1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
use std;
use std::io::{Read, Write, Cursor};
use std::fmt;

use ::{BinaryEncoder, EncodingResult};
use helpers::*;
use generated::{StatusCode};
use generated::StatusCode::*;
use node_id::{NodeId};
use constants;

// OPC UA Part 6 - Mappings 1.03 Specification

// These are standard UA types

/// A two-state logical value (true or false).
/// Data type ID 1
pub type Boolean = bool;

impl BinaryEncoder<Boolean> for Boolean {
    fn byte_len(&self) -> usize {
        1
    }

    fn encode<S: Write>(&self, stream: &mut S) -> EncodingResult<usize> {
        // 0, or 1 for true or false, single byte
        write_u8(stream, if *self { 1 } else { 0 })
    }

    fn decode<S: Read>(stream: &mut S) -> EncodingResult<Self> {
        let value = if read_u8(stream)? == 1 { true } else { false };
        Ok(value)
    }
}

/// An integer value between −128 and 127.
/// Data type ID 2
pub type SByte = i8;

impl BinaryEncoder<SByte> for SByte {
    fn byte_len(&self) -> usize {
        1
    }

    fn encode<S: Write>(&self, stream: &mut S) -> EncodingResult<usize> {
        write_u8(stream, *self as u8)
    }

    fn decode<S: Read>(stream: &mut S) -> EncodingResult<Self> {
        Ok(read_u8(stream)? as i8)
    }
}

/// An integer value between 0 and 255.
/// Data type ID 3
pub type Byte = u8;

impl BinaryEncoder<Byte> for Byte {
    fn byte_len(&self) -> usize {
        1
    }

    fn encode<S: Write>(&self, stream: &mut S) -> EncodingResult<usize> {
        write_u8(stream, *self)
    }

    fn decode<S: Read>(stream: &mut S) -> EncodingResult<Self> {
        Ok(read_u8(stream)?)
    }
}

/// An integer value between −32 768 and 32 767.
/// Data type ID 4
pub type Int16 = i16;

impl BinaryEncoder<Int16> for Int16 {
    fn byte_len(&self) -> usize {
        2
    }

    fn encode<S: Write>(&self, stream: &mut S) -> EncodingResult<usize> {
        write_i16(stream, *self)
    }

    fn decode<S: Read>(stream: &mut S) -> EncodingResult<Self> {
        read_i16(stream)
    }
}

/// An integer value between 0 and 65 535.
/// Data type ID 5
pub type UInt16 = u16;

impl BinaryEncoder<UInt16> for UInt16 {
    fn byte_len(&self) -> usize {
        2
    }

    fn encode<S: Write>(&self, stream: &mut S) -> EncodingResult<usize> {
        write_u16(stream, *self)
    }

    fn decode<S: Read>(stream: &mut S) -> EncodingResult<Self> {
        read_u16(stream)
    }
}

/// An integer value between −2 147 483 648 and 2 147 483 647.
/// Data type ID 6
pub type Int32 = i32;

impl BinaryEncoder<Int32> for Int32 {
    fn byte_len(&self) -> usize {
        4
    }

    fn encode<S: Write>(&self, stream: &mut S) -> EncodingResult<usize> {
        write_i32(stream, *self)
    }

    fn decode<S: Read>(stream: &mut S) -> EncodingResult<Self> {
        read_i32(stream)
    }
}

/// An integer value between 0 and 4 294 967 295.
/// Data type ID 7
pub type UInt32 = u32;

impl BinaryEncoder<UInt32> for UInt32 {
    fn byte_len(&self) -> usize {
        4
    }

    fn encode<S: Write>(&self, stream: &mut S) -> EncodingResult<usize> {
        write_u32(stream, *self)
    }

    fn decode<S: Read>(stream: &mut S) -> EncodingResult<Self> {
        read_u32(stream)
    }
}

