1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
use crate::instructions::Instructions;
use crate::EvalError;
use std::collections::VecDeque;
use std::convert::From;

/// Executes given ojisanf-ck code.
#[derive(Debug)]
pub struct Interpreter {
    // Memory cells.
    memory: Vec<u8>,
    // Array of instructions.
    instructions: Vec<Instructions>,
    // Current memory index.
    memory_pointer: usize,
    // Current instruction index.
    instruction_pointer: usize,
    // Buffer of user input. This is not interactive.
    input_buffer: VecDeque<u8>,
    // Buffer of output.
    output_buffer: Vec<char>,
    // Holds index of matching `[` to which `]` jumps back.
    loop_stack: Vec<usize>,
}

impl Interpreter {
    /// Parse source code into intermediate representation of instruction ignoreing
    /// unexpected characters and return new `Interpreter`.
    pub fn new(source: &str, buffer: String) -> Self {
        let instructions = source
            .chars()
            .filter_map(|c| {
                let instruction = Instructions::from(c);
                if instruction != Instructions::Nop {
                    Some(instruction)
                } else {
                    None
                }
            })
            .collect();
        let input_buffer: VecDeque<u8> = buffer.chars().map(|c| c as u8).collect();

        Self {
            memory: vec![0; 30_000],
            instructions,
            memory_pointer: 0,
            instruction_pointer: 0,
            input_buffer,
            output_buffer: Vec::new(),
            loop_stack: Vec::new(),
        }
    }

    /// Evaluate parsed code.
    pub fn eval(&mut self) -> Result<(), EvalError> {
        while self.instruction_pointer < self.instructions.len() {
            match self.instructions[self.instruction_pointer] {
                Instructions::PtrIncr => self.pointer_increment()?,
                Instructions::PtrDecr => self.pointer_decrement()?,
                Instructions::ValIncr => self.value_increment()?,
                Instructions::ValDecr => self.value_decrement()?,
                Instructions::PutChar => self.put_char()?,
                Instructions::GetChar => self.get_char()?,
                Instructions::BeginLoop => self.begin_loop()?,
                Instructions::EndLoop => self.end_loop()?,
                Instructions::Nop => unreachable!(),
            };
            self.instruction_pointer += 1;
        }

        if !self.loop_stack.is_empty() {
            return Err(EvalError::UnbalancedBracket);
        }
        Ok(())
    }

    // Convert output buffer into a string.
    pub fn output(&self) -> String {
        self.output_buffer.iter().collect()
    }

    fn pointer_increment(&mut self) -> Result<(), EvalError> {
        match self.memory_pointer.checked_add(1) {
            Some(memory_pointer) => self.memory_pointer = memory_pointer,
            None => return Err(EvalError::MemoryOutOfRange),
        }
        Ok(())
    }

    fn pointer_decrement(&mut self) -> