unsafe { sys::cv_DualTVL1OpticalFlow_setScalesNumber_int(self.as_raw_DualTVL1OpticalFlow(), val) }.into_result()
    }
    
    /// @see setWarpingsNumber
    fn get_warpings_number(&self) -> Result<i32> {
        unsafe { sys::cv_DualTVL1OpticalFlow_getWarpingsNumber_const(self.as_raw_DualTVL1OpticalFlow()) }.into_result()
    }
    
    /// @copybrief getWarpingsNumber @see getWarpingsNumber
    fn set_warpings_number(&mut self, val: i32) -> Result<()> {
        unsafe { sys::cv_DualTVL1OpticalFlow_setWarpingsNumber_int(self.as_raw_DualTVL1OpticalFlow(), val) }.into_result()
    }
    
    /// @see setEpsilon
    fn get_epsilon(&self) -> Result<f64> {
        unsafe { sys::cv_DualTVL1OpticalFlow_getEpsilon_const(self.as_raw_DualTVL1OpticalFlow()) }.into_result()
    }
    
    /// @copybrief getEpsilon @see getEpsilon
    fn set_epsilon(&mut self, val: f64) -> Result<()> {
        unsafe { sys::cv_DualTVL1OpticalFlow_setEpsilon_double(self.as_raw_DualTVL1OpticalFlow(), val) }.into_result()
    }
    
    /// @see setInnerIterations
    fn get_inner_iterations(&self) -> Result<i32> {
        unsafe { sys::cv_DualTVL1OpticalFlow_getInnerIterations_const(self.as_raw_DualTVL1OpticalFlow()) }.into_result()
    }
    
    /// @copybrief getInnerIterations @see getInnerIterations
    fn set_inner_iterations(&mut self, val: i32) -> Result<()> {
        unsafe { sys::cv_DualTVL1OpticalFlow_setInnerIterations_int(self.as_raw_DualTVL1OpticalFlow(), val) }.into_result()
    }
    
    /// @see setOuterIterations
    fn get_outer_iterations(&self) -> Result<i32> {
        unsafe { sys::cv_DualTVL1OpticalFlow_getOuterIterations_const(self.as_raw_DualTVL1OpticalFlow()) }.into_result()
    }
    
    /// @copybrief getOuterIterations @see getOuterIterations
    fn set_outer_iterations(&mut self, val: i32) -> Result<()> {
        unsafe { sys::cv_DualTVL1OpticalFlow_setOuterIterations_int(self.as_raw_DualTVL1OpticalFlow(), val) }.into_result()
    }
    
    /// @see setUseInitialFlow
    fn get_use_initial_flow(&self) -> Result<bool> {
        unsafe { sys::cv_DualTVL1OpticalFlow_getUseInitialFlow_const(self.as_raw_DualTVL1OpticalFlow()) }.into_result()
    }
    
    /// @copybrief getUseInitialFlow @see getUseInitialFlow
    fn set_use_initial_flow(&mut self, val: bool) -> Result<()> {
        unsafe { sys::cv_DualTVL1OpticalFlow_setUseInitialFlow_bool(self.as_raw_DualTVL1OpticalFlow(), val) }.into_result()
    }
    
    /// @see setScaleStep
    fn get_scale_step(&self) -> Result<f64> {
        unsafe { sys::cv_DualTVL1OpticalFlow_getScaleStep_const(self.as_raw_DualTVL1OpticalFlow()) }.into_result()
    }
    
    /// @copybrief getScaleStep @see getScaleStep
    fn set_scale_step(&mut self, val: f64) -> Result<()> {
        unsafe { sys::cv_DualTVL1OpticalFlow_setScaleStep_double(self.as_raw_DualTVL1OpticalFlow(), val) }.into_result()
    }
    
    /// @see setMedianFiltering
    fn get_median_filtering(&self) -> Result<i32> {
        unsafe { sys::cv_DualTVL1OpticalFlow_getMedianFiltering_const(self.as_raw_DualTVL1OpticalFlow()) }.into_result()
    }
    
    /// @copybrief getMedianFiltering @see getMedianFiltering
    fn set_median_filtering(&mut self, val: i32) -> Result<()> {
        unsafe { sys::cv_DualTVL1OpticalFlow_setMedianFiltering_int(self.as_raw_DualTVL1OpticalFlow(), val) }.into_result()
    }
    