/// An integer value between −9 223 372 036 854 775 808 and 9 223 372 036 854 775 807
/// Data type ID 8
pub type Int64 = i64;

impl BinaryEncoder<Int64> for Int64 {
    fn byte_len(&self) -> usize {
        8
    }

    fn encode<S: Write>(&self, stream: &mut S) -> EncodingResult<usize> {
        write_i64(stream, *self)
    }

    fn decode<S: Read>(stream: &mut S) -> EncodingResult<Self> {
        read_i64(stream)
    }
}

/// An integer value between 0 and 18 446 744 073 709 551 615.
/// Data type ID 9
pub type UInt64 = u64;

impl BinaryEncoder<UInt64> for UInt64 {
    fn byte_len(&self) -> usize {
        8
    }

    fn encode<S: Write>(&self, stream: &mut S) -> EncodingResult<usize> {
        write_u64(stream, *self)
    }

    fn decode<S: Read>(stream: &mut S) -> EncodingResult<Self> {
        read_u64(stream)
    }
}

/// An IEEE single precision (32 bit) floating point value.
/// Data type ID 10
pub type Float = f32;

impl BinaryEncoder<Float> for Float {
    fn byte_len(&self) -> usize {
        4
    }

    fn encode<S: Write>(&self, stream: &mut S) -> EncodingResult<usize> {
        write_f32(stream, *self)
    }

    fn decode<S: Read>(stream: &mut S) -> EncodingResult<Self> {
        read_f32(stream)
    }
}

/// An IEEE double precision (64 bit) floating point value.
/// Data type ID 11
pub type Double = f64;

impl BinaryEncoder<Double> for Double {
    fn byte_len(&self) -> usize {
        8
    }

    fn encode<S: Write>(&self, stream: &mut S) -> EncodingResult<usize> {
        write_f64(stream, *self)
    }

    fn decode<S: Read>(stream: &mut S) -> EncodingResult<Self> {
        read_f64(stream)
    }
}

/// A UTF-8 encoded sequence of Unicode characters.
///
/// A string can hold a null value, so the string value is optional.
/// When there is no string, the value is treated as null
///
/// To avoid naming conflict hell, the String type is named UAString.
///
/// Data type ID 12
#[derive(Eq, PartialEq, Debug, Clone, Hash)]
pub struct UAString {
    pub value: Option<String>,
}

impl BinaryEncoder<UAString> for UAString {
    fn byte_len(&self) -> usize {
        // Length plus the actual length of bytes (if not null)
        4 + if self.value.is_none() { 0 } else { self.value.as_ref().unwrap().len() }
    }

    fn encode<S: Write>(&self, stream: &mut S) -> EncodingResult<usize> {
        // Strings are uncoded as UTF8 chars preceded by an Int32 length. A -1 indicates a null string
        if self.value.is_none() {
            write_i32(stream, -1)
        } else {
            let value = self.value.clone().unwrap();
            let mut size: usize = 0;
            size += write_i32(stream, value.len() as i32)?;
            let buf = value.as_bytes();
            size += process_encode_io_result(stream.write(&buf))?;
            assert_eq!(size, self.byte_len());
            Ok(size)
        }
    }

    fn decode<S: Read>(stream: &mut S) -> EncodingResult<Self> {
        let buf_len = Int32::decode(stream)?;
        // Null string?
        if buf_len == -1 {
            return Ok(UAString::null());
        } else if buf_len < -1 {
            error!("String buf length is a negative number {}", buf_len);
            return Err(BAD_DECODING_ERROR);
        } else if buf_len > constants::MAX_STRING_LENGTH as i32 {
            error!("String buf length {} is larger than max string length", buf_len);
            return Err(BAD_ENCODING_LIMITS_EXCEEDED);
        }

        // Create the actual UTF8 string
        let mut string_buf: Vec<u8> = Vec::with_capacity(buf_len as usize);
        string_buf.resize(buf_len as usize, 0u8);
        process_decode_io_result(stream.read_exact(&mut string_buf))?;
        Ok(UAString {
            value: Some(String::from_utf8(string_buf).unwrap())
        })
    }
}

impl AsRef<str> for UAString {
    fn as_ref(&self) -> &str {
        if self.is_null() { "" } else { self.value.as_ref().unwrap() }
    }
}

impl UAString {
    /// Create a string from a string slice
    pub fn from_str(value: &str) -> UAString {
        UAString { value: Some(value.to_string()) }
    }

