1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
//! # Object Detection
//!
//! Haar Feature-based Cascade Classifier for Object Detection
//! ----------------------------------------------------------
//!
//! The object detector described below has been initially proposed by Paul Viola [Viola01](https://docs.opencv.org/3.4.7/d0/de3/citelist.html#CITEREF_Viola01) and
//! improved by Rainer Lienhart [Lienhart02](https://docs.opencv.org/3.4.7/d0/de3/citelist.html#CITEREF_Lienhart02) .
//!
//! First, a classifier (namely a *cascade of boosted classifiers working with haar-like features*) is
//! trained with a few hundred sample views of a particular object (i.e., a face or a car), called
//! positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary
//! images of the same size.
//!
//! After a classifier is trained, it can be applied to a region of interest (of the same size as used
//! during the training) in an input image. The classifier outputs a "1" if the region is likely to show
//! the object (i.e., face/car), and "0" otherwise. To search for the object in the whole image one can
//! move the search window across the image and check every location using the classifier. The
//! classifier is designed so that it can be easily "resized" in order to be able to find the objects of
//! interest at different sizes, which is more efficient than resizing the image itself. So, to find an
//! object of an unknown size in the image the scan procedure should be done several times at different
//! scales.
//!
//! The word "cascade" in the classifier name means that the resultant classifier consists of several
//! simpler classifiers (*stages*) that are applied subsequently to a region of interest until at some
//! stage the candidate is rejected or all the stages are passed. The word "boosted" means that the
//! classifiers at every stage of the cascade are complex themselves and they are built out of basic
//! classifiers using one of four different boosting techniques (weighted voting). Currently Discrete
//! Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are
//! decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic
//! classifiers, and are calculated as described below. The current algorithm uses the following
//! Haar-like features:
//!
//! ![image](https://docs.opencv.org/3.4.7/haarfeatures.png)
//!
//! The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within
//! the region of interest and the scale (this scale is not the same as the scale used at the detection
//! stage, though these two scales are multiplied). For example, in the case of the third line feature
//! (2c) the response is calculated as the difference between the sum of image pixels under the
//! rectangle covering the whole feature (including the two white stripes and the black stripe in the
//! middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to
//! compensate for the differences in the size of areas. The sums of pixel values over a rectangular
//! regions are calculated rapidly using integral images (see below and the integral description).
//!
//! To see the object detector at work, have a look at the facedetect demo:
//! <https://github.com/opencv/opencv/tree/3.4/samples/cpp/dbt_face_detection.cpp>
//!
//! The following reference is for the detection part only. There is a separate application called
//! opencv_traincascade that can train a cascade of boosted classifiers from a set of samples.
//!
//!
//! Note: In the new C++ interface it is also possible to use LBP (local binary pattern) features in
//! addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection
//! using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at
//! <http://research.microsoft.com/en-us/um/people/viola/Pubs/Detect/violaJones_CVPR2001.pdf>
//! # C API
use std::os::raw::{c_char, c_void};
use libc::{ptrdiff_t, size_t};
use crate::{Error, Result, core, sys, types};
use crate::core::{_InputArray, _OutputArray};

pub const CASCADE_DO_CANNY_PRUNING: i32 = 1;
pub const CASCADE_DO_ROUGH_SEARCH: i32 = 8;
pub const CASCADE_FIND_BIGGEST_OBJECT: i32 = 4;
pub const CASCADE_SCALE_IMAGE: i32 = 2;
pub const DetectionBasedTracker_DETECTED: i32 = 1;
pub const DetectionBasedTracker_DETECTED_NOT_SHOWN_YET: i32 = 0;
pub const DetectionBasedTracker_DETECTED_TEMPORARY_LOST: i32 = 2;
pub const DetectionBasedTracker_WRONG_OBJECT: i32 = 3;
/// Default nlevels value.
pub const HOGDescriptor_DEFAULT_NLEVELS: i32 = 64;
/// Default histogramNormType
pub const HOGDescriptor_L2Hys: i32 = 0;

#[repr(C)]
#[derive(Debug)]
pub enum DetectionBasedTracker_ObjectStatus {
    DETECTED_NOT_SHOWN_YET = DetectionBasedTracker_DETECTED_NOT_SHOWN_YET as isize,
    DETECTED = DetectionBasedTracker_DETECTED as isize,
    DETECTED_TEMPORARY_LOST = DetectionBasedTracker_DETECTED_TEMPORARY_LOST as isize,
    WRONG_OBJECT = DetectionBasedTracker_WRONG_OBJECT as isize,
}

pub fn create_face_detection_mask_generator() -> Result<types::PtrOfMaskGenerator> {
    unsafe { sys::cv_createFaceDetectionMaskGenerator() }.into_result().map(|ptr| types::PtrOfMaskGenerator { ptr })
}

/// Decode QR code in image and return text that is encrypted in QR code.
/// ## Parameters
/// * in: Matrix of the type CV_8UC1 containing an image where QR code are detected.
/// * points: Input vector of vertices of a quadrangle of minimal area that describes QR code.
/// * decoded_info: String information that is encrypted in QR code.
/// * straight_qrcode: Matrix of the type CV_8UC1 containing an binary straight QR code.
///
/// ## C++ default parameters
/// * straight_qrcode: noArray()
pub fn decode_qr_code(_in: &dyn core::ToInputArray, points: &dyn core::ToInputArray, decoded_info: &mut String, straight_qrcode: &mut dyn core::ToOutputArray) -> Result<bool> {
    input_array_arg!(_in);
    input_array_arg!(points);
    string_arg_output_send!(via decoded_info_via);
    output_array_arg!(straight_qrcode);
    let out = unsafe { sys::cv_decodeQRCode__InputArray__InputArray_std_string__OutputArray(_in.as_raw__InputArray(), points.as_raw__InputArray(), &mut decoded_info_via, straight_qrcode.as_raw__OutputArray()) }.into_result();
    string_arg_output_receive!(decoded_info_via => decoded_info);
    return out;
}

/// Detect QR code in image and return minimum area of quadrangle that describes QR code.
/// ## Parameters
/// * in: Matrix of the type CV_8UC1 containing an image where QR code are detected.
/// * points: Output vector of vertices of a quadrangle of minimal area that describes QR code.
/// * eps_x: Epsilon neighborhood, which allows you to determine the horizontal pattern of the scheme 1:1:3:1:1 according to QR code standard.
/// * eps_y: Epsilon neighborhood, which allows you to determine the vertical pattern of the scheme 1:1:3:1:1 according to QR code standard.
///
/// ## C++ default parameters
/// * eps_x: 0.2
/// * eps_y: 0.1
pub fn detect_qr_code(_in: &dyn core::ToInputArray, points: &mut types::VectorOfPoint, eps_x: f64, eps_y: f64) -> Result<bool> {
    input_array_arg!(_in);
    unsafe { sys::cv_detectQRCode__InputArray_VectorOfPoint_double_double(_in.as_raw__InputArray(), points.as_raw_VectorOfPoint(), eps_x, eps_y) }.into_result()
}

/// Groups the object candidate rectangles.
///
/// ## Parameters
/// * rectList: Input/output vector of rectangles. Output vector includes retained and grouped
/// rectangles. (The Python list is not modified in place.)
/// * groupThreshold: Minimum possible number of rectangles minus 1. The threshold is used in a
/// group of rectangles to retain it.
/// * eps: Relative difference between sides of the rectangles to merge them into a group.
///
/// The function is a wrapper for the generic function partition . It clusters all the input rectangles
/// using the rectangle equivalence criteria that combines rectangles with similar sizes and similar
/// locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7Beps%7D%5Crightarrow%20%2B%5Cinf) , all the rectangles are put in one cluster. Then, the small
/// clusters containing less than or equal to groupThreshold rectangles are rejected. In each other
/// cluster, the average rectangle is computed and put into the output rectangle list.
///
/// ## Overloaded parameters
///
/// ## C++ default parameters
/// * eps: 0.2
pub fn group_rectangles_levels(rect_list: &mut types::VectorOfRect, reject_levels: &mut types::VectorOfint, level_weights: &mut types::VectorOfdouble, group_threshold: i32, eps: f64) -> Result<()> {
    unsafe { sys::cv_groupRectangles_VectorOfRect_VectorOfint_VectorOfdouble_int_double(rect_list.as_raw_VectorOfRect(), reject_levels.as_raw_VectorOfint(), level_weights.as_raw_VectorOfdouble(), group_threshold, eps) }.into_result()
}