}

impl dyn DualTVL1OpticalFlow + '_ {
    /// Creates instance of cv::DualTVL1OpticalFlow
    ///
    /// ## C++ default parameters
    /// * tau: 0.25
    /// * lambda: 0.15
    /// * theta: 0.3
    /// * nscales: 5
    /// * warps: 5
    /// * epsilon: 0.01
    /// * innner_iterations: 30
    /// * outer_iterations: 10
    /// * scale_step: 0.8
    /// * gamma: 0.0
    /// * median_filtering: 5
    /// * use_initial_flow: false
    pub fn create(tau: f64, lambda: f64, theta: f64, nscales: i32, warps: i32, epsilon: f64, innner_iterations: i32, outer_iterations: i32, scale_step: f64, gamma: f64, median_filtering: i32, use_initial_flow: bool) -> Result<types::PtrOfDualTVL1OpticalFlow> {
        unsafe { sys::cv_DualTVL1OpticalFlow_create_double_double_double_int_int_double_int_int_double_double_int_bool(tau, lambda, theta, nscales, warps, epsilon, innner_iterations, outer_iterations, scale_step, gamma, median_filtering, use_initial_flow) }.into_result().map(|ptr| types::PtrOfDualTVL1OpticalFlow { ptr })
    }
    
}

// Generating impl for trait crate::video::FarnebackOpticalFlow
/// Class computing a dense optical flow using the Gunnar Farneback's algorithm.
pub trait FarnebackOpticalFlow: crate::video::DenseOpticalFlow {
    #[inline(always)] fn as_raw_FarnebackOpticalFlow(&self) -> *mut c_void;
    fn get_num_levels(&self) -> Result<i32> {
        unsafe { sys::cv_FarnebackOpticalFlow_getNumLevels_const(self.as_raw_FarnebackOpticalFlow()) }.into_result()
    }
    
    fn set_num_levels(&mut self, num_levels: i32) -> Result<()> {
        unsafe { sys::cv_FarnebackOpticalFlow_setNumLevels_int(self.as_raw_FarnebackOpticalFlow(), num_levels) }.into_result()
    }
    
    fn get_pyr_scale(&self) -> Result<f64> {
        unsafe { sys::cv_FarnebackOpticalFlow_getPyrScale_const(self.as_raw_FarnebackOpticalFlow()) }.into_result()
    }
    
    fn set_pyr_scale(&mut self, pyr_scale: f64) -> Result<()> {
        unsafe { sys::cv_FarnebackOpticalFlow_setPyrScale_double(self.as_raw_FarnebackOpticalFlow(), pyr_scale) }.into_result()
    }
    
    fn get_fast_pyramids(&self) -> Result<bool> {
        unsafe { sys::cv_FarnebackOpticalFlow_getFastPyramids_const(self.as_raw_FarnebackOpticalFlow()) }.into_result()
    }
    
    fn set_fast_pyramids(&mut self, fast_pyramids: bool) -> Result<()> {
        unsafe { sys::cv_FarnebackOpticalFlow_setFastPyramids_bool(self.as_raw_FarnebackOpticalFlow(), fast_pyramids) }.into_result()
    }
    
    fn get_win_size(&self) -> Result<i32> {
        unsafe { sys::cv_FarnebackOpticalFlow_getWinSize_const(self.as_raw_FarnebackOpticalFlow()) }.into_result()
    }
    
    fn set_win_size(&mut self, win_size: i32) -> Result<()> {
        unsafe { sys::cv_FarnebackOpticalFlow_setWinSize_int(self.as_raw_FarnebackOpticalFlow(), win_size) }.into_result()
    }
    
    fn get_num_iters(&self) -> Result<i32> {
        unsafe { sys::cv_FarnebackOpticalFlow_getNumIters_const(self.as_raw_FarnebackOpticalFlow()) }.into_result()
    }
    
    fn set_num_iters(&mut self, num_iters: i32) -> Result<()> {
        unsafe { sys::cv_FarnebackOpticalFlow_setNumIters_int(self.as_raw_FarnebackOpticalFlow(), num_iters) }.into_result()
    }
    
    fn get_poly_n(&self) -> Result<i32> {
        unsafe { sys::cv_FarnebackOpticalFlow_getPolyN_const(self.as_raw_FarnebackOpticalFlow()) }.into_result()
    }
    
    fn set_poly_n(&mut self, poly_n: i32) -> Result<()> {
        unsafe { sys::cv_FarnebackOpticalFlow_setPolyN_int(self.as_raw_FarnebackOpticalFlow(), poly_n) }.into_result()
    }
    
