1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
// Copyright 2018-2019 Joe Neeman.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// See the LICENSE-APACHE or LICENSE-MIT files at the top-level directory
// of this distribution.

//! This crate provides an implementation of the disjoint-sets algorithm that is built on top of
//! a pair of multimaps. (The reason for this weird implementation is that once multimaps is fully
//! persistent, this will be also.)

#[macro_use]
extern crate serde_derive;

use ojo_multimap::MMap;
use std::collections::btree_map::Entry;
use std::collections::BTreeMap as Map;

#[derive(Clone, Debug, Deserialize, Serialize)]
pub struct Partition<T: Copy + Ord> {
    ranks: Map<T, usize>,
    parent_map: Map<T, T>,
    child_map: MMap<T, T>,
}

impl<T: Copy + Ord> Default for Partition<T> {
    fn default() -> Partition<T> {
        Partition::new()
    }
}

impl<T: Copy + Ord> Partition<T> {
    pub fn new() -> Partition<T> {
        Partition {
            ranks: Map::new(),
            parent_map: Map::new(),
            child_map: MMap::new(),
        }
    }

    /// Panics if the new element already exists.
    pub fn insert(&mut self, elt: T) {
        match self.ranks.entry(elt) {
            Entry::Occupied(_) => panic!("tried to insert an element twice"),
            Entry::Vacant(e) => e.insert(0),
        };
    }

    /// Is the given element the representative of its component?
    pub fn is_rep(&self, elt: &T) -> bool {
        !self.parent_map.contains_key(elt)
    }

    /// Returns true if there was a merge to be done (i.e. they didn't already belong to the same
    /// part).
    pub fn merge(&mut self, elt1: T, elt2: T) -> bool {
        let rep1 = self.representative_mut(elt1);
        let rep2 = self.representative_mut(elt2);
        if rep1 != rep2 {
            self.merge_reps(rep1, rep2);
            true
        } else {
            false
        }
    }

    // Panics unless the two given elements are representatives of their components.
    fn merge_reps(&mut self, rep1: T, rep2: T) {
        assert!(self.is_rep(&rep1) && self.is_rep(&rep2));
        let rank1 = self.ranks[&rep1];
        let rank2 = self.ranks[&rep2];
        if rank1 <= rank2 {
            self.parent_map.insert(rep1, rep2);
            self.child_map.insert(rep2, rep1);
            if rank1 == rank2 {
                self.ranks.insert(rep2, rank2 + 1);
            }
        } else {
            self.parent_map.insert(rep2, rep1);
            self.child_map.insert(rep1, rep2);
        }
    }

    pub fn representative_mut(&mut self, elt: T) -> T {
        let rep = self.representative(elt);
        // Reparent the element to the representative.
        if let Some(orig_parent_ref) = self.parent_map.get_mut(&elt) {
            if *orig_parent_ref != rep {
                self.child_map.remove(&*orig_parent_ref, &elt);
                self.child_map.insert(rep, elt);
                *orig_parent_ref = rep;
            }
        }
        rep
    }

    pub fn representative(&self, elt: T) -> T {
        debug_assert!(self.contains(elt));
        let mut ret = elt;
        while let Some(parent) = self.parent_map.get(&ret) {
            ret = *parent;
        }
        ret
    }

    pub fn same_part_mut(&mut self, elt1: T, elt2: T) -> bool {
        self.representative_mut(elt1) == self.representative_mut(elt2)
    }

    pub fn same_part(&self, elt1: T, elt2: T) -> bool {
        self.representative(elt1) == self.representative(elt2)
    }

    pub fn contains(&self, elt: T) -> bool {
        self.ranks.contains_key(&elt)
    }

    pub fn remove_part(&mut self, elt: T) {
        let elts = self.iter_part(elt).collect::<Vec<_>>();
        for e in elts {
            self.parent_map.remove(&e);
            self.ranks.remove(&e);
            self.child_map.remove_all(&e);
        }
    }

    pub fn iter_part<'a>(&'a self, elt: T) -> impl Iterator<Item = T> + 'a {
        PartIter::new(self, self.representative(elt))
    }