/// Groups the object candidate rectangles.
///
/// ## Parameters
/// * rectList: Input/output vector of rectangles. Output vector includes retained and grouped
/// rectangles. (The Python list is not modified in place.)
/// * groupThreshold: Minimum possible number of rectangles minus 1. The threshold is used in a
/// group of rectangles to retain it.
/// * eps: Relative difference between sides of the rectangles to merge them into a group.
///
/// The function is a wrapper for the generic function partition . It clusters all the input rectangles
/// using the rectangle equivalence criteria that combines rectangles with similar sizes and similar
/// locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7Beps%7D%5Crightarrow%20%2B%5Cinf) , all the rectangles are put in one cluster. Then, the small
/// clusters containing less than or equal to groupThreshold rectangles are rejected. In each other
/// cluster, the average rectangle is computed and put into the output rectangle list.
///
/// ## Overloaded parameters
///
/// ## C++ default parameters
/// * eps: 0.2
pub fn group_rectangles_weights(rect_list: &mut types::VectorOfRect, weights: &mut types::VectorOfint, group_threshold: i32, eps: f64) -> Result<()> {
    unsafe { sys::cv_groupRectangles_VectorOfRect_VectorOfint_int_double(rect_list.as_raw_VectorOfRect(), weights.as_raw_VectorOfint(), group_threshold, eps) }.into_result()
}

/// Groups the object candidate rectangles.
///
/// ## Parameters
/// * rectList: Input/output vector of rectangles. Output vector includes retained and grouped
/// rectangles. (The Python list is not modified in place.)
/// * groupThreshold: Minimum possible number of rectangles minus 1. The threshold is used in a
/// group of rectangles to retain it.
/// * eps: Relative difference between sides of the rectangles to merge them into a group.
///
/// The function is a wrapper for the generic function partition . It clusters all the input rectangles
/// using the rectangle equivalence criteria that combines rectangles with similar sizes and similar
/// locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7Beps%7D%5Crightarrow%20%2B%5Cinf) , all the rectangles are put in one cluster. Then, the small
/// clusters containing less than or equal to groupThreshold rectangles are rejected. In each other
/// cluster, the average rectangle is computed and put into the output rectangle list.
///
/// ## C++ default parameters
/// * eps: 0.2
pub fn group_rectangles(rect_list: &mut types::VectorOfRect, group_threshold: i32, eps: f64) -> Result<()> {
    unsafe { sys::cv_groupRectangles_VectorOfRect_int_double(rect_list.as_raw_VectorOfRect(), group_threshold, eps) }.into_result()
}

/// Groups the object candidate rectangles.
///
/// ## Parameters
/// * rectList: Input/output vector of rectangles. Output vector includes retained and grouped
/// rectangles. (The Python list is not modified in place.)
/// * groupThreshold: Minimum possible number of rectangles minus 1. The threshold is used in a
/// group of rectangles to retain it.
/// * eps: Relative difference between sides of the rectangles to merge them into a group.
///
/// The function is a wrapper for the generic function partition . It clusters all the input rectangles
/// using the rectangle equivalence criteria that combines rectangles with similar sizes and similar
/// locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If
/// ![inline formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7Beps%7D%5Crightarrow%20%2B%5Cinf) , all the rectangles are put in one cluster. Then, the small
/// clusters containing less than or equal to groupThreshold rectangles are rejected. In each other
/// cluster, the average rectangle is computed and put into the output rectangle list.
///
/// ## Overloaded parameters
pub fn group_rectangles_levelweights(rect_list: &mut types::VectorOfRect, group_threshold: i32, eps: f64, weights: &mut types::VectorOfint, level_weights: &mut types::VectorOfdouble) -> Result<()> {
    unsafe { sys::cv_groupRectangles_VectorOfRect_int_double_VectorOfint_VectorOfdouble(rect_list.as_raw_VectorOfRect(), group_threshold, eps, weights.as_raw_VectorOfint(), level_weights.as_raw_VectorOfdouble()) }.into_result()
}

///
/// ## C++ default parameters
/// * detect_threshold: 0.0
/// * win_det_size: Size(64, 128)
pub fn group_rectangles_meanshift(rect_list: &mut types::VectorOfRect, found_weights: &mut types::VectorOfdouble, found_scales: &mut types::VectorOfdouble, detect_threshold: f64, win_det_size: core::Size) -> Result<()> {
    unsafe { sys::cv_groupRectangles_meanshift_VectorOfRect_VectorOfdouble_VectorOfdouble_double_Size(rect_list.as_raw_VectorOfRect(), found_weights.as_raw_VectorOfdouble(), found_scales.as_raw_VectorOfdouble(), detect_threshold, win_det_size) }.into_result()
}

// Generating impl for trait cv::BaseCascadeClassifier (trait)
pub trait BaseCascadeClassifier: core::Algorithm {
    #[inline(always)] fn as_raw_BaseCascadeClassifier(&self) -> *mut c_void;
    fn empty(&self) -> Result<bool> {
        unsafe { sys::cv_BaseCascadeClassifier_empty_const(self.as_raw_BaseCascadeClassifier()) }.into_result()
    }
    
    fn load(&mut self, filename: &str) -> Result<bool> {
        string_arg!(filename);
        unsafe { sys::cv_BaseCascadeClassifier_load_String(self.as_raw_BaseCascadeClassifier(), filename.as_ptr()) }.into_result()
    }
    
    fn detect_multi_scale(&mut self, image: &dyn core::ToInputArray, objects: &mut types::VectorOfRect, scale_factor: f64, min_neighbors: i32, flags: i32, min_size: core::Size, max_size: core::Size) -> Result<()> {
        input_array_arg!(image);
        unsafe { sys::cv_BaseCascadeClassifier_detectMultiScale__InputArray_VectorOfRect_double_int_int_Size_Size(self.as_raw_BaseCascadeClassifier(), image.as_raw__InputArray(), objects.as_raw_VectorOfRect(), scale_factor, min_neighbors, flags, min_size, max_size) }.into_result()
    }
    
    fn detect_multi_scale_num(&mut self, image: &dyn core::ToInputArray, objects: &mut types::VectorOfRect, num_detections: &mut types::VectorOfint, scale_factor: f64, min_neighbors: i32, flags: i32, min_size: core::Size, max_size: core::Size) -> Result<()> {
        input_array_arg!(image);
        unsafe { sys::cv_BaseCascadeClassifier_detectMultiScale__InputArray_VectorOfRect_VectorOfint_double_int_int_Size_Size(self.as_raw_BaseCascadeClassifier(), image.as_raw__InputArray(), objects.as_raw_VectorOfRect(), num_detections.as_raw_VectorOfint(), scale_factor, min_neighbors, flags, min_size, max_size) }.into_result()
    }
    
    fn detect_multi_scale_levels(&mut self, image: &dyn core::ToInputArray, objects: &mut types::VectorOfRect, reject_levels: &mut types::VectorOfint, level_weights: &mut types::VectorOfdouble, scale_factor: f64, min_neighbors: i32, flags: i32, min_size: core::Size, max_size: core::Size, output_reject_levels: bool) -> Result<()> {
        input_array_arg!(image);
        unsafe { sys::cv_BaseCascadeClassifier_detectMultiScale__InputArray_VectorOfRect_VectorOfint_VectorOfdouble_double_int_int_Size_Size_bool(self.as_raw_BaseCascadeClassifier(), image.as_raw__InputArray(), objects.as_raw_VectorOfRect(), reject_levels.as_raw_VectorOfint(), level_weights.as_raw_VectorOfdouble(), scale_factor, min_neighbors, flags, min_size, max_size, output_reject_levels) }.into_result()
    }
    
    fn is_old_format_cascade(&self) -> Result<bool> {
        unsafe { sys::cv_BaseCascadeClassifier_isOldFormatCascade_const(self.as_raw_BaseCascadeClassifier()) }.into_result()
    }
    
    fn get_original_window_size(&self) -> Result<core::Size> {
        unsafe { sys::cv_BaseCascadeClassifier_getOriginalWindowSize_const(self.as_raw_BaseCascadeClassifier()) }.into_result()
    }
    
    fn get_feature_type(&self) -> Result<i32> {
        unsafe { sys::cv_BaseCascadeClassifier_getFeatureType_const(self.as_raw_BaseCascadeClassifier()) }.into_result()
    }
    
    fn get_old_cascade(&mut self) -> Result<&mut c_void> {
        unsafe { sys::cv_BaseCascadeClassifier_getOldCascade(self.as_raw_BaseCascadeClassifier()) }.into_result().and_then(|x| unsafe { x.as_mut() }.ok_or_else(|| Error::new(core::StsNullPtr, format!("Function returned Null pointer"))))
    }
    
    fn set_mask_generator(&mut self, mask_generator: &types::PtrOfMaskGenerator) -> Result<()> {
        unsafe { sys::cv_BaseCascadeClassifier_setMaskGenerator_PtrOfMaskGenerator(self.as_raw_BaseCascadeClassifier(), mask_generator.as_raw_PtrOfMaskGenerator()) }.into_result()
    }
    
    fn get_mask_generator(&mut self) -> Result<types::PtrOfMaskGenerator> {
        unsafe { sys::cv_BaseCascadeClassifier_getMaskGenerator(self.as_raw_BaseCascadeClassifier()) }.into_result().map(|ptr| types::PtrOfMaskGenerator { ptr })
    }
    
