1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#![no_std]

pub mod hash;

extern crate alloc;

use crate::hash::hash;

use alloc::collections::{BTreeMap, BTreeSet, BinaryHeap};
use arrayref::array_ref;
use bonsai::expand;
use core::mem::size_of;
use core::slice::{from_raw_parts, from_raw_parts_mut};

#[cfg(any(test, feature = "generate"))]
use alloc::vec::Vec;

type K = u128;
type V = [u8; 32];
type Map = BTreeMap<K, V>;

#[derive(Clone, Debug, PartialEq)]
pub struct Oof {
    pub map: Map,
}

#[derive(Debug, PartialEq)]
pub enum Error {
    EntryNotFound(K),
}

impl Oof {
    pub fn new(keys: &[K], values: &[V]) -> Self {
        let mut map = Map::new();

        for i in 0..keys.len() {
            map.insert(keys[i], values[i]);
        }

        Self { map }
    }

    pub unsafe fn from_raw(data: *mut u8) -> Self {
        let count = u32::from_le_bytes(*array_ref![from_raw_parts(data, 4), 0, 4]) as usize;
        let keys = data.offset(4) as *mut K;
        let values = data.offset(4 + (count * size_of::<K>()) as isize) as *mut V;

        Self::new(
            from_raw_parts_mut(keys, count),
            from_raw_parts_mut(values, count),
        )
    }

    pub fn from_map(map: Map) -> Self {
        Self { map }
    }

    #[cfg(any(test, feature = "generate"))]
    pub fn to_map(self) -> Map {
        self.map
    }

    #[cfg(any(test, feature = "generate"))]
    pub fn to_bytes(&self) -> Vec<u8> {
        let keys: Vec<u8> = self
            .map
            .keys()
            .flat_map(|k| k.to_le_bytes().to_vec())
            .collect();

        let values: Vec<u8> = self.map.values().flatten().cloned().collect();

        let mut ret = (self.map.keys().len() as u32).to_le_bytes().to_vec();
        ret.extend(keys);
        ret.extend(values);
        ret
    }

    pub fn get(&self, key: &K) -> Option<&V> {
        self.map.get(key)
    }

    pub fn set(&mut self, key: K, value: V) -> Option<V> {
        let (_, _, parent) = expand(key);
        self.map.remove(&parent);
        self.map.insert(key, value)
    }

    pub fn root(&mut self) -> Result<&V, Error> {
        self.refresh()?;
        Ok(self.get(&1).ok_or(Error::EntryNotFound(1))?)
    }

    pub fn keys(&self) -> BTreeSet<K> {
        self.map.keys().cloned().collect()
    }

    fn refresh(&mut self) -> Result<(), Error> {
        let mut keys: BinaryHeap<u128> = self.keys().into_iter().collect();

        while let Some(key) = keys.pop() {
            if key <= 1 {
                break;
            }

            let (left, right, parent) = expand(key);

            match (self.get(&left), self.get(&right), self.get(&parent)) {
                (Some(l), Some(r), None) => {
                    let h = hash(l, r);
                    self.set(parent, h);
                    keys.push(parent);
                }
                (Some(_), Some(_), Some(_)) => (),
                (None, _, _) => return Err(Error::EntryNotFound(left)),
                (_, None, _) => return Err(Error::EntryNotFound(right)),
            };
        }

        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use core::mem::transmute;

    fn build_value(n: u8) -> [u8; 32] {
        let mut tmp = [0u8; 32];
        tmp[0] = n;
        tmp
    }

    #[test]
    fn root() {
        let mut keys = [2, 6, 7];
        let mut values = [build_value(2), build_value(6), build_value(7)];
        let mut oof = Oof::new(&mut keys, &mut values);

        let three = hash(&values[1], &values[2]);
        let one = hash(&values[0], &three);

        assert_eq!(oof.root(), Ok(&one));
    }

    #[test]
    fn from_blob() {
        let count: u32 = 3;

        let keys: [K; 3] = [1, 2, 3];
        let values: [V; 3] = [build_value(1), build_value(2), build_value(3)];

        let keys: [u8; 48] = unsafe { transmute(keys) };
        let values: [u8; 96] = unsafe { transmute(values) };

        let mut blob = [0u8; (4 + 48 + 96)];
        blob[0..4].copy_from_slice(&count.to_le_bytes());
        blob[4..52].copy_from_slice(&keys[..]);
        blob[52..148].copy_from_slice(&values[..]);

        let oof = unsafe { Oof::from_raw(blob[..].as_ptr() as *mut u8) };

        assert_eq!(oof.get(&1), Some(&build_value(1)));
        assert_eq!(oof.get(&2), Some(&build_value(2)));
        assert_eq!(oof.get(&3), Some(&build_value(3)));
        assert_eq!(oof.get(&4), None);
    }
}