1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
/*!
# Overview

`once_cell` provides two new cell-like types, `unsync::OnceCell` and `sync::OnceCell`. `OnceCell`
might store arbitrary non-`Copy` types, can be assigned to at most once and provide direct access
to the stored contents. In a nutshell, API looks *roughly* like this:

```rust,ignore
impl<T> OnceCell<T> {
    fn new() -> OnceCell<T> { ... }
    fn set(&self, value: T) -> Result<(), T> { ... }
    fn get(&self) -> Option<&T> { ... }
}
```

Note that, like with `RefCell` and `Mutex`, the `set` method requires only a shared reference.
Because of the single assignment restriction `get` can return an `&T` instead of `Ref<T>`
or `MutexGuard<T>`.

# Patterns

`OnceCell` might be useful for a variety of patterns.

## Safe Initialization of global data

```rust
use std::{env, io};

use once_cell::sync::OnceCell;

#[derive(Debug)]
pub struct Logger {
    // ...
}
static INSTANCE: OnceCell<Logger> = OnceCell::new();

impl Logger {
    pub fn global() -> &'static Logger {
        INSTANCE.get().expect("logger is not initialized")
    }

    fn from_cli(args: env::Args) -> Result<Logger, std::io::Error> {
       // ...
#      Ok(Logger {})
    }
}

fn main() {
    let logger = Logger::from_cli(env::args()).unwrap();
    INSTANCE.set(logger).unwrap();
    // use `Logger::global()` from now on
}
```

## Lazy initialized global data

This is essentially `lazy_static!` macro, but without a macro.

```rust
use std::{sync::Mutex, collections::HashMap};

use once_cell::sync::OnceCell;

fn global_data() -> &'static Mutex<HashMap<i32, String>> {
    static INSTANCE: OnceCell<Mutex<HashMap<i32, String>>> = OnceCell::new();
    INSTANCE.get_or_init(|| {
        let mut m = HashMap::new();
        m.insert(13, "Spica".to_string());
        m.insert(74, "Hoyten".to_string());
        Mutex::new(m)
    })
}
```

There are also `sync::Lazy` and `unsync::Lazy` convenience types to streamline this pattern:

```rust
use std::{sync::Mutex, collections::HashMap};
use once_cell::sync::Lazy;

static GLOBAL_DATA: Lazy<Mutex<HashMap<i32, String>>> = Lazy::new(|| {
    let mut m = HashMap::new();
    m.insert(13, "Spica".to_string());
    m.insert(74, "Hoyten".to_string());
    Mutex::new(m)
});

fn main() {
    println!("{:?}", GLOBAL_DATA.lock().unwrap());
}
```

## General purpose lazy evaluation

Unlike `lazy_static!`, `Lazy` works with local variables.

```rust
use once_cell::unsync::Lazy;

fn main() {
    let ctx = vec![1, 2, 3];
    let thunk = Lazy::new(|| {
        ctx.iter().sum::<i32>()
    });
    assert_eq!(*thunk, 6);
}
```

If you need a lazy field in a struct, you probably should use `OnceCell`
directly, because that will allow you to access `self` during initialization.

```rust
use std::{fs, path::PathBuf};

use once_cell::unsync::OnceCell;

struct Ctx {
    config_path: PathBuf,
    config: OnceCell<String>,
}

impl Ctx {
    pub fn get_config(&self) -> Result<&str, std::io::Error> {
        let cfg = self.config.get_or_try_init(|| {
            fs::read_to_string(&self.config_path)
        })?;
        Ok(cfg.as_str())
    }
}
```

## Building block

Naturally, it is  possible to build other abstractions on top of `OnceCell`.
For example, this is a `regex!` macro which takes a string literal and returns an
*expression* that evaluates to a `&'static Regex`:

```
macro_rules! regex {
    ($re:literal $(,)?) => {{
        static RE: once_cell::sync::OnceCell<regex::Regex> = once_cell::sync::OnceCell::new();
        RE.get_or_init(|| regex::Regex::new($re).unwrap())
    }};
}
```

This macro can be useful to avoid "compile regex on every loop iteration" problem.