}

// Generating impl for trait cv::BaseCascadeClassifier::MaskGenerator (trait)
pub trait BaseCascadeClassifier_MaskGenerator {
    #[inline(always)] fn as_raw_BaseCascadeClassifier_MaskGenerator(&self) -> *mut c_void;
    fn generate_mask(&mut self, src: &core::Mat) -> Result<core::Mat> {
        unsafe { sys::cv_BaseCascadeClassifier_MaskGenerator_generateMask_Mat(self.as_raw_BaseCascadeClassifier_MaskGenerator(), src.as_raw_Mat()) }.into_result().map(|ptr| core::Mat { ptr })
    }
    
    fn initialize_mask(&mut self, unnamed_arg: &core::Mat) -> Result<()> {
        unsafe { sys::cv_BaseCascadeClassifier_MaskGenerator_initializeMask_Mat(self.as_raw_BaseCascadeClassifier_MaskGenerator(), unnamed_arg.as_raw_Mat()) }.into_result()
    }
    
}

// boxed class cv::CascadeClassifier
/// Cascade classifier class for object detection.
pub struct CascadeClassifier {
    #[doc(hidden)] pub(crate) ptr: *mut c_void
}

impl Drop for crate::objdetect::CascadeClassifier {
    fn drop(&mut self) {
        unsafe { sys::cv_CascadeClassifier_delete(self.ptr) };
    }
}
impl crate::objdetect::CascadeClassifier {
    #[inline(always)] pub fn as_raw_CascadeClassifier(&self) -> *mut c_void { self.ptr }

    pub unsafe fn from_raw_ptr(ptr: *mut c_void) -> Self {
        Self { ptr }
    }
}

unsafe impl Send for CascadeClassifier {}

impl CascadeClassifier {

    pub fn default() -> Result<crate::objdetect::CascadeClassifier> {
        unsafe { sys::cv_CascadeClassifier_CascadeClassifier() }.into_result().map(|ptr| crate::objdetect::CascadeClassifier { ptr })
    }
    
    /// Loads a classifier from a file.
    ///
    /// ## Parameters
    /// * filename: Name of the file from which the classifier is loaded.
    pub fn new(filename: &str) -> Result<crate::objdetect::CascadeClassifier> {
        string_arg!(filename);
        unsafe { sys::cv_CascadeClassifier_CascadeClassifier_String(filename.as_ptr()) }.into_result().map(|ptr| crate::objdetect::CascadeClassifier { ptr })
    }
    
    /// Checks whether the classifier has been loaded.
    pub fn empty(&self) -> Result<bool> {
        unsafe { sys::cv_CascadeClassifier_empty_const(self.as_raw_CascadeClassifier()) }.into_result()
    }
    
    /// Loads a classifier from a file.
    ///
    /// ## Parameters
    /// * filename: Name of the file from which the classifier is loaded. The file may contain an old
    /// HAAR classifier trained by the haartraining application or a new cascade classifier trained by the
    /// traincascade application.
    pub fn load(&mut self, filename: &str) -> Result<bool> {
        string_arg!(filename);
        unsafe { sys::cv_CascadeClassifier_load_String(self.as_raw_CascadeClassifier(), filename.as_ptr()) }.into_result()
    }
    
    /// Reads a classifier from a FileStorage node.
    ///
    ///
    /// Note: The file may contain a new cascade classifier (trained traincascade application) only.
    pub fn read(&mut self, node: &core::FileNode) -> Result<bool> {
        unsafe { sys::cv_CascadeClassifier_read_FileNode(self.as_raw_CascadeClassifier(), node.as_raw_FileNode()) }.into_result()
    }
    
    /// Detects objects of different sizes in the input image. The detected objects are returned as a list
    /// of rectangles.
    ///
    /// ## Parameters
    /// * image: Matrix of the type CV_8U containing an image where objects are detected.
    /// * objects: Vector of rectangles where each rectangle contains the detected object, the
    /// rectangles may be partially outside the original image.
    /// * scaleFactor: Parameter specifying how much the image size is reduced at each image scale.
    /// * minNeighbors: Parameter specifying how many neighbors each candidate rectangle should have
    /// to retain it.
    /// * flags: Parameter with the same meaning for an old cascade as in the function
    /// cvHaarDetectObjects. It is not used for a new cascade.
    /// * minSize: Minimum possible object size. Objects smaller than that are ignored.
    /// * maxSize: Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale.
    ///
    /// The function is parallelized with the TBB library.
    ///
    ///
    /// Note:
    /// *   (Python) A face detection example using cascade classifiers can be found at
    /// opencv_source_code/samples/python/facedetect.py
    ///
    /// ## C++ default parameters
    /// * scale_factor: 1.1
    /// * min_neighbors: 3
    /// * flags: 0
    /// * min_size: Size()
    /// * max_size: Size()
    pub fn detect_multi_scale(&mut self, image: &dyn core::ToInputArray, objects: &mut types::VectorOfRect, scale_factor: f64, min_neighbors: i32, flags: i32, min_size: core::Size, max_size: core::Size) -> Result<()> {
        input_array_arg!(image);
        unsafe { sys::cv_CascadeClassifier_detectMultiScale__InputArray_VectorOfRect_double_int_int_Size_Size(self.as_raw_CascadeClassifier(), image.as_raw__InputArray(), objects.as_raw_VectorOfRect(), scale_factor, min_neighbors, flags, min_size, max_size) }.into_result()
    }
    
    /// ## Parameters
    /// * image: Matrix of the type CV_8U containing an image where objects are detected.
    /// * objects: Vector of rectangles where each rectangle contains the detected object, the
    /// rectangles may be partially outside the original image.
    /// * numDetections: Vector of detection numbers for the corresponding objects. An object's number
    /// of detections is the number of neighboring positively classified rectangles that were joined
    /// together to form the object.
    /// * scaleFactor: Parameter specifying how much the image size is reduced at each image scale.
    /// * minNeighbors: Parameter specifying how many neighbors each candidate rectangle should have
    /// to retain it.
    /// * flags: Parameter with the same meaning for an old cascade as in the function
    /// cvHaarDetectObjects. It is not used for a new cascade.
    /// * minSize: Minimum possible object size. Objects smaller than that are ignored.
    /// * maxSize: Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale.
    ///
    /// ## C++ default parameters
    /// * scale_factor: 1.1
    /// * min_neighbors: 3
    /// * flags: 0
    /// * min_size: Size()
    /// * max_size: Size()
    pub fn detect_multi_scale_num(&mut self, image: &dyn core::ToInputArray, objects: &mut types::VectorOfRect, num_detections: &mut types::VectorOfint, scale_factor: f64, min_neighbors: i32, flags: i32, min_size: core::Size, max_size: core::Size) -> Result<()> {
        input_array_arg!(image);
        unsafe { sys::cv_CascadeClassifier_detectMultiScale__InputArray_VectorOfRect_VectorOfint_double_int_int_Size_Size(self.as_raw_CascadeClassifier(), image.as_raw__InputArray(), objects.as_raw_VectorOfRect(), num_detections.as_raw_VectorOfint(), scale_factor, min_neighbors, flags, min_size, max_size) }.into_result()
    }
    