    /// Returns the length of the string or -1 for null
    pub fn len(&self) -> isize {
        if self.value.is_none() { -1 } else { self.value.as_ref().unwrap().len() as isize }
    }

    /// Create a null string (not the same as an empty string)
    pub fn null() -> UAString {
        UAString { value: None }
    }

    /// Test if the string is null
    pub fn is_null(&self) -> bool {
        self.value.is_none()
    }
}

// Data type ID 13 - UADateTime is in date_time.rs

/// A 16 byte value that can be used as a globally unique identifier.
/// Data type ID 14
#[derive(Eq, PartialEq, Clone, Hash)]
pub struct Guid {
    pub data1: UInt32,
    pub data2: UInt16,
    pub data3: UInt16,
    pub data4: [Byte; 8],
}

impl fmt::Debug for Guid {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.as_hyphenated_string())
    }
}

impl BinaryEncoder<Guid> for Guid {
    fn byte_len(&self) -> usize {
        16
    }

    fn encode<S: Write>(&self, stream: &mut S) -> EncodingResult<usize> {
        let mut size: usize = 0;
        let data = [(self.data1 >> 0) as u8,
            (self.data1 >> 8) as u8,
            (self.data1 >> 16) as u8,
            (self.data1 >> 24) as u8,
            (self.data2 >> 0) as u8,
            (self.data2 >> 8) as u8,
            (self.data3 >> 0) as u8,
            (self.data3 >> 8) as u8,
            self.data4[0], self.data4[1], self.data4[2], self.data4[3], self.data4[4], self.data4[5], self.data4[6], self.data4[7]
        ];
        size += process_encode_io_result(stream.write(&data))?;
        Ok(size)
    }

    fn decode<S: Read>(stream: &mut S) -> EncodingResult<Self> {
        let mut data = [0u8; 16];
        process_decode_io_result(stream.read_exact(&mut data))?;
        let data1: UInt32 = (data[0] as UInt32).wrapping_shl(0) + (data[1] as UInt32).wrapping_shl(8) + (data[2] as UInt32).wrapping_shl(16) + (data[3] as UInt32).wrapping_shl(24);
        let data2: UInt16 = (data[4] as UInt16).wrapping_shl(0) + (data[5] as UInt16).wrapping_shl(8);
        let data3: UInt16 = (data[6] as UInt16).wrapping_shl(0) + (data[7] as UInt16).wrapping_shl(8);
        let data4 = [data[8], data[9], data[10], data[11], data[12], data[13], data[14], data[15]];
        Ok(Guid { data1: data1, data2: data2, data3: data3, data4: data4 })
    }
}

const SIMPLE_LENGTH: usize = 32;
const HYPHENATED_LENGTH: usize = 36;

// Accumulated length of each hyphenated group in hex digits.
const ACC_GROUP_LENS: [u8; 5] = [8, 12, 16, 20, 32];

impl Guid {
    pub fn parse_str(input: &str) -> std::result::Result<Guid, ()> {
        // Adapted from Uuid::parse_str - https://github.com/rust-lang-nursery/uuid/blob/master/src/lib.rs
        // Main difference is we decode the Guid from the buffer at the end and there are no error
        // codes

        let len = input.len();
        if len != SIMPLE_LENGTH && len != HYPHENATED_LENGTH {
            return Err(());
        }

        let mut digit = 0;
        let mut group = 0;
        let mut acc = 0;
        let mut buffer = [0u8; 16];