# Comparison with std

|`!Sync` types         | Access Mode            | Drawbacks                                     |
|----------------------|------------------------|-----------------------------------------------|
|`Cell<T>`             | `T`                    | requires `T: Copy` for `get`                  |
|`RefCel<T>`           | `RefMut<T>` / `Ref<T>` | may panic at runtime                          |
|`unsync::OnceCell<T>` | `&T`                   | assignable only once                          |

|`Sync` types          | Access Mode            | Drawbacks                                     |
|----------------------|------------------------|-----------------------------------------------|
|`AtomicT`             | `T`                    | works only with certain `Copy` types          |
|`Mutex<T>`            | `MutexGuard<T>`        | may deadlock at runtime, may block the thread |
|`sync::OnceCell<T>`   | `&T`                   | assignable only once, may block the thread    |

Technically, calling `get_or_init` will also cause a panic or a deadlock if it recursively calls
itself. However, because the assignment can happen only once, such cases should be more rare than
equivalents with `RefCell` and `Mutex`.

# Minimum Supported `rustc` Version

This crate's minimum supported `rustc` version is `1.31.1`.

If only `std` feature is enabled, MSRV will be updated conservatively.
When using other features, like `parking_lot`, MSRV might be updated more frequently, up to the latest stable.
In both cases, increasing MSRV is *not* considered a semver-breaking change.

# Implementation details

Implementation is based on [`lazy_static`](https://github.com/rust-lang-nursery/lazy-static.rs/)
and [`lazy_cell`](https://github.com/indiv0/lazycell/) crates and `std::sync::Once`. In some sense,
`once_cell` just streamlines and unifies those APIs.

To implement a sync flavor of `OnceCell`, this crates uses either a custom re-implementation of
`std::sync::Once` or `parking_lot::Mutex`. This is controlled by the `parking_lot` feature, which
is enabled by default. Performance is the same for both cases, but `parking_lot` based `OnceCell<T>`
is smaller by up to 16 bytes.

This crate uses unsafe.

# Related crates

* [double-checked-cell](https://github.com/niklasf/double-checked-cell)
* [lazy-init](https://crates.io/crates/lazy-init)
* [lazycell](https://crates.io/crates/lazycell)
* [mitochondria](https://crates.io/crates/mitochondria)
* [lazy_static](https://crates.io/crates/lazy_static)

*/

#[cfg(feature = "std")]
#[cfg(feature = "parking_lot")]
#[path = "imp_pl.rs"]
mod imp;

#[cfg(feature = "std")]
#[cfg(not(feature = "parking_lot"))]
#[path = "imp_std.rs"]
mod imp;

pub mod unsync {
    use core::{cell::UnsafeCell, fmt, hint::unreachable_unchecked, ops::Deref};

    #[cfg(feature = "std")]
    use std::panic::{RefUnwindSafe, UnwindSafe};

    /// A cell which can be written to only once. Not thread safe.
    ///
    /// Unlike `:td::cell::RefCell`, a `OnceCell` provides simple `&`
    /// references to the contents.
    ///
    /// # Example
    /// ```
    /// use once_cell::unsync::OnceCell;
    ///
    /// let cell = OnceCell::new();
    /// assert!(cell.get().is_none());
    ///
    /// let value: &String = cell.get_or_init(|| {
    ///     "Hello, World!".to_string()
    /// });
    /// assert_eq!(value, "Hello, World!");
    /// assert!(cell.get().is_some());
    /// ```
    pub struct OnceCell<T> {
        // Invariant: written to at most once.
        inner: UnsafeCell<Option<T>>,
    }

    // Similarly to a `Sync` bound on `sync::OnceCell`, we can use
    // `&unsync::OnceCell` to sneak a `T` through `catch_unwind`,
    // by initializing the cell in closure and extracting the value in the
    // `Drop`.
    #[cfg(feature = "std")]
    impl<T: RefUnwindSafe + UnwindSafe> RefUnwindSafe for OnceCell<T> {}
    #[cfg(feature = "std")]
    impl<T: UnwindSafe> UnwindSafe for OnceCell<T> {}

    impl<T> Default for OnceCell<T> {
        fn default() -> Self {
            Self::new()
        }
    }

    impl<T: fmt::Debug> fmt::Debug for OnceCell<T> {
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            match self.get() {
                Some(v) => f.debug_tuple("OnceCell").field(v).finish(),
                None => f.write_str("OnceCell(Uninit)"),
            }
        }
    }

    impl<T: Clone> Clone for OnceCell<T> {
        fn clone(&self) -> OnceCell<T> {
            let res = OnceCell::new();
            if let Some(value) = self.get() {
                match res.set(value.clone()) {
                    Ok(()) => (),
                    Err(_) => unreachable!(),
                }
            }
            res
        }
    }