    fn get_poly_sigma(&self) -> Result<f64> {
        unsafe { sys::cv_FarnebackOpticalFlow_getPolySigma_const(self.as_raw_FarnebackOpticalFlow()) }.into_result()
    }
    
    fn set_poly_sigma(&mut self, poly_sigma: f64) -> Result<()> {
        unsafe { sys::cv_FarnebackOpticalFlow_setPolySigma_double(self.as_raw_FarnebackOpticalFlow(), poly_sigma) }.into_result()
    }
    
    fn get_flags(&self) -> Result<i32> {
        unsafe { sys::cv_FarnebackOpticalFlow_getFlags_const(self.as_raw_FarnebackOpticalFlow()) }.into_result()
    }
    
    fn set_flags(&mut self, flags: i32) -> Result<()> {
        unsafe { sys::cv_FarnebackOpticalFlow_setFlags_int(self.as_raw_FarnebackOpticalFlow(), flags) }.into_result()
    }
    
}

impl dyn FarnebackOpticalFlow + '_ {
    ///
    /// ## C++ default parameters
    /// * num_levels: 5
    /// * pyr_scale: 0.5
    /// * fast_pyramids: false
    /// * win_size: 13
    /// * num_iters: 10
    /// * poly_n: 5
    /// * poly_sigma: 1.1
    /// * flags: 0
    pub fn create(num_levels: i32, pyr_scale: f64, fast_pyramids: bool, win_size: i32, num_iters: i32, poly_n: i32, poly_sigma: f64, flags: i32) -> Result<types::PtrOfFarnebackOpticalFlow> {
        unsafe { sys::cv_FarnebackOpticalFlow_create_int_double_bool_int_int_int_double_int(num_levels, pyr_scale, fast_pyramids, win_size, num_iters, poly_n, poly_sigma, flags) }.into_result().map(|ptr| types::PtrOfFarnebackOpticalFlow { ptr })
    }
    
}

// boxed class cv::KalmanFilter
/// Kalman filter class.
///
/// The class implements a standard Kalman filter <http://en.wikipedia.org/wiki/Kalman_filter>,
/// [Welch95](https://docs.opencv.org/3.4.8/d0/de3/citelist.html#CITEREF_Welch95) . However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get
/// an extended Kalman filter functionality.
///
/// Note: In C API when CvKalman\* kalmanFilter structure is not needed anymore, it should be released
/// with cvReleaseKalman(&kalmanFilter)
pub struct KalmanFilter {
    #[doc(hidden)] pub(crate) ptr: *mut c_void
}

impl Drop for KalmanFilter {
    fn drop(&mut self) {
        unsafe { sys::cv_KalmanFilter_delete(self.ptr) };
    }
}

impl KalmanFilter {
    #[inline(always)] pub fn as_raw_KalmanFilter(&self) -> *mut c_void { self.ptr }

    pub unsafe fn from_raw_ptr(ptr: *mut c_void) -> Self {
        Self { ptr }
    }
}

unsafe impl Send for KalmanFilter {}

impl KalmanFilter {
    /// predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
    pub fn state_pre(&mut self) -> Result<core::Mat> {
        unsafe { sys::cv_KalmanFilter_statePre(self.as_raw_KalmanFilter()) }.into_result().map(|ptr| core::Mat { ptr })
    }
    
    /// predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
    pub fn set_state_pre(&mut self, val: core::Mat) -> Result<()> {
        unsafe { sys::cv_KalmanFilter_set_statePre_Mat(self.as_raw_KalmanFilter(), val.as_raw_Mat()) }.into_result()
    }
    
    /// corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
    pub fn state_post(&mut self) -> Result<core::Mat> {
        unsafe { sys::cv_KalmanFilter_statePost(self.as_raw_KalmanFilter()) }.into_result().map(|ptr| core::Mat { ptr })
    }
    
    /// corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
    pub fn set_state_post(&mut self, val: core::Mat) -> Result<()> {
        unsafe { sys::cv_KalmanFilter_set_statePost_Mat(self.as_raw_KalmanFilter(), val.as_raw_Mat()) }.into_result()
    }
    
    /// state transition matrix (A)
    pub fn transition_matrix(&mut self) -> Result<core::Mat> {
        unsafe { sys::cv_KalmanFilter_transitionMatrix(self.as_raw_KalmanFilter()) }.into_result().map(|ptr| core::Mat { ptr })
    }
    