        for (_, chr) in input.chars().enumerate() {
            if digit as usize >= SIMPLE_LENGTH && group == 0 {
                return Err(());
            }
            if digit % 2 == 0 {
                // First digit of the byte.
                match chr {
                    // Calculate upper half.
                    '0' ... '9' => acc = chr as u8 - '0' as u8,
                    'a' ... 'f' => acc = chr as u8 - 'a' as u8 + 10,
                    'A' ... 'F' => acc = chr as u8 - 'A' as u8 + 10,
                    // Found a group delimiter
                    '-' => {
                        if ACC_GROUP_LENS[group] != digit {
                            // Calculate how many digits this group consists of in the input.
                            return Err(());
                        }
                        // Next group, decrement digit, it is incremented again at the bottom.
                        group += 1;
                        digit -= 1;
                    }
                    _ => return Err(()),
                }
            } else {
                // Second digit of the byte, shift the upper half.
                acc *= 16;
                match chr {
                    '0' ... '9' => acc += chr as u8 - '0' as u8,
                    'a' ... 'f' => acc += chr as u8 - 'a' as u8 + 10,
                    'A' ... 'F' => acc += chr as u8 - 'A' as u8 + 10,
                    '-' => {
                        // The byte isn't complete yet.
                        return Err(());
                    }
                    _ => return Err(()),
                }
                buffer[(digit / 2) as usize] = acc;
            }
            digit += 1;
        }

        // Now check the last group.
        if group != 0 && group != 4 {
            return Err(());
        } else if ACC_GROUP_LENS[4] != digit {
            return Err(());
        }

        let mut stream = Cursor::new(&buffer);
        Ok(Guid::decode(&mut stream).unwrap())
    }

    pub fn as_hyphenated_string(&self) -> String {
        format!("{:08X}-{:04X}-{:04X}-{:02X}{:02X}-{:02X}{:02X}{:02X}{:02X}{:02X}{:02X}",
                self.data1, self.data2, self.data3, self.data4[0], self.data4[1], self.data4[2], self.data4[3], self.data4[4], self.data4[5], self.data4[6], self.data4[7])
    }
}

/// A sequence of octets.
#[derive(Eq, PartialEq, Debug, Clone, Hash)]
pub struct ByteString {
    pub value: Option<Vec<u8>>,
}

impl AsRef<[u8]> for ByteString {
    fn as_ref(&self) -> &[u8] {
        if self.value.is_none() { &[] } else { self.value.as_ref().unwrap() }
    }
}

impl BinaryEncoder<ByteString> for ByteString {
    fn byte_len(&self) -> usize {
        // Length plus the actual length of bytes (if not null)
        4 + if self.value.is_none() { 0 } else { self.value.as_ref().unwrap().len() }
    }

    fn encode<S: Write>(&self, stream: &mut S) -> EncodingResult<usize> {
        // Strings are uncoded as UTF8 chars preceded by an Int32 length. A -1 indicates a null string
        if self.value.is_none() {
            write_i32(stream, -1)
        } else {
            let mut size: usize = 0;
            let value = self.value.as_ref().unwrap();
            size += write_i32(stream, value.len() as i32)?;
            size += process_encode_io_result(stream.write(value))?;
            assert_eq!(size, self.byte_len());
            Ok(size)
        }
    }

    fn decode<S: Read>(stream: &mut S) -> EncodingResult<Self> {
        let buf_len = Int32::decode(stream)?;
        // Null string?
        if buf_len == -1 {
            return Ok(ByteString::null());
        } else if buf_len < -1 {
            error!("ByteString buf length is a negative number {}", buf_len);
            return Err(BAD_DECODING_ERROR);
        } else if buf_len > constants::MAX_BYTE_STRING_LENGTH as i32 {
            error!("ByteString buf length {} is longer than max byte string length", buf_len);
            return Err(BAD_ENCODING_LIMITS_EXCEEDED);
        }

        // Create the actual UTF8 string
        let mut string_buf: Vec<u8> = Vec::with_capacity(buf_len as usize);
        string_buf.resize(buf_len as usize, 0u8);
        process_decode_io_result(stream.read_exact(&mut string_buf))?;
        Ok(ByteString {
            value: Some(string_buf)
        })
    }
}

impl ByteString {
    /// Create a null string (not the same as an empty string)
    pub fn null() -> ByteString {
        ByteString { value: None }
    }