    impl<T: PartialEq> PartialEq for OnceCell<T> {
        fn eq(&self, other: &Self) -> bool {
            self.get() == other.get()
        }
    }

    impl<T: Eq> Eq for OnceCell<T> {}

    impl<T> From<T> for OnceCell<T> {
        fn from(value: T) -> Self {
            OnceCell { inner: UnsafeCell::new(Some(value)) }
        }
    }

    impl<T> OnceCell<T> {
        /// Creates a new empty cell.
        pub const fn new() -> OnceCell<T> {
            OnceCell { inner: UnsafeCell::new(None) }
        }

        /// Gets the reference to the underlying value.
        ///
        /// Returns `None` if the cell is empty.
        pub fn get(&self) -> Option<&T> {
            // Safe due to `inner`'s invariant
            unsafe { &*self.inner.get() }.as_ref()
        }

        /// Sets the contents of this cell to `value`.
        ///
        /// Returns `Ok(())` if the cell was empty and `Err(value)` if it was
        /// full.
        ///
        /// # Example
        /// ```
        /// use once_cell::unsync::OnceCell;
        ///
        /// let cell = OnceCell::new();
        /// assert!(cell.get().is_none());
        ///
        /// assert_eq!(cell.set(92), Ok(()));
        /// assert_eq!(cell.set(62), Err(62));
        ///
        /// assert!(cell.get().is_some());
        /// ```
        pub fn set(&self, value: T) -> Result<(), T> {
            let slot = unsafe { &*self.inner.get() };
            if slot.is_some() {
                return Err(value);
            }
            let slot = unsafe { &mut *self.inner.get() };
            // This is the only place where we set the slot, no races
            // due to reentrancy/concurrency are possible, and we've
            // checked that slot is currently `None`, so this write
            // maintains the `inner`'s invariant.
            *slot = Some(value);
            Ok(())
        }

        /// Gets the contents of the cell, initializing it with `f`
        /// if the cell was empty.
        ///
        /// # Panics
        ///
        /// If `f` panics, the panic is propagated to the caller, and the cell
        /// remains uninitialized.
        ///
        /// It is an error to reentrantly initialize the cell from `f`. Doing
        /// so results in a panic.
        ///
        /// # Example
        /// ```
        /// use once_cell::unsync::OnceCell;
        ///
        /// let cell = OnceCell::new();
        /// let value = cell.get_or_init(|| 92);
        /// assert_eq!(value, &92);
        /// let value = cell.get_or_init(|| unreachable!());
        /// assert_eq!(value, &92);
        /// ```
        pub fn get_or_init<F>(&self, f: F) -> &T
        where
            F: FnOnce() -> T,
        {
            enum Void {}
            match self.get_or_try_init(|| Ok::<T, Void>(f())) {
                Ok(val) => val,
                Err(void) => match void {},
            }
        }

        /// Gets the contents of the cell, initializing it with `f` if
        /// the cell was empty. If the cell was empty and `f` failed, an
        /// error is returned.
        ///
        /// # Panics
        ///
        /// If `f` panics, the panic is propagated to the caller, and the cell
        /// remains uninitialized.
        ///
        /// It is an error to reentrantly initialize the cell from `f`. Doing
        /// so results in a panic.
        ///
        /// # Example
        /// ```
        /// use once_cell::unsync::OnceCell;
        ///
        /// let cell = OnceCell::new();
        /// assert_eq!(cell.get_or_try_init(|| Err(())), Err(()));
        /// assert!(cell.get().is_none());
        /// let value = cell.get_or_try_init(|| -> Result<i32, ()> {
        ///     Ok(92)
        /// });
        /// assert_eq!(value, Ok(&92));
        /// assert_eq!(cell.get(), Some(&92))
        /// ```
        pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E>
        where
            F: FnOnce() -> Result<T, E>,
        {
            if let Some(val) = self.get() {
                return Ok(val);
            }
            let val = f()?;
            assert!(self.set(val).is_ok(), "reentrant init");
            Ok(self.get().unwrap())
        }