    /// This function allows you to retrieve the final stage decision certainty of classification.
    /// For this, one needs to set `outputRejectLevels` on true and provide the `rejectLevels` and `levelWeights` parameter.
    /// For each resulting detection, `levelWeights` will then contain the certainty of classification at the final stage.
    /// This value can then be used to separate strong from weaker classifications.
    ///
    /// A code sample on how to use it efficiently can be found below:
    /// ```ignore
    /// Mat img;
    /// vector<double> weights;
    /// vector<int> levels;
    /// vector<Rect> detections;
    /// CascadeClassifier model("/path/to/your/model.xml");
    /// model.detectMultiScale(img, detections, levels, weights, 1.1, 3, 0, Size(), Size(), true);
    /// cerr << "Detection " << detections[0] << " with weight " << weights[0] << endl;
    /// ```
    ///
    /// ## C++ default parameters
    /// * scale_factor: 1.1
    /// * min_neighbors: 3
    /// * flags: 0
    /// * min_size: Size()
    /// * max_size: Size()
    /// * output_reject_levels: false
    pub fn detect_multi_scale_levels(&mut self, image: &dyn core::ToInputArray, objects: &mut types::VectorOfRect, reject_levels: &mut types::VectorOfint, level_weights: &mut types::VectorOfdouble, scale_factor: f64, min_neighbors: i32, flags: i32, min_size: core::Size, max_size: core::Size, output_reject_levels: bool) -> Result<()> {
        input_array_arg!(image);
        unsafe { sys::cv_CascadeClassifier_detectMultiScale__InputArray_VectorOfRect_VectorOfint_VectorOfdouble_double_int_int_Size_Size_bool(self.as_raw_CascadeClassifier(), image.as_raw__InputArray(), objects.as_raw_VectorOfRect(), reject_levels.as_raw_VectorOfint(), level_weights.as_raw_VectorOfdouble(), scale_factor, min_neighbors, flags, min_size, max_size, output_reject_levels) }.into_result()
    }
    
    pub fn is_old_format_cascade(&self) -> Result<bool> {
        unsafe { sys::cv_CascadeClassifier_isOldFormatCascade_const(self.as_raw_CascadeClassifier()) }.into_result()
    }
    
    pub fn get_original_window_size(&self) -> Result<core::Size> {
        unsafe { sys::cv_CascadeClassifier_getOriginalWindowSize_const(self.as_raw_CascadeClassifier()) }.into_result()
    }
    
    pub fn get_feature_type(&self) -> Result<i32> {
        unsafe { sys::cv_CascadeClassifier_getFeatureType_const(self.as_raw_CascadeClassifier()) }.into_result()
    }
    
    pub fn get_old_cascade(&mut self) -> Result<&mut c_void> {
        unsafe { sys::cv_CascadeClassifier_getOldCascade(self.as_raw_CascadeClassifier()) }.into_result().and_then(|x| unsafe { x.as_mut() }.ok_or_else(|| Error::new(core::StsNullPtr, format!("Function returned Null pointer"))))
    }
    
    pub fn convert(oldcascade: &str, newcascade: &str) -> Result<bool> {
        string_arg!(oldcascade);
        string_arg!(newcascade);
        unsafe { sys::cv_CascadeClassifier_convert_String_String(oldcascade.as_ptr(), newcascade.as_ptr()) }.into_result()
    }
    
    pub fn set_mask_generator(&mut self, mask_generator: &types::PtrOfMaskGenerator) -> Result<()> {
        unsafe { sys::cv_CascadeClassifier_setMaskGenerator_PtrOfMaskGenerator(self.as_raw_CascadeClassifier(), mask_generator.as_raw_PtrOfMaskGenerator()) }.into_result()
    }
    
    pub fn get_mask_generator(&mut self) -> Result<types::PtrOfMaskGenerator> {
        unsafe { sys::cv_CascadeClassifier_getMaskGenerator(self.as_raw_CascadeClassifier()) }.into_result().map(|ptr| types::PtrOfMaskGenerator { ptr })
    }
    
}

// boxed class cv::DetectionBasedTracker
pub struct DetectionBasedTracker {
    #[doc(hidden)] pub(crate) ptr: *mut c_void
}

impl Drop for crate::objdetect::DetectionBasedTracker {
    fn drop(&mut self) {
        unsafe { sys::cv_DetectionBasedTracker_delete(self.ptr) };
    }
}
impl crate::objdetect::DetectionBasedTracker {
    #[inline(always)] pub fn as_raw_DetectionBasedTracker(&self) -> *mut c_void { self.ptr }

    pub unsafe fn from_raw_ptr(ptr: *mut c_void) -> Self {
        Self { ptr }
    }
}

unsafe impl Send for DetectionBasedTracker {}

impl DetectionBasedTracker {

    pub fn run(&mut self) -> Result<bool> {
        unsafe { sys::cv_DetectionBasedTracker_run(self.as_raw_DetectionBasedTracker()) }.into_result()
    }
    
    pub fn stop(&mut self) -> Result<()> {
        unsafe { sys::cv_DetectionBasedTracker_stop(self.as_raw_DetectionBasedTracker()) }.into_result()
    }
    
    pub fn reset_tracking(&mut self) -> Result<()> {
        unsafe { sys::cv_DetectionBasedTracker_resetTracking(self.as_raw_DetectionBasedTracker()) }.into_result()
    }
    
    pub fn process(&mut self, image_gray: &core::Mat) -> Result<()> {
        unsafe { sys::cv_DetectionBasedTracker_process_Mat(self.as_raw_DetectionBasedTracker(), image_gray.as_raw_Mat()) }.into_result()
    }
    
    pub fn set_parameters(&mut self, params: &crate::objdetect::DetectionBasedTracker_Parameters) -> Result<bool> {
        unsafe { sys::cv_DetectionBasedTracker_setParameters_Parameters(self.as_raw_DetectionBasedTracker(), params.as_raw_DetectionBasedTracker_Parameters()) }.into_result()
    }
    
    pub fn get_parameters(&self) -> Result<crate::objdetect::DetectionBasedTracker_Parameters> {
        unsafe { sys::cv_DetectionBasedTracker_getParameters_const(self.as_raw_DetectionBasedTracker()) }.into_result().map(|ptr| crate::objdetect::DetectionBasedTracker_Parameters { ptr })
    }
    
    pub fn get_objects(&self, result: &mut types::VectorOfRect) -> Result<()> {
        unsafe { sys::cv_DetectionBasedTracker_getObjects_const_VectorOfRect(self.as_raw_DetectionBasedTracker(), result.as_raw_VectorOfRect()) }.into_result()
    }
    
    pub fn get_objects_1(&self, result: &mut types::VectorOfExtObject) -> Result<()> {
        unsafe { sys::cv_DetectionBasedTracker_getObjects_const_VectorOfExtObject(self.as_raw_DetectionBasedTracker(), result.as_raw_VectorOfExtObject()) }.into_result()
    }
    
    pub fn add_object(&mut self, location: core::Rect) -> Result<i32> {
        unsafe { sys::cv_DetectionBasedTracker_addObject_Rect(self.as_raw_DetectionBasedTracker(), location) }.into_result()
    }
    
}

// boxed class cv::DetectionBasedTracker::ExtObject
pub struct DetectionBasedTracker_ExtObject {
    #[doc(hidden)] pub(crate) ptr: *mut c_void
}

impl Drop for crate::objdetect::DetectionBasedTracker_ExtObject {
    fn drop(&mut self) {
        unsafe { sys::cv_DetectionBasedTracker_ExtObject_delete(self.ptr) };
    }
}
impl crate::objdetect::DetectionBasedTracker_ExtObject {
    #[inline(always)] pub fn as_raw_DetectionBasedTracker_ExtObject(&self) -> *mut c_void { self.ptr }

    pub unsafe fn from_raw_ptr(ptr: *mut c_void) -> Self {
        Self { ptr }
    }
}

unsafe impl Send for DetectionBasedTracker_ExtObject {}

impl DetectionBasedTracker_ExtObject {

    pub fn new(_id: i32, _location: core::Rect, _status: crate::objdetect::DetectionBasedTracker_ObjectStatus) -> Result<crate::objdetect::DetectionBasedTracker_ExtObject> {
        unsafe { sys::cv_DetectionBasedTracker_ExtObject_ExtObject_int_Rect_DetectionBasedTracker_ObjectStatus(_id, _location, _status) }.into_result().map(|ptr| crate::objdetect::DetectionBasedTracker_ExtObject { ptr })
    }
    