    /// Test if the string is null
    pub fn is_null(&self) -> bool {
        self.value.is_none()
    }

    /// Create a byte string with a number of random characters. Can be used to create a nonce or
    /// a similar reason.
    pub fn random(number_of_bytes: usize) -> ByteString {
        use rand::{self, Rng};
        let mut rng = rand::thread_rng();
        let mut bytes = vec![0u8; number_of_bytes];
        rng.fill_bytes(&mut bytes);
        ByteString::from_bytes(&bytes)
    }

    /// Create a byte string from an array of bytes
    pub fn from_bytes(v: &[u8]) -> ByteString {
        ByteString { value: Some(v.to_vec()) }
    }
}

/// An XML element.
/// Data type ID 16
pub type XmlElement = UAString;

// NodeId and ExtendedNodeId are in node_id.rs

/// A numeric identifier for a error or condition that is associated with a value or an operation.
/// Data type ID 19

/// A name qualified by a namespace.
/// Data type ID 20
#[derive(PartialEq, Debug, Clone)]
pub struct QualifiedName {
    /// The namespace index.
    pub namespace_index: UInt16,
    /// The name.
    pub name: UAString,
}

impl BinaryEncoder<QualifiedName> for QualifiedName {
    fn byte_len(&self) -> usize {
        let mut size: usize = 0;
        size += self.namespace_index.byte_len();
        size += self.name.byte_len();
        size
    }

    fn encode<S: Write>(&self, stream: &mut S) -> EncodingResult<usize> {
        let mut size: usize = 0;
        size += self.namespace_index.encode(stream)?;
        size += self.name.encode(stream)?;
        assert_eq! (size, self.byte_len());
        Ok(size)
    }

    fn decode<S: Read>(stream: &mut S) -> EncodingResult<Self> {
        let namespace_index = UInt16::decode(stream)?;
        let name = UAString::decode(stream)?;
        Ok(QualifiedName {
            namespace_index: namespace_index,
            name: name,
        })
    }
}

impl QualifiedName {
    pub fn new(namespace_index: UInt16, name: &str) -> QualifiedName {
        QualifiedName {
            namespace_index: namespace_index,
            name: UAString::from_str(name),
        }
    }

    pub fn null() -> QualifiedName {
        QualifiedName {
            namespace_index: 0,
            name: UAString::null(),
        }
    }
}

/// Human readable text with an optional locale identifier
/// Data type ID 21
#[derive(PartialEq, Debug, Clone)]
pub struct LocalizedText {
    /// The locale. Omitted from stream if null or empty
    pub locale: UAString,
    /// The text in the specified locale. Omitted frmo stream if null or empty.
    pub text: UAString,
}

impl BinaryEncoder<LocalizedText> for LocalizedText {
    fn byte_len(&self) -> usize {
        let mut size = 1;
        if self.locale.len() > 0 {
            size += self.locale.byte_len();
        }
        if self.text.len() > 0 {
            size += self.text.byte_len();
        }
        size
    }

    fn encode<S: Write>(&self, stream: &mut S) -> EncodingResult<usize> {
        let mut size = 0;
        /// A bit mask that indicates which fields are present in the stream.
        /// The mask has the following bits:
        /// 0x01    Locale
        /// 0x02    Text
        let mut encoding_mask: Byte = 0;
        if self.locale.len() > 0 {
            encoding_mask |= 0x1;
        }
        if self.text.len() > 0 {
            encoding_mask |= 0x2;
        }
        size += encoding_mask.encode(stream)?;
        if self.locale.len() > 0 {
            size += self.locale.encode(stream)?;
        }
        if self.text.len() > 0 {
            size += self.text.encode(stream)?;
        }
        Ok(size)
    }