        /// Consumes the `OnceCell`, returning the wrapped value.
        ///
        /// Returns `None` if the cell was empty.
        ///
        /// # Examples
        ///
        /// ```
        /// use once_cell::unsync::OnceCell;
        ///
        /// let cell: OnceCell<String> = OnceCell::new();
        /// assert_eq!(cell.into_inner(), None);
        ///
        /// let cell = OnceCell::new();
        /// cell.set("hello".to_string()).unwrap();
        /// assert_eq!(cell.into_inner(), Some("hello".to_string()));
        /// ```
        pub fn into_inner(self) -> Option<T> {
            // Because `into_inner` takes `self` by value, the compiler statically verifies
            // that it is not currently borrowed. So it is safe to move out `Option<T>`.
            self.inner.into_inner()
        }
    }

    /// A value which is initialized on the first access.
    ///
    /// # Example
    /// ```
    /// use once_cell::unsync::Lazy;
    ///
    /// let lazy: Lazy<i32> = Lazy::new(|| {
    ///     println!("initializing");
    ///     92
    /// });
    /// println!("ready");
    /// println!("{}", *lazy);
    /// println!("{}", *lazy);
    ///
    /// // Prints:
    /// //   ready
    /// //   initializing
    /// //   92
    /// //   92
    /// ```
    #[derive(Debug)]
    pub struct Lazy<T, F = fn() -> T> {
        cell: OnceCell<T>,
        init: UnsafeCell<Option<F>>,
    }

    impl<T, F> Lazy<T, F> {
        /// Creates a new lazy value with the given initializing function.
        ///
        /// # Example
        /// ```
        /// # fn main() {
        /// use once_cell::unsync::Lazy;
        ///
        /// let hello = "Hello, World!".to_string();
        ///
        /// let lazy = Lazy::new(|| hello.to_uppercase());
        ///
        /// assert_eq!(&*lazy, "HELLO, WORLD!");
        /// # }
        /// ```
        pub const fn new(init: F) -> Lazy<T, F> {
            Lazy { cell: OnceCell::new(), init: UnsafeCell::new(Some(init)) }
        }
    }

    impl<T, F: FnOnce() -> T> Lazy<T, F> {
        /// Forces the evaluation of this lazy value and returns a reference to
        /// the result.
        ///
        /// This is equivalent to the `Deref` impl, but is explicit.
        ///
        /// # Example
        /// ```
        /// use once_cell::unsync::Lazy;
        ///
        /// let lazy = Lazy::new(|| 92);
        ///
        /// assert_eq!(Lazy::force(&lazy), &92);
        /// assert_eq!(&*lazy, &92);
        /// ```
        pub fn force(this: &Lazy<T, F>) -> &T {
            // Safe because closure is guaranteed to be called at most once
            // so we only call `F` once, this also guarantees no race conditions
            this.cell.get_or_init(|| unsafe {
                match (*this.init.get()).take() {
                    Some(f) => f(),
                    None => unreachable_unchecked(),
                }
            })
        }
    }

    impl<T, F: FnOnce() -> T> Deref for Lazy<T, F> {
        type Target = T;
        fn deref(&self) -> &T {
            Lazy::force(self)
        }
    }
}

#[cfg(feature = "std")]
pub mod sync {
    use std::{cell::UnsafeCell, fmt, hint::unreachable_unchecked};

    use crate::imp::OnceCell as Imp;

    /// A thread-safe cell which can be written to only once.
    ///
    /// Unlike `std::sync::Mutex`, a `OnceCell` provides simple `&` references
    /// to the contents.
    ///
    /// # Example
    /// ```
    /// use once_cell::sync::OnceCell;
    ///
    /// static CELL: OnceCell<String> = OnceCell::new();
    /// assert!(CELL.get().is_none());
    ///
    /// std::thread::spawn(|| {
    ///     let value: &String = CELL.get_or_init(|| {
    ///         "Hello, World!".to_string()
    ///     });
    ///     assert_eq!(value, "Hello, World!");
    /// }).join().unwrap();
    ///
    /// let value: Option<&String> = CELL.get();
    /// assert!(value.is_some());
    /// assert_eq!(value.unwrap().as_str(), "Hello, World!");
    /// ```
    pub struct OnceCell<T>(Imp<T>);

    impl<T> Default for OnceCell<T> {
        fn default() -> OnceCell<T> {
            OnceCell::new()
        }
    }

    impl<T: fmt::Debug> fmt::Debug for OnceCell<T> {
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            match self.get() {
                Some(v) => f.debug_tuple("OnceCell").field(v).finish(),
                None => f.write_str("OnceCell(Uninit)"),
            }
        }
    }