}

// Generating impl for trait cv::DetectionBasedTracker::IDetector (trait)
pub trait DetectionBasedTracker_IDetector {
    #[inline(always)] fn as_raw_DetectionBasedTracker_IDetector(&self) -> *mut c_void;
    fn detect(&mut self, image: &core::Mat, objects: &mut types::VectorOfRect) -> Result<()> {
        unsafe { sys::cv_DetectionBasedTracker_IDetector_detect_Mat_VectorOfRect(self.as_raw_DetectionBasedTracker_IDetector(), image.as_raw_Mat(), objects.as_raw_VectorOfRect()) }.into_result()
    }
    
    fn set_min_object_size(&mut self, min: core::Size) -> Result<()> {
        unsafe { sys::cv_DetectionBasedTracker_IDetector_setMinObjectSize_Size(self.as_raw_DetectionBasedTracker_IDetector(), min) }.into_result()
    }
    
    fn set_max_object_size(&mut self, max: core::Size) -> Result<()> {
        unsafe { sys::cv_DetectionBasedTracker_IDetector_setMaxObjectSize_Size(self.as_raw_DetectionBasedTracker_IDetector(), max) }.into_result()
    }
    
    fn get_min_object_size(&self) -> Result<core::Size> {
        unsafe { sys::cv_DetectionBasedTracker_IDetector_getMinObjectSize_const(self.as_raw_DetectionBasedTracker_IDetector()) }.into_result()
    }
    
    fn get_max_object_size(&self) -> Result<core::Size> {
        unsafe { sys::cv_DetectionBasedTracker_IDetector_getMaxObjectSize_const(self.as_raw_DetectionBasedTracker_IDetector()) }.into_result()
    }
    
    fn get_scale_factor(&mut self) -> Result<f32> {
        unsafe { sys::cv_DetectionBasedTracker_IDetector_getScaleFactor(self.as_raw_DetectionBasedTracker_IDetector()) }.into_result()
    }
    
    fn set_scale_factor(&mut self, value: f32) -> Result<()> {
        unsafe { sys::cv_DetectionBasedTracker_IDetector_setScaleFactor_float(self.as_raw_DetectionBasedTracker_IDetector(), value) }.into_result()
    }
    
    fn get_min_neighbours(&mut self) -> Result<i32> {
        unsafe { sys::cv_DetectionBasedTracker_IDetector_getMinNeighbours(self.as_raw_DetectionBasedTracker_IDetector()) }.into_result()
    }
    
    fn set_min_neighbours(&mut self, value: i32) -> Result<()> {
        unsafe { sys::cv_DetectionBasedTracker_IDetector_setMinNeighbours_int(self.as_raw_DetectionBasedTracker_IDetector(), value) }.into_result()
    }
    
}

// boxed class cv::DetectionBasedTracker::Parameters
pub struct DetectionBasedTracker_Parameters {
    #[doc(hidden)] pub(crate) ptr: *mut c_void
}

impl Drop for crate::objdetect::DetectionBasedTracker_Parameters {
    fn drop(&mut self) {
        unsafe { sys::cv_DetectionBasedTracker_Parameters_delete(self.ptr) };
    }
}
impl crate::objdetect::DetectionBasedTracker_Parameters {
    #[inline(always)] pub fn as_raw_DetectionBasedTracker_Parameters(&self) -> *mut c_void { self.ptr }

    pub unsafe fn from_raw_ptr(ptr: *mut c_void) -> Self {
        Self { ptr }
    }
}

unsafe impl Send for DetectionBasedTracker_Parameters {}

impl DetectionBasedTracker_Parameters {

    pub fn default() -> Result<crate::objdetect::DetectionBasedTracker_Parameters> {
        unsafe { sys::cv_DetectionBasedTracker_Parameters_Parameters() }.into_result().map(|ptr| crate::objdetect::DetectionBasedTracker_Parameters { ptr })
    }
    
}

// boxed class cv::DetectionROI
/// struct for detection region of interest (ROI)
pub struct DetectionROI {
    #[doc(hidden)] pub(crate) ptr: *mut c_void
}

impl Drop for crate::objdetect::DetectionROI {
    fn drop(&mut self) {
        unsafe { sys::cv_DetectionROI_delete(self.ptr) };
    }
}
impl crate::objdetect::DetectionROI {
    #[inline(always)] pub fn as_raw_DetectionROI(&self) -> *mut c_void { self.ptr }

    pub unsafe fn from_raw_ptr(ptr: *mut c_void) -> Self {
        Self { ptr }
    }
}

unsafe impl Send for DetectionROI {}

// boxed class cv::HOGDescriptor
/// Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector.
///
/// the HOG descriptor algorithm introduced by Navneet Dalal and Bill Triggs [Dalal2005](https://docs.opencv.org/3.4.7/d0/de3/citelist.html#CITEREF_Dalal2005) .
///
/// useful links:
///
/// https://hal.inria.fr/inria-00548512/document/
///
/// https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
///
/// https://software.intel.com/en-us/ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor
///
/// http://www.learnopencv.com/histogram-of-oriented-gradients
///
/// http://www.learnopencv.com/handwritten-digits-classification-an-opencv-c-python-tutorial
pub struct HOGDescriptor {
    #[doc(hidden)] pub(crate) ptr: *mut c_void
}

impl Drop for crate::objdetect::HOGDescriptor {
    fn drop(&mut self) {
        unsafe { sys::cv_HOGDescriptor_delete(self.ptr) };
    }
}
impl crate::objdetect::HOGDescriptor {
    #[inline(always)] pub fn as_raw_HOGDescriptor(&self) -> *mut c_void { self.ptr }

    pub unsafe fn from_raw_ptr(ptr: *mut c_void) -> Self {
        Self { ptr }
    }
}

unsafe impl Send for HOGDescriptor {}

impl HOGDescriptor {

    /// Detection window size. Align to block size and block stride. Default value is Size(64,128).
    pub fn win_size(&self) -> Result<core::Size> {
        unsafe { sys::cv_HOGDescriptor_winSize_const(self.as_raw_HOGDescriptor()) }.into_result()
    }
    
    /// Block size in pixels. Align to cell size. Default value is Size(16,16).
    pub fn block_size(&self) -> Result<core::Size> {
        unsafe { sys::cv_HOGDescriptor_blockSize_const(self.as_raw_HOGDescriptor()) }.into_result()
    }
    
    /// Block stride. It must be a multiple of cell size. Default value is Size(8,8).
    pub fn block_stride(&self) -> Result<core::Size> {
        unsafe { sys::cv_HOGDescriptor_blockStride_const(self.as_raw_HOGDescriptor()) }.into_result()
    }
    
    /// Cell size. Default value is Size(8,8).
    pub fn cell_size(&self) -> Result<core::Size> {
        unsafe { sys::cv_HOGDescriptor_cellSize_const(self.as_raw_HOGDescriptor()) }.into_result()
    }
    
    /// Number of bins used in the calculation of histogram of gradients. Default value is 9.
    pub fn nbins(&self) -> Result<i32> {
        unsafe { sys::cv_HOGDescriptor_nbins_const(self.as_raw_HOGDescriptor()) }.into_result()
    }
    
    /// not documented
    pub fn deriv_aperture(&self) -> Result<i32> {
        unsafe { sys::cv_HOGDescriptor_derivAperture_const(self.as_raw_HOGDescriptor()) }.into_result()
    }
    
    /// Gaussian smoothing window parameter.
    pub fn win_sigma(&self) -> Result<f64> {
        unsafe { sys::cv_HOGDescriptor_winSigma_const(self.as_raw_HOGDescriptor()) }.into_result()
    }
    
    /// histogramNormType
    pub fn histogram_norm_type(&self) -> Result<i32> {
        unsafe { sys::cv_HOGDescriptor_histogramNormType_const(self.as_raw_HOGDescriptor()) }.into_result()
    }
    
    /// L2-Hys normalization method shrinkage.
    pub fn l2_hys_threshold(&self) -> Result<f64> {
        unsafe { sys::cv_HOGDescriptor_L2HysThreshold_const(self.as_raw_HOGDescriptor()) }.into_result()
    }
    
    /// Flag to specify whether the gamma correction preprocessing is required or not.
    pub fn gamma_correction(&self) -> Result<bool> {
        unsafe { sys::cv_HOGDescriptor_gammaCorrection_const(self.as_raw_HOGDescriptor()) }.into_result()
    }
    
    /// coefficients for the linear SVM classifier.
    pub fn svm_detector(&mut self) -> Result<types::VectorOffloat> {
        unsafe { sys::cv_HOGDescriptor_svmDetector(self.as_raw_HOGDescriptor()) }.into_result().map(|ptr| types::VectorOffloat { ptr })
    }
    
    /// coefficients for the linear SVM classifier.
    pub fn set_svm_detector_vec(&mut self, val: types::VectorOffloat) -> Result<()> {
        unsafe { sys::cv_HOGDescriptor_set_svmDetector_VectorOffloat(self.as_raw_HOGDescriptor(), val.as_raw_VectorOffloat()) }.into_result()
    }
    
    /// Maximum number of detection window increases. Default value is 64
    pub fn nlevels(&self) -> Result<i32> {
        unsafe { sys::cv_HOGDescriptor_nlevels_const(self.as_raw_HOGDescriptor()) }.into_result()
    }
    
