1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
//! Emulation core for a Gameboy.
//!
//! This crate implements all instructions and their effects on the gameboy,
//! and provides methods to query the internal state of the gameboy for the frontend.
//!
//! To instantiate a new gameboy, first decide what cartridge is inserted in
//! the gameboy, and which model of gameboy is being emulated. Then you can use
//! [`GameBoy::new(cartridge, model)`][Gameboy::new] to instantiate an emulated gameboy.
//!
//! Note that at this early stage, the emulator focuses primarily on DMG emulation,
//! and does not support CGB or SGB exclusive features. As such, these systems
//! currently only run in the DMG-compatible mode.
//!
//! [Gameboy::new]: struct.GameBoy.html#method.new
pub(crate) mod cpu;
mod dma;
pub(crate) mod memory;
mod ppu;

pub use cpu::CYCLE_FREQ;
pub use memory::{MemoryError, MemoryResult};
pub use ppu::{GBPixel, Palette};

use crate::events;
use crate::gameboy::cpu::Cpu;
use crate::gameboy::dma::DmaUnit;
use crate::instructions;
use crate::instructionsn as new_instructions;
use crate::registers;
use crate::registers::WordRegister as wr;
use crate::rom;
use crate::rom::TargetConsole;

use alloc::boxed::Box;
use alloc::rc::Rc;
use core::convert::TryFrom;
use derive_more::Display;
use olympia_core::address;

/// Primary struct for an emulated gameboy.
///
/// # Example usage:
///
/// ```
/// # use olympia_engine::rom::Cartridge;
/// # use olympia_engine::gameboy::{GameBoy,GameBoyModel};
/// # let cartridge_data = vec![0u8; 0x8000];
/// // let cartridge_data: Vec<u8> = read_from_fs("my.rom");
/// let cartridge = Cartridge::from_data(cartridge_data).unwrap();
/// let mut gb = GameBoy::new(cartridge, GameBoyModel::GameBoy);
///
/// // in your event loop or elsewhere, at a 4mhz interval
/// gb.step();
/// ```
pub struct GameBoy {
    pub(crate) cpu: Cpu,
    pub(crate) mem: memory::Memory,
    pub(crate) ppu: ppu::PPU,
    dma: DmaUnit,
    runtime_decoder: Rc<new_instructions::RuntimeDecoder>,
    clocks_elapsed: u64,
    time_elapsed: f64,
    pub events: Rc<events::EventEmitter<events::Event>>,
}

#[derive(PartialEq, Eq, Debug, Display)]
/// Represents an error that occurred while performing
/// an emulated instruction.
pub enum StepError {
    /// Errors related to memory access
    #[display(fmt = "Accessing invalid memory location")]
    Memory(memory::MemoryError),
    /// Opcodes that don't map to a valid instruction
    #[display(fmt = "Attempted to exec invalid opcode {}", _0)]
    InvalidOpcode(u8),
}

#[cfg(feature = "std")]
impl std::error::Error for StepError {}

impl From<memory::MemoryError> for StepError {
    fn from(err: memory::MemoryError) -> Self {
        StepError::Memory(err)
    }
}

pub type StepResult<T> = Result<T, StepError>;
impl GameBoy {
    /// Creates a new gameboy.
    ///
    /// # Arguments
    ///
    /// * `cartridge` is the currently inserted Cartridge
    /// * `model` is the model of gameboy this should represent. Note this
    ///   should be set to the actual hardware type desired, not it's target
    ///   mode. For a Game Boy Color in Game Boy mode, this should be set to
    ///   `GameBoyModel::GameBoyColor`. The actual emulated mode is detected
    ///   based on whether the ROM declares itself to be Game Boy Color enhanced
    ///   or exclusive.
    ///
    pub fn new(cartridge: rom::Cartridge, model: GameBoyModel) -> GameBoy {
        let gb = GameBoy {
            cpu: Cpu::new(model, cartridge.target),
            mem: memory::Memory::new(cartridge),
            dma: Default::default(),
            ppu: Default::default(),
            runtime_decoder: Rc::new(new_instructions::RuntimeDecoder::new()),
            clocks_elapsed: 0,
            time_elapsed: 0.0,
            events: Rc::new(events::EventEmitter::new()),
        };

        events::propagate_events(&gb.cpu.events, gb.events.clone());
        events::propagate_events(&gb.mem.events, gb.events.clone());
        events::propagate_events(&gb.ppu.events, gb.events.clone());

        gb
    }

    pub fn add_exec_time(&mut self, time: f64) {
        self.time_elapsed += time;
    }