    fn decode<S: Read>(stream: &mut S) -> EncodingResult<Self> {
        let encoding_mask = Byte::decode(stream)?;
        let locale = if encoding_mask & 0x1 != 0 {
            UAString::decode(stream)?
        } else {
            UAString::null()
        };
        let text = if encoding_mask & 0x2 != 0 {
            UAString::decode(stream)?
        } else {
            UAString::null()
        };
        Ok(LocalizedText {
            locale: locale,
            text: text,
        })
    }
}

impl LocalizedText {
    pub fn new(locale: &str, text: &str) -> LocalizedText {
        LocalizedText {
            locale: UAString::from_str(locale),
            text: UAString::from_str(text),
        }
    }

    pub fn null() -> LocalizedText {
        LocalizedText {
            locale: UAString::null(),
            text: UAString::null(),
        }
    }
}

/// Enumeration that holds the kinds of encoding that an ExtensionObject data may be encoded with.
#[derive(PartialEq, Debug, Clone)]
pub enum ExtensionObjectEncoding {
    /// For an extension object with nothing encoded with it
    None,
    /// For an extension object with data encoded in a ByteString
    ByteString(ByteString),
    /// For an extension object with data encoded in an XML string
    XmlElement(XmlElement),
}

/// A structure that contains an application specific data type that may not be recognized by the receiver.
/// Data type ID 22
#[derive(PartialEq, Debug, Clone)]
pub struct ExtensionObject {
    pub node_id: NodeId,
    pub body: ExtensionObjectEncoding,
}

impl BinaryEncoder<ExtensionObject> for ExtensionObject {
    fn byte_len(&self) -> usize {
        let mut size = self.node_id.byte_len();
        size += match self.body {
            ExtensionObjectEncoding::None => 1,
            ExtensionObjectEncoding::ByteString(ref value) => {
                // Encoding mask + data
                1 + value.byte_len()
            }
            ExtensionObjectEncoding::XmlElement(ref value) => {
                // Encoding mask + data
                1 + value.byte_len()
            }
        };
        size
    }

    fn encode<S: Write>(&self, stream: &mut S) -> EncodingResult<usize> {
        let mut size = 0;
        size += self.node_id.encode(stream)?;
        match self.body {
            ExtensionObjectEncoding::None => {
                size += write_u8(stream, 0x0)?;
            }
            ExtensionObjectEncoding::ByteString(ref value) => {
                // Encoding mask + data
                size += write_u8(stream, 0x1)?;
                size += value.encode(stream)?;
            }
            ExtensionObjectEncoding::XmlElement(ref value) => {
                // Encoding mask + data
                size += write_u8(stream, 0x2)?;
                size += value.encode(stream)?;
            }
        }
        assert_eq!(size, self.byte_len());
        Ok(size)
    }

    fn decode<S: Read>(stream: &mut S) -> EncodingResult<Self> {
        let node_id = NodeId::decode(stream)?;
        let encoding_type = Byte::decode(stream)?;
        let body = match encoding_type {
            0x0 => {
                ExtensionObjectEncoding::None
            }
            0x1 => {
                let value = ByteString::decode(stream);
                if value.is_err() {
                    return Err(value.unwrap_err());
                }
                ExtensionObjectEncoding::ByteString(value.unwrap())
            }
            0x2 => {
                let value = XmlElement::decode(stream);
                if value.is_err() {
                    return Err(value.unwrap_err());
                }
                ExtensionObjectEncoding::XmlElement(value.unwrap())
            }
            _ => {
                error!("Invalid encoding type {} in stream", encoding_type);
                return Err(BAD_DECODING_ERROR);
            }
        };
        Ok(ExtensionObject {
            node_id: node_id,
            body: body,
        })
    }
}

impl ExtensionObject {
    /// Creates a null extension object, i.e. one with no value or payload
    pub fn null() -> ExtensionObject {
        ExtensionObject {
            node_id: NodeId::null(),
            body: ExtensionObjectEncoding::None,
        }
    }