    /// state transition matrix (A)
    pub fn set_transition_matrix(&mut self, val: core::Mat) -> Result<()> {
        unsafe { sys::cv_KalmanFilter_set_transitionMatrix_Mat(self.as_raw_KalmanFilter(), val.as_raw_Mat()) }.into_result()
    }
    
    /// control matrix (B) (not used if there is no control)
    pub fn control_matrix(&mut self) -> Result<core::Mat> {
        unsafe { sys::cv_KalmanFilter_controlMatrix(self.as_raw_KalmanFilter()) }.into_result().map(|ptr| core::Mat { ptr })
    }
    
    /// control matrix (B) (not used if there is no control)
    pub fn set_control_matrix(&mut self, val: core::Mat) -> Result<()> {
        unsafe { sys::cv_KalmanFilter_set_controlMatrix_Mat(self.as_raw_KalmanFilter(), val.as_raw_Mat()) }.into_result()
    }
    
    /// measurement matrix (H)
    pub fn measurement_matrix(&mut self) -> Result<core::Mat> {
        unsafe { sys::cv_KalmanFilter_measurementMatrix(self.as_raw_KalmanFilter()) }.into_result().map(|ptr| core::Mat { ptr })
    }
    
    /// measurement matrix (H)
    pub fn set_measurement_matrix(&mut self, val: core::Mat) -> Result<()> {
        unsafe { sys::cv_KalmanFilter_set_measurementMatrix_Mat(self.as_raw_KalmanFilter(), val.as_raw_Mat()) }.into_result()
    }
    
    /// process noise covariance matrix (Q)
    pub fn process_noise_cov(&mut self) -> Result<core::Mat> {
        unsafe { sys::cv_KalmanFilter_processNoiseCov(self.as_raw_KalmanFilter()) }.into_result().map(|ptr| core::Mat { ptr })
    }
    
    /// process noise covariance matrix (Q)
    pub fn set_process_noise_cov(&mut self, val: core::Mat) -> Result<()> {
        unsafe { sys::cv_KalmanFilter_set_processNoiseCov_Mat(self.as_raw_KalmanFilter(), val.as_raw_Mat()) }.into_result()
    }
    
    /// measurement noise covariance matrix (R)
    pub fn measurement_noise_cov(&mut self) -> Result<core::Mat> {
        unsafe { sys::cv_KalmanFilter_measurementNoiseCov(self.as_raw_KalmanFilter()) }.into_result().map(|ptr| core::Mat { ptr })
    }
    
    /// measurement noise covariance matrix (R)
    pub fn set_measurement_noise_cov(&mut self, val: core::Mat) -> Result<()> {
        unsafe { sys::cv_KalmanFilter_set_measurementNoiseCov_Mat(self.as_raw_KalmanFilter(), val.as_raw_Mat()) }.into_result()
    }
    
    /// priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
    pub fn error_cov_pre(&mut self) -> Result<core::Mat> {
        unsafe { sys::cv_KalmanFilter_errorCovPre(self.as_raw_KalmanFilter()) }.into_result().map(|ptr| core::Mat { ptr })
    }
    
    /// priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
    pub fn set_error_cov_pre(&mut self, val: core::Mat) -> Result<()> {
        unsafe { sys::cv_KalmanFilter_set_errorCovPre_Mat(self.as_raw_KalmanFilter(), val.as_raw_Mat()) }.into_result()
    }
    
    /// Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
    pub fn gain(&mut self) -> Result<core::Mat> {
        unsafe { sys::cv_KalmanFilter_gain(self.as_raw_KalmanFilter()) }.into_result().map(|ptr| core::Mat { ptr })
    }
    
    /// Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
    pub fn set_gain(&mut self, val: core::Mat) -> Result<()> {
        unsafe { sys::cv_KalmanFilter_set_gain_Mat(self.as_raw_KalmanFilter(), val.as_raw_Mat()) }.into_result()
    }
    
    /// posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
    pub fn error_cov_post(&mut self) -> Result<core::Mat> {
        unsafe { sys::cv_KalmanFilter_errorCovPost(self.as_raw_KalmanFilter()) }.into_result().map(|ptr| core::Mat { ptr })
    }
    