    /// Read a value from the given memory address.
    pub fn read_memory_u8<A: Into<address::LiteralAddress>>(
        &self,
        addr: A,
    ) -> memory::MemoryResult<u8> {
        self.mem.read_u8(addr)
    }

    /// Write a value to the given memory address.
    pub fn write_memory_u8<A: Into<address::LiteralAddress>>(
        &mut self,
        addr: A,
        val: u8,
    ) -> memory::MemoryResult<()> {
        self.mem.write_u8(addr, val)
    }

    /// Read an value at the given memory address as a signed integer.
    ///
    /// This is primarily useful for reading the target of a JR instruction.
    pub fn read_memory_i8<A: Into<address::LiteralAddress>>(
        &self,
        addr: A,
    ) -> memory::MemoryResult<i8> {
        Ok(i8::from_le_bytes([self.mem.read_u8(addr)?]))
    }

    /// Read a 16-bit value from the address at `target`
    ///
    /// Note that the value is read in little endian format.
    /// This means that given `0xC000` = `0x12` and `0xC001` = `0x45`,
    /// the value read will be `0x4512`
    pub fn read_memory_u16<A: Into<address::LiteralAddress>>(
        &self,
        target: A,
    ) -> memory::MemoryResult<u16> {
        let addr = target.into();
        Ok(u16::from_le_bytes([
            self.mem.read_u8(addr)?,
            self.mem.read_u8(addr.next())?,
        ]))
    }

    /// Write a 16-bit value to the address at `target`
    ///
    /// Note that the value is written in little endian format.
    /// This means that given value of `0xABCD` and `target` of `0xC000`
    /// then `0xC000` will be set to `0xCD` and `0xC001` will be set to `0xAB`
    pub fn write_memory_u16<A: Into<address::LiteralAddress>>(
        &mut self,
        target: A,
        value: u16,
    ) -> memory::MemoryResult<()> {
        let addr = target.into();
        let bytes = value.to_le_bytes();

        self.mem.write_u8(addr, bytes[0])?;
        self.mem.write_u8(addr.next(), bytes[1])?;
        Ok(())
    }

    pub(crate) fn exec_write_memory_u16<A: Into<address::LiteralAddress>>(
        &mut self,
        target: A,
        value: u16,
    ) -> memory::MemoryResult<()> {
        let addr = target.into();
        let bytes = value.to_le_bytes();

        self.mem.write_u8(addr, bytes[0])?;
        self.cycle();
        self.mem.write_u8(addr.next(), bytes[1])?;
        self.cycle();
        Ok(())
    }

    /// Read a value from the given 16-bit CPU register
    pub fn read_register_u16(&self, reg: registers::WordRegister) -> u16 {
        self.cpu.read_register_u16(reg)
    }

    /// Write a value to a given 16-bit CPU register
    pub fn write_register_u16(&mut self, reg: registers::WordRegister, val: u16) {
        self.cpu.write_register_u16(reg, val)
    }

    /// Read a value from the given 8-bit CPU register
    pub fn read_register_u8(&self, reg: registers::ByteRegister) -> u8 {
        self.cpu.read_register_u8(reg)
    }

    /// Write a value to the given 8-bit CPU register
    pub fn write_register_u8(&mut self, reg: registers::ByteRegister, val: u8) {
        self.cpu.write_register_u8(reg, val)
    }

    pub(crate) fn exec_read_register_target(
        &mut self,
        target: instructions::ByteRegisterTarget,
    ) -> StepResult<u8> {
        match registers::ByteRegister::try_from(target) {
            Ok(reg) => Ok(self.read_register_u8(reg)),
            Err(_) => {
                let addr = self.read_register_u16(wr::HL);
                let value = self.read_memory_u8(addr)?;
                self.cycle();
                Ok(value)
            }
        }
    }