    /// Indicates signed gradient will be used or not
    pub fn signed_gradient(&self) -> Result<bool> {
        unsafe { sys::cv_HOGDescriptor_signedGradient_const(self.as_raw_HOGDescriptor()) }.into_result()
    }
    
    /// Creates the HOG descriptor and detector with default params.
    ///
    /// aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9, 1 )
    pub fn default() -> Result<crate::objdetect::HOGDescriptor> {
        unsafe { sys::cv_HOGDescriptor_HOGDescriptor() }.into_result().map(|ptr| crate::objdetect::HOGDescriptor { ptr })
    }
    
    /// ## Parameters
    /// * _winSize: sets winSize with given value.
    /// * _blockSize: sets blockSize with given value.
    /// * _blockStride: sets blockStride with given value.
    /// * _cellSize: sets cellSize with given value.
    /// * _nbins: sets nbins with given value.
    /// * _derivAperture: sets derivAperture with given value.
    /// * _winSigma: sets winSigma with given value.
    /// * _histogramNormType: sets histogramNormType with given value.
    /// * _L2HysThreshold: sets L2HysThreshold with given value.
    /// * _gammaCorrection: sets gammaCorrection with given value.
    /// * _nlevels: sets nlevels with given value.
    /// * _signedGradient: sets signedGradient with given value.
    ///
    /// ## C++ default parameters
    /// * _deriv_aperture: 1
    /// * _win_sigma: -1
    /// * _histogram_norm_type: HOGDescriptor::L2Hys
    /// * _l2_hys_threshold: 0.2
    /// * _gamma_correction: false
    /// * _nlevels: HOGDescriptor::DEFAULT_NLEVELS
    /// * _signed_gradient: false
    pub fn new(_win_size: core::Size, _block_size: core::Size, _block_stride: core::Size, _cell_size: core::Size, _nbins: i32, _deriv_aperture: i32, _win_sigma: f64, _histogram_norm_type: i32, _l2_hys_threshold: f64, _gamma_correction: bool, _nlevels: i32, _signed_gradient: bool) -> Result<crate::objdetect::HOGDescriptor> {
        unsafe { sys::cv_HOGDescriptor_HOGDescriptor_Size_Size_Size_Size_int_int_double_int_double_bool_int_bool(_win_size, _block_size, _block_stride, _cell_size, _nbins, _deriv_aperture, _win_sigma, _histogram_norm_type, _l2_hys_threshold, _gamma_correction, _nlevels, _signed_gradient) }.into_result().map(|ptr| crate::objdetect::HOGDescriptor { ptr })
    }
    
    /// ## Parameters
    /// * filename: the file name containing  HOGDescriptor properties and coefficients of the trained classifier
    pub fn new_from_file(filename: &str) -> Result<crate::objdetect::HOGDescriptor> {
        string_arg!(filename);
        unsafe { sys::cv_HOGDescriptor_HOGDescriptor_String(filename.as_ptr()) }.into_result().map(|ptr| crate::objdetect::HOGDescriptor { ptr })
    }
    
    /// ## Parameters
    /// * d: the HOGDescriptor which cloned to create a new one.
    pub fn copy(d: &crate::objdetect::HOGDescriptor) -> Result<crate::objdetect::HOGDescriptor> {
        unsafe { sys::cv_HOGDescriptor_HOGDescriptor_HOGDescriptor(d.as_raw_HOGDescriptor()) }.into_result().map(|ptr| crate::objdetect::HOGDescriptor { ptr })
    }
    
    /// Returns the number of coefficients required for the classification.
    pub fn get_descriptor_size(&self) -> Result<size_t> {
        unsafe { sys::cv_HOGDescriptor_getDescriptorSize_const(self.as_raw_HOGDescriptor()) }.into_result()
    }
    
    /// Checks if detector size equal to descriptor size.
    pub fn check_detector_size(&self) -> Result<bool> {
        unsafe { sys::cv_HOGDescriptor_checkDetectorSize_const(self.as_raw_HOGDescriptor()) }.into_result()
    }
    
    /// Returns winSigma value
    pub fn get_win_sigma(&self) -> Result<f64> {
        unsafe { sys::cv_HOGDescriptor_getWinSigma_const(self.as_raw_HOGDescriptor()) }.into_result()
    }
    
    /// Sets coefficients for the linear SVM classifier.
    /// ## Parameters
    /// * _svmdetector: coefficients for the linear SVM classifier.
    pub fn set_svm_detector(&mut self, _svmdetector: &dyn core::ToInputArray) -> Result<()> {
        input_array_arg!(_svmdetector);
        unsafe { sys::cv_HOGDescriptor_setSVMDetector__InputArray(self.as_raw_HOGDescriptor(), _svmdetector.as_raw__InputArray()) }.into_result()
    }
    
    /// Reads HOGDescriptor parameters from a file node.
    /// ## Parameters
    /// * fn: File node
    pub fn read(&mut self, _fn: &mut core::FileNode) -> Result<bool> {
        unsafe { sys::cv_HOGDescriptor_read_FileNode(self.as_raw_HOGDescriptor(), _fn.as_raw_FileNode()) }.into_result()
    }
    
    /// Stores HOGDescriptor parameters in a file storage.
    /// ## Parameters
    /// * fs: File storage
    /// * objname: Object name
    pub fn write(&self, fs: &mut core::FileStorage, objname: &str) -> Result<()> {
        string_arg!(objname);
        unsafe { sys::cv_HOGDescriptor_write_const_FileStorage_String(self.as_raw_HOGDescriptor(), fs.as_raw_FileStorage(), objname.as_ptr()) }.into_result()
    }
    
    /// loads coefficients for the linear SVM classifier from a file
    /// ## Parameters
    /// * filename: Name of the file to read.
    /// * objname: The optional name of the node to read (if empty, the first top-level node will be used).
    ///
    /// ## C++ default parameters
    /// * objname: String()
    pub fn load(&mut self, filename: &str, objname: &str) -> Result<bool> {
        string_arg!(filename);
        string_arg!(objname);
        unsafe { sys::cv_HOGDescriptor_load_String_String(self.as_raw_HOGDescriptor(), filename.as_ptr(), objname.as_ptr()) }.into_result()
    }
    
    /// saves coefficients for the linear SVM classifier to a file
    /// ## Parameters
    /// * filename: File name
    /// * objname: Object name
    ///
    /// ## C++ default parameters
    /// * objname: String()
    pub fn save(&self, filename: &str, objname: &str) -> Result<()> {
        string_arg!(filename);
        string_arg!(objname);
        unsafe { sys::cv_HOGDescriptor_save_const_String_String(self.as_raw_HOGDescriptor(), filename.as_ptr(), objname.as_ptr()) }.into_result()
    }
    
    /// clones the HOGDescriptor
    /// ## Parameters
    /// * c: cloned HOGDescriptor
    pub fn copy_to(&self, c: &mut crate::objdetect::HOGDescriptor) -> Result<()> {
        unsafe { sys::cv_HOGDescriptor_copyTo_const_HOGDescriptor(self.as_raw_HOGDescriptor(), c.as_raw_HOGDescriptor()) }.into_result()
    }
    
    /// Computes HOG descriptors of given image.
    /// ## Parameters
    /// * img: Matrix of the type CV_8U containing an image where HOG features will be calculated.
    /// * descriptors: Matrix of the type CV_32F
    /// * winStride: Window stride. It must be a multiple of block stride.
    /// * padding: Padding
    /// * locations: Vector of Point
    ///
    /// ## C++ default parameters
    /// * win_stride: Size()
    /// * padding: Size()
    /// * locations: std::vector<Point>()
    pub fn compute(&self, img: &dyn core::ToInputArray, descriptors: &mut types::VectorOffloat, win_stride: core::Size, padding: core::Size, locations: &types::VectorOfPoint) -> Result<()> {
        input_array_arg!(img);
        unsafe { sys::cv_HOGDescriptor_compute_const__InputArray_VectorOffloat_Size_Size_VectorOfPoint(self.as_raw_HOGDescriptor(), img.as_raw__InputArray(), descriptors.as_raw_VectorOffloat(), win_stride, padding, locations.as_raw_VectorOfPoint()) }.into_result()
    }
    