    impl<T: Clone> Clone for OnceCell<T> {
        fn clone(&self) -> OnceCell<T> {
            let res = OnceCell::new();
            if let Some(value) = self.get() {
                match res.set(value.clone()) {
                    Ok(()) => (),
                    Err(_) => unreachable!(),
                }
            }
            res
        }
    }

    impl<T> From<T> for OnceCell<T> {
        fn from(value: T) -> Self {
            let cell = Self::new();
            cell.get_or_init(|| value);
            cell
        }
    }

    impl<T: PartialEq> PartialEq for OnceCell<T> {
        fn eq(&self, other: &OnceCell<T>) -> bool {
            self.get() == other.get()
        }
    }

    impl<T: Eq> Eq for OnceCell<T> {}

    impl<T> OnceCell<T> {
        /// Creates a new empty cell.
        pub const fn new() -> OnceCell<T> {
            OnceCell(Imp::new())
        }

        /// Gets the reference to the underlying value.
        ///
        /// Returns `None` if the cell is empty, or being initialized. This
        /// method never blocks.
        pub fn get(&self) -> Option<&T> {
            self.0.get()
        }

        /// Sets the contents of this cell to `value`.
        ///
        /// Returns `Ok(())` if the cell was empty and `Err(value)` if it was
        /// full.
        ///
        /// # Example
        /// ```
        /// use once_cell::sync::OnceCell;
        ///
        /// static CELL: OnceCell<i32> = OnceCell::new();
        ///
        /// fn main() {
        ///     assert!(CELL.get().is_none());
        ///
        ///     std::thread::spawn(|| {
        ///         assert_eq!(CELL.set(92), Ok(()));
        ///     }).join().unwrap();
        ///
        ///     assert_eq!(CELL.set(62), Err(62));
        ///     assert_eq!(CELL.get(), Some(&92));
        /// }
        /// ```
        pub fn set(&self, value: T) -> Result<(), T> {
            let mut value = Some(value);
            self.get_or_init(|| value.take().unwrap());
            match value {
                None => Ok(()),
                Some(value) => Err(value),
            }
        }

        /// Gets the contents of the cell, initializing it with `f` if the cell
        /// was empty.
        ///
        /// Many threads may call `get_or_init` concurrently with different
        /// initializing functions, but it is guaranteed that only one function
        /// will be executed.
        ///
        /// # Panics
        ///
        /// If `f` panics, the panic is propagated to the caller, and the cell
        /// remains uninitialized.
        ///
        /// It is an error to reentrantly initialize the cell from `f`. The
        /// exact outcome is unspecified. Current implementation deadlocks, but
        /// this may be changed to a panic in the future.
        ///
        /// # Example
        /// ```
        /// use once_cell::sync::OnceCell;
        ///
        /// let cell = OnceCell::new();
        /// let value = cell.get_or_init(|| 92);
        /// assert_eq!(value, &92);
        /// let value = cell.get_or_init(|| unreachable!());
        /// assert_eq!(value, &92);
        /// ```
        pub fn get_or_init<F>(&self, f: F) -> &T
        where
            F: FnOnce() -> T,
        {
            enum Void {}
            match self.get_or_try_init(|| Ok::<T, Void>(f())) {
                Ok(val) => val,
                Err(void) => match void {},
            }
        }

        /// Gets the contents of the cell, initializing it with `f` if
        /// the cell was empty. If the cell was empty and `f` failed, an
        /// error is returned.
        ///
        /// # Panics
        ///
        /// If `f` panics, the panic is propagated to the caller, and
        /// the cell remains uninitialized.
        ///
        /// It is an error to reentrantly initialize the cell from `f`.
        /// The exact outcome is unspecified. Current implementation
        /// deadlocks, but this may be changed to a panic in the future.
        ///
        /// # Example
        /// ```
        /// use once_cell::sync::OnceCell;
        ///
        /// let cell = OnceCell::new();
        /// assert_eq!(cell.get_or_try_init(|| Err(())), Err(()));
        /// assert!(cell.get().is_none());
        /// let value = cell.get_or_try_init(|| -> Result<i32, ()> {
        ///     Ok(92)
        /// });
        /// assert_eq!(value, Ok(&92));
        /// assert_eq!(cell.get(), Some(&92))
        /// ```
        pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E>
        where
            F: FnOnce() -> Result<T, E>,
        {
            self.0.get_or_try_init(f)
        }