    /// posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
    pub fn set_error_cov_post(&mut self, val: core::Mat) -> Result<()> {
        unsafe { sys::cv_KalmanFilter_set_errorCovPost_Mat(self.as_raw_KalmanFilter(), val.as_raw_Mat()) }.into_result()
    }
    
    pub fn default() -> Result<crate::video::KalmanFilter> {
        unsafe { sys::cv_KalmanFilter_KalmanFilter() }.into_result().map(|ptr| crate::video::KalmanFilter { ptr })
    }
    
    /// ## Parameters
    /// * dynamParams: Dimensionality of the state.
    /// * measureParams: Dimensionality of the measurement.
    /// * controlParams: Dimensionality of the control vector.
    /// * type: Type of the created matrices that should be CV_32F or CV_64F.
    ///
    /// ## C++ default parameters
    /// * control_params: 0
    /// * _type: CV_32F
    pub fn new(dynam_params: i32, measure_params: i32, control_params: i32, _type: i32) -> Result<crate::video::KalmanFilter> {
        unsafe { sys::cv_KalmanFilter_KalmanFilter_int_int_int_int(dynam_params, measure_params, control_params, _type) }.into_result().map(|ptr| crate::video::KalmanFilter { ptr })
    }
    
    /// Re-initializes Kalman filter. The previous content is destroyed.
    ///
    /// ## Parameters
    /// * dynamParams: Dimensionality of the state.
    /// * measureParams: Dimensionality of the measurement.
    /// * controlParams: Dimensionality of the control vector.
    /// * type: Type of the created matrices that should be CV_32F or CV_64F.
    ///
    /// ## C++ default parameters
    /// * control_params: 0
    /// * _type: CV_32F
    pub fn init(&mut self, dynam_params: i32, measure_params: i32, control_params: i32, _type: i32) -> Result<()> {
        unsafe { sys::cv_KalmanFilter_init_int_int_int_int(self.as_raw_KalmanFilter(), dynam_params, measure_params, control_params, _type) }.into_result()
    }
    
    /// Computes a predicted state.
    ///
    /// ## Parameters
    /// * control: The optional input control
    ///
    /// ## C++ default parameters
    /// * control: Mat()
    pub fn predict(&mut self, control: &core::Mat) -> Result<core::Mat> {
        unsafe { sys::cv_KalmanFilter_predict_Mat(self.as_raw_KalmanFilter(), control.as_raw_Mat()) }.into_result().map(|ptr| core::Mat { ptr })
    }
    
    /// Updates the predicted state from the measurement.
    ///
    /// ## Parameters
    /// * measurement: The measured system parameters
    pub fn correct(&mut self, measurement: &core::Mat) -> Result<core::Mat> {
        unsafe { sys::cv_KalmanFilter_correct_Mat(self.as_raw_KalmanFilter(), measurement.as_raw_Mat()) }.into_result().map(|ptr| core::Mat { ptr })
    }
    
}

// Generating impl for trait crate::video::SparseOpticalFlow
/// Base interface for sparse optical flow algorithms.
pub trait SparseOpticalFlow: core::AlgorithmTrait {
    #[inline(always)] fn as_raw_SparseOpticalFlow(&self) -> *mut c_void;
    /// Calculates a sparse optical flow.
    ///
    /// ## Parameters
    /// * prevImg: First input image.
    /// * nextImg: Second input image of the same size and the same type as prevImg.
    /// * prevPts: Vector of 2D points for which the flow needs to be found.
    /// * nextPts: Output vector of 2D points containing the calculated new positions of input features in the second image.
    /// * status: Output status vector. Each element of the vector is set to 1 if the
    /// flow for the corresponding features has been found. Otherwise, it is set to 0.
    /// * err: Optional output vector that contains error response for each point (inverse confidence).
    ///
    /// ## C++ default parameters
    /// * err: cv::noArray()
    fn calc(&mut self, prev_img: &dyn core::ToInputArray, next_img: &dyn core::ToInputArray, prev_pts: &dyn core::ToInputArray, next_pts: &mut dyn core::ToInputOutputArray, status: &mut dyn core::ToOutputArray, err: &mut dyn core::ToOutputArray) -> Result<()> {
        input_array_arg!(prev_img);
        input_array_arg!(next_img);
        input_array_arg!(prev_pts);
        input_output_array_arg!(next_pts);
        output_array_arg!(status);
        output_array_arg!(err);
        unsafe { sys::cv_SparseOpticalFlow_calc__InputArray__InputArray__InputArray__InputOutputArray__OutputArray__OutputArray(self.as_raw_SparseOpticalFlow(), prev_img.as_raw__InputArray(), next_img.as_raw__InputArray(), prev_pts.as_raw__InputArray(), next_pts.as_raw__InputOutputArray(), status.as_raw__OutputArray(), err.as_raw__OutputArray()) }.into_result()
    }
    