    pub(crate) fn exec_write_register_target(
        &mut self,
        target: instructions::ByteRegisterTarget,
        value: u8,
    ) -> StepResult<()> {
        match registers::ByteRegister::try_from(target) {
            Ok(reg) => {
                self.write_register_u8(reg, value);
                Ok(())
            }
            Err(_) => {
                let addr = self.read_register_u16(wr::HL);
                self.write_memory_u8(addr, value)?;
                self.cycle();
                Ok(())
            }
        }
    }

    pub(crate) fn set_interrupt_state(&mut self, state: cpu::InterruptState) {
        self.cpu.interrupts_enabled = state;
    }

    pub fn power_saving_mode(&self) -> cpu::PowerSavingMode {
        self.cpu.power_saving
    }

    pub fn set_power_saving_mode(&mut self, mode: cpu::PowerSavingMode) {
        self.cpu.power_saving = mode
    }

    pub fn read_flag(&self, flag: registers::Flag) -> bool {
        self.cpu.read_flag(flag)
    }

    pub fn set_flag_to(&mut self, flag: registers::Flag, value: bool) {
        self.cpu.set_flag_to(flag, value);
    }

    pub(crate) fn set_flag(&mut self, flag: registers::Flag) {
        self.cpu.set_flag(flag);
    }

    pub(crate) fn reset_flag(&mut self, flag: registers::Flag) {
        self.cpu.reset_flag(flag);
    }

    pub(crate) fn cycling_memory_iter(&mut self) -> CyclingMemoryIterator {
        CyclingMemoryIterator { gb: self }
    }

    fn memory_iter(&self, start: address::LiteralAddress) -> memory::MemoryIterator {
        self.mem.offset_iter(start)
    }

    pub(crate) fn exec_read_inc_pc(&mut self) -> StepResult<u8> {
        let pc_value = self.cpu.read_register_u16(wr::PC);
        let val = self.read_memory_u8(pc_value)?;
        self.cpu
            .write_register_u16(wr::PC, pc_value.wrapping_add(1));
        self.cycle();
        Ok(val)
    }

    pub(crate) fn exec_push<T: Into<u16>>(&mut self, value: T) -> StepResult<()> {
        let stack_addr = self.cpu.read_register_u16(registers::WordRegister::SP);
        let [low, high] = value.into().to_le_bytes();
        let stack_addr = stack_addr.wrapping_sub(1);
        self.write_memory_u8(stack_addr, high)?;
        self.cycle();
        let stack_addr = stack_addr.wrapping_sub(1);
        self.write_memory_u8(stack_addr, low)?;
        self.cycle();
        self.cpu
            .write_register_u16(registers::WordRegister::SP, stack_addr);
        self.cycle();
        Ok(())
    }

    pub(crate) fn exec_pop<T: From<u16>>(&mut self) -> StepResult<T> {
        let stack_addr = self.cpu.read_register_u16(registers::WordRegister::SP);
        let low = self.read_memory_u8(stack_addr)?;
        self.cycle();
        let stack_addr = stack_addr.wrapping_add(1);
        let high = self.read_memory_u8(stack_addr)?;
        self.cycle();
        self.cpu
            .write_register_u16(registers::WordRegister::SP, stack_addr.wrapping_add(1));
        let value = u16::from_le_bytes([low, high]);
        Ok(T::from(value))
    }

    pub(crate) fn set_pc<A: Into<address::LiteralAddress>>(&mut self, target: A) {
        let address::LiteralAddress(addr) = target.into();
        self.cpu.write_register_u16(wr::PC, addr);
    }

    pub(crate) fn read_pc(&self) -> address::LiteralAddress {
        let value = self.cpu.read_register_u16(wr::PC);
        address::LiteralAddress(value)
    }

    fn check_interrupts(&mut self) -> StepResult<bool> {
        use cpu::InterruptState::{Disabled, Enabled, Pending};
        match self.cpu.interrupts_enabled {
            Pending => {
                self.cpu.interrupts_enabled = Enabled;
                Ok(false)
            }
            Disabled => Ok(false),
            Enabled => {
                let itest =
                    cpu::Interrupt::test(self.mem.registers().ie, self.mem.registers().iflag);
                if let Some(interrupt) = itest {
                    self.cycle();
                    self.cycle();
                    self.cpu.interrupts_enabled = Disabled;
                    let addr = interrupt.handler_address();
                    self.exec_push(self.read_pc())?;
                    self.set_pc(addr);
                    Ok(true)
                } else {
                    Ok(false)
                }
            }
        }
    }

