1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
use std::{
    cell::UnsafeCell,
    panic::{RefUnwindSafe, UnwindSafe},
    sync::atomic::{AtomicU8, Ordering},
};

pub(crate) struct OnceCell<T> {
    state: AtomicU8,
    value: UnsafeCell<Option<T>>,
}

const INCOMPLETE: u8 = 0x0;
const RUNNING: u8 = 0x1;
const COMPLETE: u8 = 0x2;

// Why do we need `T: Send`?
// Thread A creates a `OnceCell` and shares it with
// scoped thread B, which fills the cell, which is
// then destroyed by A. That is, destructor observes
// a sent value.
unsafe impl<T: Sync + Send> Sync for OnceCell<T> {}
unsafe impl<T: Send> Send for OnceCell<T> {}

impl<T: RefUnwindSafe + UnwindSafe> RefUnwindSafe for OnceCell<T> {}
impl<T: UnwindSafe> UnwindSafe for OnceCell<T> {}

impl<T> OnceCell<T> {
    pub(crate) const fn new() -> OnceCell<T> {
        OnceCell { state: AtomicU8::new(INCOMPLETE), value: UnsafeCell::new(None) }
    }

    pub(crate) const fn with_value(value: T) -> OnceCell<T> {
        OnceCell { state: AtomicU8::new(COMPLETE), value: UnsafeCell::new(Some(value)) }
    }

    /// Safety: synchronizes with store to value via Release/Acquire.
    #[inline]
    pub(crate) fn is_initialized(&self) -> bool {
        self.state.load(Ordering::Acquire) == COMPLETE
    }

    /// Safety: synchronizes with store to value via `is_initialized` or mutex
    /// lock/unlock, writes value only once because of the mutex.
    #[cold]
    pub(crate) fn initialize<F, E>(&self, f: F) -> Result<(), E>
    where
        F: FnOnce() -> Result<T, E>,
    {
        let mut f = Some(f);
        let mut res: Result<(), E> = Ok(());
        let slot: *mut Option<T> = self.value.get();
        initialize_inner(&self.state, &mut || {
            // We are calling user-supplied function and need to be careful.
            // - if it returns Err, we unlock mutex and return without touching anything
            // - if it panics, we unlock mutex and propagate panic without touching anything
            // - if it calls `set` or `get_or_try_init` re-entrantly, we get a deadlock on
            //   mutex, which is important for safety. We *could* detect this and panic,
            //   but that is more complicated
            // - finally, if it returns Ok, we store the value and store the flag with
            //   `Release`, which synchronizes with `Acquire`s.
            let f = unsafe { f.take().unwrap_unchecked() };
            match f() {
                Ok(value) => unsafe {
                    // Safe b/c we have a unique access and no panic may happen
                    // until the cell is marked as initialized.
                    debug_assert!((*slot).is_none());
                    *slot = Some(value);
                    true
                },
                Err(err) => {
                    res = Err(err);
                    false
                }
            }
        });
        res
    }

    #[cold]
    pub(crate) fn wait(&self) {
        let key = &self.state as *const _ as usize;
        unsafe {
            parking_lot_core::park(
                key,
                || self.state.load(Ordering::Acquire) != COMPLETE,
                || (),
                |_, _| (),
                parking_lot_core::DEFAULT_PARK_TOKEN,
                None,
            );
        }
    }

    /// Get the reference to the underlying value, without checking if the cell
    /// is initialized.
    ///
    /// # Safety
    ///
    /// Caller must ensure that the cell is in initialized state, and that
    /// the contents are acquired by (synchronized to) this thread.
    pub(crate) unsafe fn get_unchecked(&self) -> &T {
        debug_assert!(self.is_initialized());
        let slot = &*self.value.get();
        slot.as_ref().unwrap_unchecked()
    }

    /// Gets the mutable reference to the underlying value.
    /// Returns `None` if the cell is empty.
    pub(crate) fn get_mut(&mut self) -> Option<&mut T> {
        // Safe b/c we have an exclusive access
        let slot: &mut Option<T> = unsafe { &mut *self.value.get() };
        slot.as_mut()
    }

    /// Consumes this `OnceCell`, returning the wrapped value.
    /// Returns `None` if the cell was empty.
    pub(crate) fn into_inner(self) -> Option<T> {
        self.value.into_inner()
    }
}

struct Guard<'a> {
    state: &'a AtomicU8,
    new_state: u8,
}

impl<'a> Drop for Guard<'a> {
    fn drop(&mut self) {
        self.state.store(self.new_state, Ordering::Release);
        unsafe {
            let key = self.state as *const AtomicU8 as usize;
            parking_lot_core::unpark_all(key, parking_lot_core::DEFAULT_UNPARK_TOKEN);
        }
    }
}

// Note: this is intentionally monomorphic
#[inline(never)]
fn initialize_inner(state: &AtomicU8, init: &mut dyn FnMut() -> bool) {
    loop {
        let exchange =
            state.compare_exchange_weak(INCOMPLETE, RUNNING, Ordering::Acquire, Ordering::Acquire);
        match exchange {
            Ok(_) => {
                let mut guard = Guard { state, new_state: INCOMPLETE };
                if init() {
                    guard.new_state = COMPLETE;
                }
                return;
            }
            Err(COMPLETE) => return,
            Err(RUNNING) => unsafe {
                let key = state as *const AtomicU8 as usize;
                parking_lot_core::park(
                    key,
                    || state.load(Ordering::Relaxed) == RUNNING,
                    || (),
                    |_, _| (),
                    parking_lot_core::DEFAULT_PARK_TOKEN,
                    None,
                );
            },
            Err(INCOMPLETE) => (),
            Err(_) => debug_assert!(false),
        }
    }
}

#[test]
fn test_size() {
    use std::mem::size_of;

    assert_eq!(size_of::<OnceCell<bool>>(), 1 * size_of::<bool>() + size_of::<u8>());
}