        /// Consumes the `OnceCell`, returning the wrapped value. Returns
        /// `None` if the cell was empty.
        ///
        /// # Examples
        ///
        /// ```
        /// use once_cell::sync::OnceCell;
        ///
        /// let cell: OnceCell<String> = OnceCell::new();
        /// assert_eq!(cell.into_inner(), None);
        ///
        /// let cell = OnceCell::new();
        /// cell.set("hello".to_string()).unwrap();
        /// assert_eq!(cell.into_inner(), Some("hello".to_string()));
        /// ```
        pub fn into_inner(self) -> Option<T> {
            self.0.into_inner()
        }
    }

    /// A value which is initialized on the first access.
    ///
    /// This type is thread-safe and can be used in statics:
    ///
    /// # Example
    /// ```
    /// use std::collections::HashMap;
    ///
    /// use once_cell::sync::Lazy;
    ///
    /// static HASHMAP: Lazy<HashMap<i32, String>> = Lazy::new(|| {
    ///     println!("initializing");
    ///     let mut m = HashMap::new();
    ///     m.insert(13, "Spica".to_string());
    ///     m.insert(74, "Hoyten".to_string());
    ///     m
    /// });
    ///
    /// fn main() {
    ///     println!("ready");
    ///     std::thread::spawn(|| {
    ///         println!("{:?}", HASHMAP.get(&13));
    ///     }).join().unwrap();
    ///     println!("{:?}", HASHMAP.get(&74));
    ///
    ///     // Prints:
    ///     //   ready
    ///     //   initializing
    ///     //   Some("Spica")
    ///     //   Some("Hoyten")
    /// }
    /// ```
    pub struct Lazy<T, F = fn() -> T> {
        cell: OnceCell<T>,
        init: UnsafeCell<Option<F>>,
    }

    impl<T: fmt::Debug, F: fmt::Debug> fmt::Debug for Lazy<T, F> {
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            f.debug_struct("Lazy").field("cell", &self.cell).field("init", &"..").finish()
        }
    }

    // We never create a `&F` from a `&Lazy<T, F>` so it is fine
    // to not impl `Sync` for `F`
    // we do create a `&mut Option<F>` in `force`, but this is
    // properly synchronized, so it only happens once
    // so it also does not contribute to this impl.
    unsafe impl<T, F: Send> Sync for Lazy<T, F> where OnceCell<T>: Sync {}
    // auto-derived `Send` impl is OK.

    impl<T, F> Lazy<T, F> {
        /// Creates a new lazy value with the given initializing
        /// function.
        pub const fn new(f: F) -> Lazy<T, F> {
            Lazy { cell: OnceCell::new(), init: UnsafeCell::new(Some(f)) }
        }
    }

    impl<T, F: FnOnce() -> T> Lazy<T, F> {
        /// Forces the evaluation of this lazy value and
        /// returns a reference to result. This is equivalent
        /// to the `Deref` impl, but is explicit.
        ///
        /// # Example
        /// ```
        /// use once_cell::sync::Lazy;
        ///
        /// let lazy = Lazy::new(|| 92);
        ///
        /// assert_eq!(Lazy::force(&lazy), &92);
        /// assert_eq!(&*lazy, &92);
        /// ```
        pub fn force(this: &Lazy<T, F>) -> &T {
            // Safe because closure is guaranteed to be called at most once
            // so we only call `F` once, this also guarantees no race conditions
            this.cell.get_or_init(|| unsafe {
                match (*this.init.get()).take() {
                    Some(f) => f(),
                    None => unreachable_unchecked(),
                }
            })
        }
    }

    impl<T, F: FnOnce() -> T> ::std::ops::Deref for Lazy<T, F> {
        type Target = T;
        fn deref(&self) -> &T {
            Lazy::force(self)
        }
    }

    /// ```compile_fail
    /// struct S(*mut ());
    /// unsafe impl Sync for S {}
    ///
    /// fn share<T: Sync>(_: &T) {}
    /// share(&once_cell::sync::OnceCell::<S>::new());
    /// ```
    ///
    /// ```compile_fail
    /// struct S(*mut ());
    /// unsafe impl Sync for S {}
    ///
    /// fn share<T: Sync>(_: &T) {}
    /// share(&once_cell::sync::Lazy::<S>::new(|| unimplemented!()));
    /// ```
    fn _dummy() {}
}