    /// Runs a single instruction.
    ///
    /// Note that this instruction may take multiple machine cycles to
    /// execute. All components of the gameboy will run for this many machine
    /// cycles. To find out how many clocks elapsed, use `GameBoy::clocks_elapsed`.
    pub fn step(&mut self) -> StepResult<()> {
        let pc_value = self.read_pc();
        let opcode = self.read_memory_u8(pc_value)?;
        self.cycle();
        let interrupted = self.check_interrupts()?;
        if !interrupted {
            self.set_pc(pc_value.next());
            let non_borrowing_decoder = self.runtime_decoder.clone();
            let exe_code = if non_borrowing_decoder.is_extended(opcode) {
                let extended_opcode = self.exec_read_inc_pc()?;
                non_borrowing_decoder.decode_extended(extended_opcode)
            } else if let Some(exe_code) = non_borrowing_decoder.decode(opcode) {
                exe_code
            } else {
                return Err(StepError::InvalidOpcode(opcode));
            };
            exe_code
                .to_instruction(&mut self.cycling_memory_iter())
                .execute(self)?;
        }
        Ok(())
    }

    /// Returns the instruction at the current PC.
    pub fn current_instruction(
        &self,
    ) -> StepResult<Box<dyn crate::instructionsn::RuntimeInstruction>> {
        let mut pc_value = self.read_pc();
        let opcode = self.read_memory_u8(pc_value)?;
        let exe_code = if self.runtime_decoder.is_extended(opcode) {
            pc_value = pc_value.next();
            let extended_opcode = self.read_memory_u8(pc_value)?;
            self.runtime_decoder.decode_extended(extended_opcode)
        } else if let Some(exe_code) = self.runtime_decoder.decode(opcode) {
            exe_code
        } else {
            return Err(StepError::InvalidOpcode(opcode));
        };
        Ok(exe_code.to_instruction(&mut self.memory_iter(pc_value.next())))
    }

    pub(crate) fn cycle(&mut self) {
        // TODO: Use this. a memory error can occur if the DMA operation tries to
        // write to cartridge RAM that is not present. As with actual hardware,
        // the DMA operation continues, and so we shouldn't abort emulation early,
        // but it would be useful to surface this information somewhere for ROM developers.
        let _dma_result = self.dma.run_cycle(&mut self.mem);
        self.ppu.run_cycle(&mut self.mem);
        self.clocks_elapsed += 4;
    }

    /// Query how many CPU clocks have elapsed since the emulator started
    pub fn clocks_elapsed(&self) -> u64 {
        self.clocks_elapsed
    }

    /// Query how many machine cycles have elapsed since the emulator started
    ///
    /// Each machine cycle represents 4 CPU clocks.
    pub fn cycles_elapsed(&self) -> u64 {
        self.clocks_elapsed() / 4
    }

    /// Query much clock time has been spent emulating
    pub fn time_elapsed(&self) -> f64 {
        self.time_elapsed
    }
}

pub(crate) struct CyclingMemoryIterator<'a> {
    gb: &'a mut GameBoy,
}

impl<'a> Iterator for CyclingMemoryIterator<'a> {
    type Item = u8;

    fn next(&mut self) -> Option<u8> {
        let addr = self.gb.read_pc();
        let value = self.gb.read_memory_u8(addr).ok();
        self.gb.cycle();
        self.gb.set_pc(addr.next());
        value
    }
}

/// Represents a hardware type running a gameboy game.
///
/// Note that the presence of GBA models do not imply support
/// for GBA ROMs. However, the GBA has some differing behaviors
/// when running GB games compared to standard GB hardware.
pub enum GameBoyModel {
    GameBoy,          // DMG
    GameBoyPocket,    // MGB
    SuperGameBoy,     // SGB
    GameBoyColor,     // GBC
    GameBoyAdvance,   // AGB
    GameBoyAdvanceSP, // AGS
}

impl GameBoyModel {
    pub(crate) fn default_af(&self) -> u16 {
        match self {
            GameBoyModel::GameBoy => 0x01B0,
            GameBoyModel::GameBoyPocket => 0xFFB0,
            GameBoyModel::SuperGameBoy => 0x0100,
            GameBoyModel::GameBoyColor => 0x1180,
            GameBoyModel::GameBoyAdvance => 0x1100,
            GameBoyModel::GameBoyAdvanceSP => 0x1100,
        }
    }