    /// Creates an extension object with the specified node id and the encodable object as its payload.
    /// The body is set to a byte string containing the encoded struct.
    pub fn from_encodable<T: BinaryEncoder<T>>(node_id: NodeId, encodable: T) -> ExtensionObject {
        // Serialize to extension object
        let mut stream = Cursor::new(vec![0u8; encodable.byte_len()]);
        let _ = encodable.encode(&mut stream);
        ExtensionObject {
            node_id: node_id,
            body: ExtensionObjectEncoding::ByteString(ByteString::from_bytes(&stream.into_inner())),
        }
    }

    /// Decodes the inner content of the extension object and returns it. The node id is ignored
    /// for decoding. The caller supplies the binary encoder impl that should be used to extract
    /// the data. Errors result in a decoding error.
    pub fn decode_inner<T: BinaryEncoder<T>>(&self) -> EncodingResult<T> {
        if let ExtensionObjectEncoding::ByteString(ref byte_string) = self.body {
            if let Some(ref value) = byte_string.value {
                let value = value.clone();
                let mut stream = Cursor::new(value);
                return T::decode(&mut stream);
            }
        }
        Err(BAD_DECODING_ERROR)
    }
}

// Data type ID 23 is in data_value.rs

// Data type ID 24 is in variant.rs

#[allow(non_snake_case)]
mod DiagnosticInfoMask {
    pub const HAS_SYMBOLIC_ID: u8 = 0x01;
    pub const HAS_NAMESPACE: u8 = 0x02;
    pub const HAS_LOCALIZED_TEXT: u8 = 0x04;
    pub const HAS_LOCALE: u8 = 0x08;
    pub const HAS_ADDITIONAL_INFO: u8 = 0x10;
    pub const HAS_INNER_STATUS_CODE: u8 = 0x20;
    pub const HAS_INNER_DIAGNOSTIC_INFO: u8 = 0x40;
}

/// Data type ID 25
#[derive(PartialEq, Debug, Clone)]
pub struct DiagnosticInfo {
    /// A symbolic name for the status code.
    pub symbolic_id: Option<Int32>,
    /// A namespace that qualifies the symbolic id.
    pub namespace_uri: Option<Int32>,
    /// The locale used for the localized text.
    pub locale: Option<Int32>,
    /// A human readable summary of the status code.
    pub localized_text: Option<Int32>,
    /// Detailed application specific diagnostic information.
    pub additional_info: Option<UAString>,

    /// A status code provided by an underlying system.
    pub inner_status_code: Option<StatusCode>,
    /// Diagnostic info associated with the inner status code.
    pub inner_diagnostic_info: Option<Box<DiagnosticInfo>>,
}

impl BinaryEncoder<DiagnosticInfo> for DiagnosticInfo {
    fn byte_len(&self) -> usize {
        let mut size: usize = 0;
        size += 1; // self.encoding_mask())
        if let Some(ref symbolic_id) = self.symbolic_id {
            // Write symbolic id
            size += symbolic_id.byte_len();
        }
        if let Some(ref namespace_uri) = self.namespace_uri {
            // Write namespace
            size += namespace_uri.byte_len()
        }
        if let Some(ref locale) = self.locale {
            // Write locale
            size += locale.byte_len()
        }
        if let Some(ref localized_text) = self.localized_text {
            // Write localized text
            size += localized_text.byte_len()
        }
        if let Some(ref additional_info) = self.additional_info {
            // Write Additional info
            size += additional_info.byte_len()
        }
        if let Some(ref inner_status_code) = self.inner_status_code {
            // Write inner status code
            size += inner_status_code.byte_len()
        }
        if let Some(ref inner_diagnostic_info) = self.inner_diagnostic_info {
            // Write inner diagnostic info
            size += inner_diagnostic_info.byte_len()
        }
        size
    }