    /// Performs object detection without a multi-scale window.
    /// ## Parameters
    /// * img: Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
    /// * foundLocations: Vector of point where each point contains left-top corner point of detected object boundaries.
    /// * weights: Vector that will contain confidence values for each detected object.
    /// * hitThreshold: Threshold for the distance between features and SVM classifying plane.
    /// Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
    /// But if the free coefficient is omitted (which is allowed), you can specify it manually here.
    /// * winStride: Window stride. It must be a multiple of block stride.
    /// * padding: Padding
    /// * searchLocations: Vector of Point includes set of requested locations to be evaluated.
    ///
    /// ## C++ default parameters
    /// * hit_threshold: 0
    /// * win_stride: Size()
    /// * padding: Size()
    /// * search_locations: std::vector<Point>()
    pub fn detect_weights(&self, img: &core::Mat, found_locations: &mut types::VectorOfPoint, weights: &mut types::VectorOfdouble, hit_threshold: f64, win_stride: core::Size, padding: core::Size, search_locations: &types::VectorOfPoint) -> Result<()> {
        unsafe { sys::cv_HOGDescriptor_detect_const_Mat_VectorOfPoint_VectorOfdouble_double_Size_Size_VectorOfPoint(self.as_raw_HOGDescriptor(), img.as_raw_Mat(), found_locations.as_raw_VectorOfPoint(), weights.as_raw_VectorOfdouble(), hit_threshold, win_stride, padding, search_locations.as_raw_VectorOfPoint()) }.into_result()
    }
    
    /// Performs object detection without a multi-scale window.
    /// ## Parameters
    /// * img: Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
    /// * foundLocations: Vector of point where each point contains left-top corner point of detected object boundaries.
    /// * hitThreshold: Threshold for the distance between features and SVM classifying plane.
    /// Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
    /// But if the free coefficient is omitted (which is allowed), you can specify it manually here.
    /// * winStride: Window stride. It must be a multiple of block stride.
    /// * padding: Padding
    /// * searchLocations: Vector of Point includes locations to search.
    ///
    /// ## C++ default parameters
    /// * hit_threshold: 0
    /// * win_stride: Size()
    /// * padding: Size()
    /// * search_locations: std::vector<Point>()
    pub fn detect(&self, img: &core::Mat, found_locations: &mut types::VectorOfPoint, hit_threshold: f64, win_stride: core::Size, padding: core::Size, search_locations: &types::VectorOfPoint) -> Result<()> {
        unsafe { sys::cv_HOGDescriptor_detect_const_Mat_VectorOfPoint_double_Size_Size_VectorOfPoint(self.as_raw_HOGDescriptor(), img.as_raw_Mat(), found_locations.as_raw_VectorOfPoint(), hit_threshold, win_stride, padding, search_locations.as_raw_VectorOfPoint()) }.into_result()
    }
    
    /// Detects objects of different sizes in the input image. The detected objects are returned as a list
    /// of rectangles.
    /// ## Parameters
    /// * img: Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
    /// * foundLocations: Vector of rectangles where each rectangle contains the detected object.
    /// * foundWeights: Vector that will contain confidence values for each detected object.
    /// * hitThreshold: Threshold for the distance between features and SVM classifying plane.
    /// Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
    /// But if the free coefficient is omitted (which is allowed), you can specify it manually here.
    /// * winStride: Window stride. It must be a multiple of block stride.
    /// * padding: Padding
    /// * scale: Coefficient of the detection window increase.
    /// * finalThreshold: Final threshold
    /// * useMeanshiftGrouping: indicates grouping algorithm
    ///
    /// ## C++ default parameters
    /// * hit_threshold: 0
    /// * win_stride: Size()
    /// * padding: Size()
    /// * scale: 1.05
    /// * final_threshold: 2.0
    /// * use_meanshift_grouping: false
    pub fn detect_multi_scale_weights(&self, img: &dyn core::ToInputArray, found_locations: &mut types::VectorOfRect, found_weights: &mut types::VectorOfdouble, hit_threshold: f64, win_stride: core::Size, padding: core::Size, scale: f64, final_threshold: f64, use_meanshift_grouping: bool) -> Result<()> {
        input_array_arg!(img);
        unsafe { sys::cv_HOGDescriptor_detectMultiScale_const__InputArray_VectorOfRect_VectorOfdouble_double_Size_Size_double_double_bool(self.as_raw_HOGDescriptor(), img.as_raw__InputArray(), found_locations.as_raw_VectorOfRect(), found_weights.as_raw_VectorOfdouble(), hit_threshold, win_stride, padding, scale, final_threshold, use_meanshift_grouping) }.into_result()
    }
    
    /// Detects objects of different sizes in the input image. The detected objects are returned as a list
    /// of rectangles.
    /// ## Parameters
    /// * img: Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
    /// * foundLocations: Vector of rectangles where each rectangle contains the detected object.
    /// * hitThreshold: Threshold for the distance between features and SVM classifying plane.
    /// Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
    /// But if the free coefficient is omitted (which is allowed), you can specify it manually here.
    /// * winStride: Window stride. It must be a multiple of block stride.
    /// * padding: Padding
    /// * scale: Coefficient of the detection window increase.
    /// * finalThreshold: Final threshold
    /// * useMeanshiftGrouping: indicates grouping algorithm
    ///
    /// ## C++ default parameters
    /// * hit_threshold: 0
    /// * win_stride: Size()
    /// * padding: Size()
    /// * scale: 1.05
    /// * final_threshold: 2.0
    /// * use_meanshift_grouping: false
    pub fn detect_multi_scale(&self, img: &dyn core::ToInputArray, found_locations: &mut types::VectorOfRect, hit_threshold: f64, win_stride: core::Size, padding: core::Size, scale: f64, final_threshold: f64, use_meanshift_grouping: bool) -> Result<()> {
        input_array_arg!(img);
        unsafe { sys::cv_HOGDescriptor_detectMultiScale_const__InputArray_VectorOfRect_double_Size_Size_double_double_bool(self.as_raw_HOGDescriptor(), img.as_raw__InputArray(), found_locations.as_raw_VectorOfRect(), hit_threshold, win_stride, padding, scale, final_threshold, use_meanshift_grouping) }.into_result()
    }
    
    /// Computes gradients and quantized gradient orientations.
    /// ## Parameters
    /// * img: Matrix contains the image to be computed
    /// * grad: Matrix of type CV_32FC2 contains computed gradients
    /// * angleOfs: Matrix of type CV_8UC2 contains quantized gradient orientations
    /// * paddingTL: Padding from top-left
    /// * paddingBR: Padding from bottom-right
    ///
    /// ## C++ default parameters
    /// * padding_tl: Size()
    /// * padding_br: Size()
    pub fn compute_gradient(&self, img: &core::Mat, grad: &mut core::Mat, angle_ofs: &mut core::Mat, padding_tl: core::Size, padding_br: core::Size) -> Result<()> {
        unsafe { sys::cv_HOGDescriptor_computeGradient_const_Mat_Mat_Mat_Size_Size(self.as_raw_HOGDescriptor(), img.as_raw_Mat(), grad.as_raw_Mat(), angle_ofs.as_raw_Mat(), padding_tl, padding_br) }.into_result()
    }
    
    /// Returns coefficients of the classifier trained for people detection (for 64x128 windows).
    pub fn get_default_people_detector() -> Result<types::VectorOffloat> {
        unsafe { sys::cv_HOGDescriptor_getDefaultPeopleDetector() }.into_result().map(|ptr| types::VectorOffloat { ptr })
    }
    
    /// Returns coefficients of the classifier trained for people detection (for 48x96 windows).
    pub fn get_daimler_people_detector() -> Result<types::VectorOffloat> {
        unsafe { sys::cv_HOGDescriptor_getDaimlerPeopleDetector() }.into_result().map(|ptr| types::VectorOffloat { ptr })
    }
    
    /// evaluate specified ROI and return confidence value for each location
    /// ## Parameters
    /// * img: Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
    /// * locations: Vector of Point
    /// * foundLocations: Vector of Point where each Point is detected object's top-left point.
    /// * confidences: confidences
    /// * hitThreshold: Threshold for the distance between features and SVM classifying plane. Usually
    /// it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if
    /// the free coefficient is omitted (which is allowed), you can specify it manually here
    /// * winStride: winStride
    /// * padding: padding
    ///
    /// ## C++ default parameters
    /// * hit_threshold: 0
    /// * win_stride: Size()
    /// * padding: Size()
    pub fn detect_roi(&self, img: &core::Mat, locations: &types::VectorOfPoint, found_locations: &mut types::VectorOfPoint, confidences: &mut types::VectorOfdouble, hit_threshold: f64, win_stride: core::Size, padding: core::Size) -> Result<()> {
        unsafe { sys::cv_HOGDescriptor_detectROI_const_Mat_VectorOfPoint_VectorOfPoint_VectorOfdouble_double_Size_Size(self.as_raw_HOGDescriptor(), img.as_raw_Mat(), locations.as_raw_VectorOfPoint(), found_locations.as_raw_VectorOfPoint(), confidences.as_raw_VectorOfdouble(), hit_threshold, win_stride, padding) }.into_result()
    }
    