    pub(crate) fn default_bc(&self) -> u16 {
        match self {
            GameBoyModel::GameBoy => 0x0013,
            GameBoyModel::GameBoyPocket => 0x0013,
            GameBoyModel::SuperGameBoy => 0x0014,
            GameBoyModel::GameBoyColor => 0x0000,
            GameBoyModel::GameBoyAdvance => 0x0100,
            GameBoyModel::GameBoyAdvanceSP => 0x0100,
        }
    }

    pub(crate) fn default_de(&self, target: TargetConsole) -> u16 {
        let gbc_mode = target != TargetConsole::GameBoyOnly;
        match self {
            GameBoyModel::GameBoy => 0x00D8,
            GameBoyModel::GameBoyPocket => 0x00D8,
            GameBoyModel::SuperGameBoy => 0x0000,
            GameBoyModel::GameBoyColor if gbc_mode => 0xFF56,
            GameBoyModel::GameBoyColor => 0x0008,
            GameBoyModel::GameBoyAdvance if gbc_mode => 0xFF56,
            GameBoyModel::GameBoyAdvance => 0x0008,
            GameBoyModel::GameBoyAdvanceSP if gbc_mode => 0xFF56,
            GameBoyModel::GameBoyAdvanceSP => 0x0008,
        }
    }

    pub(crate) fn default_hl(&self, target: TargetConsole) -> u16 {
        let gbc_mode = target != TargetConsole::GameBoyOnly;
        match self {
            GameBoyModel::GameBoy => 0x014D,
            GameBoyModel::GameBoyPocket => 0x014D,
            GameBoyModel::SuperGameBoy => 0xC060,
            GameBoyModel::GameBoyColor if gbc_mode => 0x000D,
            GameBoyModel::GameBoyColor => 0x007C,
            GameBoyModel::GameBoyAdvance if gbc_mode => 0x000D,
            GameBoyModel::GameBoyAdvance => 0x007C,
            GameBoyModel::GameBoyAdvanceSP if gbc_mode => 0x000D,
            GameBoyModel::GameBoyAdvanceSP => 0x007C,
        }
    }
}

#[cfg(test)]
pub(crate) mod testutils;

#[cfg(test)]
mod test {
    use super::*;
    use crate::gameboy::memory;
    use alloc::vec::Vec;

    fn make_cartridge() -> rom::Cartridge {
        rom::Cartridge::from_data(vec![0u8; 0x8000]).unwrap()
    }

    #[test]
    fn test_reg_write_u8_read_u8() {
        let mut gb = GameBoy::new(make_cartridge(), GameBoyModel::GameBoy);

        gb.write_register_u8(registers::ByteRegister::A, 0x01);
        assert_eq!(gb.cpu.read_register_u8(registers::ByteRegister::A), 0x01);

        gb.write_register_u8(registers::ByteRegister::B, 0x02);
        assert_eq!(gb.cpu.read_register_u8(registers::ByteRegister::B), 0x02);

        gb.write_register_u8(registers::ByteRegister::C, 0x03);
        assert_eq!(gb.cpu.read_register_u8(registers::ByteRegister::C), 0x03);

        gb.write_register_u8(registers::ByteRegister::D, 0x04);
        assert_eq!(gb.cpu.read_register_u8(registers::ByteRegister::D), 0x04);

        gb.write_register_u8(registers::ByteRegister::E, 0x05);
        assert_eq!(gb.cpu.read_register_u8(registers::ByteRegister::E), 0x05);

        gb.write_register_u8(registers::ByteRegister::F, 0x66);
        // F register lower 4 bytes are not writable
        assert_eq!(gb.cpu.read_register_u8(registers::ByteRegister::F), 0x60);

        gb.write_register_u8(registers::ByteRegister::H, 0x07);
        assert_eq!(gb.cpu.read_register_u8(registers::ByteRegister::H), 0x07);

        gb.write_register_u8(registers::ByteRegister::L, 0x08);
        assert_eq!(gb.cpu.read_register_u8(registers::ByteRegister::L), 0x08);
    }