    pub fn iter_parts<'a>(&'a self) -> impl Iterator<Item = impl Iterator<Item = T> + 'a> + 'a {
        self.ranks
            .keys()
            // For each representative of a part...
            .filter(move |elt| self.is_rep(elt))
            // ...return an iterator over that part.
            .map(move |r| self.iter_part(*r))
    }
}

impl<T: Copy + Ord, PI: IntoIterator<Item = T>> std::iter::FromIterator<PI> for Partition<T> {
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = PI>,
    {
        let mut ret = Partition::new();

        for part in iter.into_iter() {
            let mut part_iter = part.into_iter();
            if let Some(rep) = part_iter.next() {
                // Declare the first element in the part as its representative; all other elements
                // will have the representative as their direct parent.
                ret.ranks.insert(rep, 1);
                for child in part_iter {
                    ret.ranks.insert(child, 0);
                    ret.parent_map.insert(child, rep);
                    ret.child_map.insert(rep, child);
                }
            }
        }
        ret
    }
}

pub struct PartIter<'a, T: Copy + Ord> {
    partition: &'a Partition<T>,
    // We can traverse a component as though it were a tree, by following the child links. In order
    // to keep track of the iteration we store a stack, each element of which contains an iterator
    // over nodes at a certain level of the tree. Note that each of these iterators is of the type
    // returned by MMap::get; we currently have no way to name this type, hence the Box.
    stack: Vec<Box<dyn Iterator<Item = T> + 'a>>,
}

impl<'a, T: Copy + Ord> PartIter<'a, T> {
    fn new(partition: &'a Partition<T>, root: T) -> PartIter<'a, T> {
        PartIter {
            partition,
            stack: vec![Box::new(Some(root).into_iter())],
        }
    }
}

impl<'a, T: Copy + Ord> Iterator for PartIter<'a, T> {
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        while let Some(iter) = self.stack.last_mut() {
            if let Some(item) = iter.next() {
                self.stack
                    .push(Box::new(self.partition.child_map.get(&item).cloned()));
                return Some(item);
            } else {
                self.stack.pop();
            }
        }
        None
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    // TODO: think about how to use proptest for testing this
    #[test]
    fn partition() {
        fn assert_vec_eq(mut a: Vec<u32>, mut b: Vec<u32>) {
            a.sort();
            b.sort();
            assert_eq!(a, b);
        }

        let mut partition = Partition::new();
        partition.insert(0);
        partition.insert(1);
        partition.insert(2);
        partition.insert(3);
        partition.insert(4);

        assert_eq!(partition.iter_parts().count(), 5);

        partition.merge(0, 4);
        assert_eq!(partition.iter_parts().count(), 4);
        partition.merge(0, 4);
        assert_eq!(partition.iter_parts().count(), 4);
        assert!(partition.same_part(0, 4));
        assert_vec_eq(partition.iter_part(0).collect(), vec![0, 4]);
        assert_vec_eq(partition.iter_part(4).collect(), vec![0, 4]);

        partition.merge(1, 2);
        assert_eq!(partition.iter_parts().count(), 3);
        assert!(partition.same_part(1, 2));
        assert_vec_eq(partition.iter_part(1).collect(), vec![1, 2]);
        assert_vec_eq(partition.iter_part(2).collect(), vec![1, 2]);

        partition.merge(2, 4);
        assert_eq!(partition.iter_parts().count(), 2);
        assert_vec_eq(partition.iter_part(0).collect(), vec![0, 1, 2, 4]);
        assert_vec_eq(partition.iter_part(1).collect(), vec![0, 1, 2, 4]);
        assert_vec_eq(partition.iter_part(2).collect(), vec![0, 1, 2, 4]);
        assert_vec_eq(partition.iter_part(4).collect(), vec![0, 1, 2, 4]);

        partition.remove_part(1);
        assert_eq!(partition.iter_parts().count(), 1);
        assert_vec_eq(partition.iter_part(3).collect(), vec![3]);
    }
}