    fn encode<S: Write>(&self, stream: &mut S) -> EncodingResult<usize> {
        let mut size: usize = 0;
        size += write_u8(stream, self.encoding_mask())?;
        if let Some(ref symbolic_id) = self.symbolic_id {
            // Write symbolic id
            size += write_i32(stream, *symbolic_id)?;
        }
        if let Some(ref namespace_uri) = self.namespace_uri {
            // Write namespace
            size += namespace_uri.encode(stream)?;
        }
        if let Some(ref locale) = self.locale {
            // Write locale
            size += locale.encode(stream)?;
        }
        if let Some(ref localized_text) = self.localized_text {
            // Write localized text
            size += localized_text.encode(stream)?;
        }
        if let Some(ref additional_info) = self.additional_info {
            // Write Additional info
            size += additional_info.encode(stream)?;
        }
        if let Some(ref inner_status_code) = self.inner_status_code {
            // Write inner status code
            size += inner_status_code.encode(stream)?;
        }
        if let Some(ref inner_diagnostic_info) = self.inner_diagnostic_info {
            // Write inner diagnostic info
            size += inner_diagnostic_info.clone().encode(stream)?;
        }
        Ok(size)
    }

    fn decode<S: Read>(stream: &mut S) -> EncodingResult<Self> {
        let encoding_mask = Byte::decode(stream)?;
        let mut diagnostic_info = DiagnosticInfo::new();
        if encoding_mask & DiagnosticInfoMask::HAS_SYMBOLIC_ID != 0 {
            // Read symbolic id
            diagnostic_info.symbolic_id = Some(Int32::decode(stream)?);
        }
        if encoding_mask & DiagnosticInfoMask::HAS_NAMESPACE != 0 {
            // Read namespace
            diagnostic_info.namespace_uri = Some(Int32::decode(stream)?);
        }
        if encoding_mask & DiagnosticInfoMask::HAS_LOCALE != 0 {
            // Read locale
            diagnostic_info.locale = Some(Int32::decode(stream)?);
        }
        if encoding_mask & DiagnosticInfoMask::HAS_LOCALIZED_TEXT != 0 {
            // Read localized text
            diagnostic_info.localized_text = Some(Int32::decode(stream)?);
        }
        if encoding_mask & DiagnosticInfoMask::HAS_ADDITIONAL_INFO != 0 {
            // Read Additional info
            diagnostic_info.additional_info = Some(UAString::decode(stream)?);
        }
        if encoding_mask & DiagnosticInfoMask::HAS_INNER_STATUS_CODE != 0 {
            // Read inner status code
            diagnostic_info.inner_status_code = Some(StatusCode::decode(stream)?);
        }
        if encoding_mask & DiagnosticInfoMask::HAS_INNER_DIAGNOSTIC_INFO != 0 {
            // Read inner diagnostic info
            diagnostic_info.inner_diagnostic_info = Some(Box::new(DiagnosticInfo::decode(stream)?));
        }
        Ok(diagnostic_info)
    }
}

impl DiagnosticInfo {
    pub fn new() -> DiagnosticInfo {
        DiagnosticInfo {
            symbolic_id: None,
            namespace_uri: None,
            locale: None,
            localized_text: None,
            additional_info: None,
            inner_status_code: None,
            inner_diagnostic_info: None,
        }
    }

    pub fn encoding_mask(&self) -> u8 {
        let mut encoding_mask: u8 = 0;
        if self.symbolic_id.is_some() {
            encoding_mask |= DiagnosticInfoMask::HAS_SYMBOLIC_ID;
        }
        if self.namespace_uri.is_some() {
            encoding_mask |= DiagnosticInfoMask::HAS_NAMESPACE;
        }
        if self.locale.is_some() {
            encoding_mask |= DiagnosticInfoMask::HAS_LOCALE;
        }
        if self.localized_text.is_some() {
            encoding_mask |= DiagnosticInfoMask::HAS_LOCALIZED_TEXT;
        }
        if self.additional_info.is_some() {
            encoding_mask |= DiagnosticInfoMask::HAS_ADDITIONAL_INFO;
        }
        if self.inner_status_code.is_some() {
            encoding_mask |= DiagnosticInfoMask::HAS_INNER_STATUS_CODE;
        }
        if self.inner_diagnostic_info.is_some() {
            encoding_mask |= DiagnosticInfoMask::HAS_INNER_DIAGNOSTIC_INFO;
        }
        encoding_mask
    }
}