    #[test]
    fn test_reg_write_u16_read_u16() {
        let mut gb = GameBoy::new(make_cartridge(), GameBoyModel::GameBoy);

        gb.write_register_u16(registers::WordRegister::AF, 0x1234);
        // F register lower 4 bytes are not writable
        assert_eq!(
            gb.cpu.read_register_u16(registers::WordRegister::AF),
            0x1230
        );

        gb.write_register_u16(registers::WordRegister::BC, 0x1235);
        assert_eq!(
            gb.cpu.read_register_u16(registers::WordRegister::BC),
            0x1235
        );

        gb.write_register_u16(registers::WordRegister::DE, 0x1236);
        assert_eq!(
            gb.cpu.read_register_u16(registers::WordRegister::DE),
            0x1236
        );

        gb.write_register_u16(registers::WordRegister::HL, 0x1237);
        assert_eq!(
            gb.cpu.read_register_u16(registers::WordRegister::HL),
            0x1237
        );

        gb.write_register_u16(registers::WordRegister::PC, 0x1238);
        assert_eq!(
            gb.cpu.read_register_u16(registers::WordRegister::PC),
            0x1238
        );

        gb.write_register_u16(registers::WordRegister::SP, 0x1239);
        assert_eq!(
            gb.cpu.read_register_u16(registers::WordRegister::SP),
            0x1239
        );
    }

    #[test]
    fn test_reg_write_u8_read_u16() {
        let mut gb = GameBoy::new(make_cartridge(), GameBoyModel::GameBoy);

        gb.write_register_u8(registers::ByteRegister::A, 0x15);
        gb.write_register_u8(registers::ByteRegister::F, 0x12);
        assert_eq!(
            gb.cpu
                .read_register_u16(registers::WordRegister::AF)
                .to_be_bytes(),
            // F register lower 4 bytes are not writable
            [0x15, 0x10]
        );

        gb.write_register_u8(registers::ByteRegister::B, 0x25);
        gb.write_register_u8(registers::ByteRegister::C, 0x22);
        assert_eq!(
            gb.cpu
                .read_register_u16(registers::WordRegister::BC)
                .to_be_bytes(),
            [0x25, 0x22]
        );

        gb.write_register_u8(registers::ByteRegister::D, 0x35);
        gb.write_register_u8(registers::ByteRegister::E, 0x32);
        assert_eq!(
            gb.cpu
                .read_register_u16(registers::WordRegister::DE)
                .to_be_bytes(),
            [0x35, 0x32]
        );

        gb.write_register_u8(registers::ByteRegister::H, 0x45);
        gb.write_register_u8(registers::ByteRegister::L, 0x42);
        assert_eq!(
            gb.cpu
                .read_register_u16(registers::WordRegister::HL)
                .to_be_bytes(),
            [0x45, 0x42]
        );
    }

    #[test]
    fn test_reg_write_u16_read_u8() {
        let mut gb = GameBoy::new(make_cartridge(), GameBoyModel::GameBoy);

        gb.write_register_u16(registers::WordRegister::AF, 0x9876);
        assert_eq!(gb.cpu.read_register_u8(registers::ByteRegister::A), 0x98);
        // F register lower 4 bytes are not writable
        assert_eq!(gb.cpu.read_register_u8(registers::ByteRegister::F), 0x70);

        gb.write_register_u16(registers::WordRegister::BC, 0x9775);
        assert_eq!(gb.cpu.read_register_u8(registers::ByteRegister::B), 0x97);
        assert_eq!(gb.cpu.read_register_u8(registers::ByteRegister::C), 0x75);

        gb.write_register_u16(registers::WordRegister::DE, 0x9674);
        assert_eq!(gb.cpu.read_register_u8(registers::ByteRegister::D), 0x96);
        assert_eq!(gb.cpu.read_register_u8(registers::ByteRegister::E), 0x74);

        gb.write_register_u16(registers::WordRegister::HL, 0x9573);
        assert_eq!(gb.cpu.read_register_u8(registers::ByteRegister::H), 0x95);
        assert_eq!(gb.cpu.read_register_u8(registers::ByteRegister::L), 0x73);
    }