    /// evaluate specified ROI and return confidence value for each location in multiple scales
    /// ## Parameters
    /// * img: Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
    /// * foundLocations: Vector of rectangles where each rectangle contains the detected object.
    /// * locations: Vector of DetectionROI
    /// * hitThreshold: Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified
    /// in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
    /// * groupThreshold: Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it.
    ///
    /// ## C++ default parameters
    /// * hit_threshold: 0
    /// * group_threshold: 0
    pub fn detect_multi_scale_roi(&self, img: &core::Mat, found_locations: &mut types::VectorOfRect, locations: &mut types::VectorOfDetectionROI, hit_threshold: f64, group_threshold: i32) -> Result<()> {
        unsafe { sys::cv_HOGDescriptor_detectMultiScaleROI_const_Mat_VectorOfRect_VectorOfDetectionROI_double_int(self.as_raw_HOGDescriptor(), img.as_raw_Mat(), found_locations.as_raw_VectorOfRect(), locations.as_raw_VectorOfDetectionROI(), hit_threshold, group_threshold) }.into_result()
    }
    
    /// read/parse Dalal's alt model file
    /// ## Parameters
    /// * modelfile: Path of Dalal's alt model file.
    pub fn read_alt_model(&mut self, modelfile: &str) -> Result<()> {
        string_arg!(mut modelfile);
        unsafe { sys::cv_HOGDescriptor_readALTModel_String(self.as_raw_HOGDescriptor(), modelfile.as_ptr() as _) }.into_result()
    }
    
    /// Groups the object candidate rectangles.
    /// ## Parameters
    /// * rectList: Input/output vector of rectangles. Output vector includes retained and grouped rectangles. (The Python list is not modified in place.)
    /// * weights: Input/output vector of weights of rectangles. Output vector includes weights of retained and grouped rectangles. (The Python list is not modified in place.)
    /// * groupThreshold: Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it.
    /// * eps: Relative difference between sides of the rectangles to merge them into a group.
    pub fn group_rectangles(&self, rect_list: &mut types::VectorOfRect, weights: &mut types::VectorOfdouble, group_threshold: i32, eps: f64) -> Result<()> {
        unsafe { sys::cv_HOGDescriptor_groupRectangles_const_VectorOfRect_VectorOfdouble_int_double(self.as_raw_HOGDescriptor(), rect_list.as_raw_VectorOfRect(), weights.as_raw_VectorOfdouble(), group_threshold, eps) }.into_result()
    }
    
}

// boxed class cv::QRCodeDetector
pub struct QRCodeDetector {
    #[doc(hidden)] pub(crate) ptr: *mut c_void
}

impl Drop for crate::objdetect::QRCodeDetector {
    fn drop(&mut self) {
        unsafe { sys::cv_QRCodeDetector_delete(self.ptr) };
    }
}
impl crate::objdetect::QRCodeDetector {
    #[inline(always)] pub fn as_raw_QRCodeDetector(&self) -> *mut c_void { self.ptr }

    pub unsafe fn from_raw_ptr(ptr: *mut c_void) -> Self {
        Self { ptr }
    }
}

unsafe impl Send for QRCodeDetector {}

impl QRCodeDetector {

    pub fn default() -> Result<crate::objdetect::QRCodeDetector> {
        unsafe { sys::cv_QRCodeDetector_QRCodeDetector() }.into_result().map(|ptr| crate::objdetect::QRCodeDetector { ptr })
    }
    
    /// sets the epsilon used during the horizontal scan of QR code stop marker detection.
    /// ## Parameters
    /// * epsX: Epsilon neighborhood, which allows you to determine the horizontal pattern
    /// of the scheme 1:1:3:1:1 according to QR code standard.
    pub fn set_eps_x(&mut self, eps_x: f64) -> Result<()> {
        unsafe { sys::cv_QRCodeDetector_setEpsX_double(self.as_raw_QRCodeDetector(), eps_x) }.into_result()
    }
    
    /// sets the epsilon used during the vertical scan of QR code stop marker detection.
    /// ## Parameters
    /// * epsY: Epsilon neighborhood, which allows you to determine the vertical pattern
    /// of the scheme 1:1:3:1:1 according to QR code standard.
    pub fn set_eps_y(&mut self, eps_y: f64) -> Result<()> {
        unsafe { sys::cv_QRCodeDetector_setEpsY_double(self.as_raw_QRCodeDetector(), eps_y) }.into_result()
    }
    
    /// Detects QR code in image and returns the quadrangle containing the code.
    /// ## Parameters
    /// * img: grayscale or color (BGR) image containing (or not) QR code.
    /// * points: Output vector of vertices of the minimum-area quadrangle containing the code.
    pub fn detect(&self, img: &dyn core::ToInputArray, points: &mut dyn core::ToOutputArray) -> Result<bool> {
        input_array_arg!(img);
        output_array_arg!(points);
        unsafe { sys::cv_QRCodeDetector_detect_const__InputArray__OutputArray(self.as_raw_QRCodeDetector(), img.as_raw__InputArray(), points.as_raw__OutputArray()) }.into_result()
    }
    
    /// Decodes QR code in image once it's found by the detect() method.
    /// Returns UTF8-encoded output string or empty string if the code cannot be decoded.
    ///
    /// ## Parameters
    /// * img: grayscale or color (BGR) image containing QR code.
    /// * points: Quadrangle vertices found by detect() method (or some other algorithm).
    /// * straight_qrcode: The optional output image containing rectified and binarized QR code
    ///
    /// ## C++ default parameters
    /// * straight_qrcode: noArray()
    pub fn decode(&mut self, img: &dyn core::ToInputArray, points: &dyn core::ToInputArray, straight_qrcode: &mut dyn core::ToOutputArray) -> Result<String> {
        input_array_arg!(img);
        input_array_arg!(points);
        output_array_arg!(straight_qrcode);
        unsafe { sys::cv_QRCodeDetector_decode__InputArray__InputArray__OutputArray(self.as_raw_QRCodeDetector(), img.as_raw__InputArray(), points.as_raw__InputArray(), straight_qrcode.as_raw__OutputArray()) }.into_result().map(crate::templ::receive_string_mut)
    }
    
    /// Both detects and decodes QR code
    ///
    /// ## Parameters
    /// * img: grayscale or color (BGR) image containing QR code.
    /// * points: opiotnal output array of vertices of the found QR code quadrangle. Will be empty if not found.
    /// * straight_qrcode: The optional output image containing rectified and binarized QR code
    ///
    /// ## C++ default parameters
    /// * points: noArray()
    /// * straight_qrcode: noArray()
    pub fn detect_and_decode(&mut self, img: &dyn core::ToInputArray, points: &mut dyn core::ToOutputArray, straight_qrcode: &mut dyn core::ToOutputArray) -> Result<String> {
        input_array_arg!(img);
        output_array_arg!(points);
        output_array_arg!(straight_qrcode);
        unsafe { sys::cv_QRCodeDetector_detectAndDecode__InputArray__OutputArray__OutputArray(self.as_raw_QRCodeDetector(), img.as_raw__InputArray(), points.as_raw__OutputArray(), straight_qrcode.as_raw__OutputArray()) }.into_result().map(crate::templ::receive_string_mut)
    }
    
}

// boxed class cv::SimilarRects
/// class for grouping object candidates, detected by Cascade Classifier, HOG etc.
/// instance of the class is to be passed to cv::partition (see cxoperations.hpp)
pub struct SimilarRects {
    #[doc(hidden)] pub(crate) ptr: *mut c_void
}

impl Drop for crate::objdetect::SimilarRects {
    fn drop(&mut self) {
        unsafe { sys::cv_SimilarRects_delete(self.ptr) };
    }
}
impl crate::objdetect::SimilarRects {
    #[inline(always)] pub fn as_raw_SimilarRects(&self) -> *mut c_void { self.ptr }

    pub unsafe fn from_raw_ptr(ptr: *mut c_void) -> Self {
        Self { ptr }
    }
}

unsafe impl Send for SimilarRects {}

impl SimilarRects {

    pub fn new(_eps: f64) -> Result<crate::objdetect::SimilarRects> {
        unsafe { sys::cv_SimilarRects_SimilarRects_double(_eps) }.into_result().map(|ptr| crate::objdetect::SimilarRects { ptr })
    }
    
}