}

// Generating impl for trait crate::video::SparsePyrLKOpticalFlow
/// Class used for calculating a sparse optical flow.
///
/// The class can calculate an optical flow for a sparse feature set using the
/// iterative Lucas-Kanade method with pyramids.
///
/// ## See also
/// calcOpticalFlowPyrLK
pub trait SparsePyrLKOpticalFlow: crate::video::SparseOpticalFlow {
    #[inline(always)] fn as_raw_SparsePyrLKOpticalFlow(&self) -> *mut c_void;
    fn get_win_size(&self) -> Result<core::Size> {
        unsafe { sys::cv_SparsePyrLKOpticalFlow_getWinSize_const(self.as_raw_SparsePyrLKOpticalFlow()) }.into_result()
    }
    
    fn set_win_size(&mut self, win_size: core::Size) -> Result<()> {
        unsafe { sys::cv_SparsePyrLKOpticalFlow_setWinSize_Size(self.as_raw_SparsePyrLKOpticalFlow(), win_size) }.into_result()
    }
    
    fn get_max_level(&self) -> Result<i32> {
        unsafe { sys::cv_SparsePyrLKOpticalFlow_getMaxLevel_const(self.as_raw_SparsePyrLKOpticalFlow()) }.into_result()
    }
    
    fn set_max_level(&mut self, max_level: i32) -> Result<()> {
        unsafe { sys::cv_SparsePyrLKOpticalFlow_setMaxLevel_int(self.as_raw_SparsePyrLKOpticalFlow(), max_level) }.into_result()
    }
    
    fn get_term_criteria(&self) -> Result<core::TermCriteria> {
        unsafe { sys::cv_SparsePyrLKOpticalFlow_getTermCriteria_const(self.as_raw_SparsePyrLKOpticalFlow()) }.into_result().map(|ptr| core::TermCriteria { ptr })
    }
    
    fn set_term_criteria(&mut self, crit: &mut core::TermCriteria) -> Result<()> {
        unsafe { sys::cv_SparsePyrLKOpticalFlow_setTermCriteria_TermCriteria(self.as_raw_SparsePyrLKOpticalFlow(), crit.as_raw_TermCriteria()) }.into_result()
    }
    
    fn get_flags(&self) -> Result<i32> {
        unsafe { sys::cv_SparsePyrLKOpticalFlow_getFlags_const(self.as_raw_SparsePyrLKOpticalFlow()) }.into_result()
    }
    
    fn set_flags(&mut self, flags: i32) -> Result<()> {
        unsafe { sys::cv_SparsePyrLKOpticalFlow_setFlags_int(self.as_raw_SparsePyrLKOpticalFlow(), flags) }.into_result()
    }
    
    fn get_min_eig_threshold(&self) -> Result<f64> {
        unsafe { sys::cv_SparsePyrLKOpticalFlow_getMinEigThreshold_const(self.as_raw_SparsePyrLKOpticalFlow()) }.into_result()
    }
    
    fn set_min_eig_threshold(&mut self, min_eig_threshold: f64) -> Result<()> {
        unsafe { sys::cv_SparsePyrLKOpticalFlow_setMinEigThreshold_double(self.as_raw_SparsePyrLKOpticalFlow(), min_eig_threshold) }.into_result()
    }
    
}

impl dyn SparsePyrLKOpticalFlow + '_ {
    ///
    /// ## C++ default parameters
    /// * win_size: Size(21, 21)
    /// * max_level: 3
    /// * crit: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01)
    /// * flags: 0
    /// * min_eig_threshold: 1e-4
    pub fn create(win_size: core::Size, max_level: i32, crit: &core::TermCriteria, flags: i32, min_eig_threshold: f64) -> Result<types::PtrOfSparsePyrLKOpticalFlow> {
        unsafe { sys::cv_SparsePyrLKOpticalFlow_create_Size_int_TermCriteria_int_double(win_size, max_level, crit.as_raw_TermCriteria(), flags, min_eig_threshold) }.into_result().map(|ptr| types::PtrOfSparsePyrLKOpticalFlow { ptr })
    }
    
}