    #[test]
    fn test_mem_write_u8_read_u8_sysram() -> memory::MemoryResult<()> {
        let mut gb = GameBoy::new(make_cartridge(), GameBoyModel::GameBoy);

        gb.write_memory_u8(0xc100, 0x32)?;
        assert_eq!(gb.read_memory_u8(0xc100), Ok(0x32));
        Ok(())
    }

    #[test]
    fn test_mem_write_u16_read_u16_sysram() -> memory::MemoryResult<()> {
        let mut gb = GameBoy::new(make_cartridge(), GameBoyModel::GameBoy);

        gb.write_memory_u16(0xc100, 0x1032)?;
        assert_eq!(gb.read_memory_u16(0xc100), Ok(0x1032));
        Ok(())
    }

    #[test]
    fn test_mem_write_u8_read_u16_sysram() -> memory::MemoryResult<()> {
        let mut gb = GameBoy::new(make_cartridge(), GameBoyModel::GameBoy);

        gb.write_memory_u8(0xc100, 0x48)?;
        gb.write_memory_u8(0xc101, 0x94)?;

        assert_eq!(gb.read_memory_u16(0xc100), Ok(0x9448));
        Ok(())
    }

    #[test]
    fn test_mem_write_u16_read_u8_sysram() -> memory::MemoryResult<()> {
        let mut gb = GameBoy::new(make_cartridge(), GameBoyModel::GameBoy);

        gb.write_memory_u16(0xc200, 0x1345)?;

        assert_eq!(gb.read_memory_u8(0xc200), Ok(0x45));
        assert_eq!(gb.read_memory_u8(0xc201), Ok(0x13));
        Ok(())
    }

    #[test]
    fn test_write_u8_read_i8_sysram() -> memory::MemoryResult<()> {
        let mut gb = GameBoy::new(make_cartridge(), GameBoyModel::GameBoy);
        let signed_value = i8::from_le_bytes([0xa2]);

        gb.write_memory_u8(0xc200, 0xa2)?;

        assert_eq!(gb.read_memory_i8(0xc200), Ok(signed_value));
        Ok(())
    }

    #[test]
    fn test_mem_write_u8_read_u8_vram() -> memory::MemoryResult<()> {
        let mut gb = GameBoy::new(make_cartridge(), GameBoyModel::GameBoy);

        gb.write_memory_u8(0x8100, 0x32)?;
        assert_eq!(gb.read_memory_u8(0x8100), Ok(0x32));
        Ok(())
    }

    #[test]
    fn test_mem_write_u8_read_u8_cpuram() -> memory::MemoryResult<()> {
        let mut gb = GameBoy::new(make_cartridge(), GameBoyModel::GameBoy);

        gb.write_memory_u8(0xff80, 0x32)?;
        assert_eq!(gb.read_memory_u8(0xff80), Ok(0x32));
        Ok(())
    }

    #[test]
    fn test_cycle_count() {
        let mut gb = GameBoy::new(make_cartridge(), GameBoyModel::GameBoy);
        gb.clocks_elapsed = 16;
        assert_eq!(gb.cycles_elapsed(), 4);
    }

    #[test]
    fn test_convert_memory_error() {
        let error = memory::MemoryError::InvalidRomAddress(0x7999);
        let mapped_error: StepError = error.into();

        assert_eq!(
            mapped_error,
            StepError::Memory(memory::MemoryError::InvalidRomAddress(0x7999))
        );
    }

    #[test]
    fn test_write_events() {
        use core::cell::RefCell;
        let event_log: Rc<RefCell<Vec<events::Event>>> = Rc::new(RefCell::new(Vec::new()));
        let handler_log = Rc::clone(&event_log);

        let handler: events::EventHandler<events::Event> = Box::new(move |evt| {
            handler_log.borrow_mut().push(evt.clone());
        });
        let mut gb = GameBoy::new(make_cartridge(), GameBoyModel::GameBoy);
        gb.events.on(handler);

        gb.write_memory_u8(0x9456, 0x24).unwrap();
        gb.write_register_u16(wr::BC, 0x1234);

        let actual_events = event_log.borrow();

        assert_eq!(
            *actual_events,
            vec![
                events::MemoryWriteEvent::new(0x9456.into(), 0x24, 0x24,).into(),
                events::RegisterWriteEvent::new(wr::BC, 0x1234).into(),
            ]
        );
    }
}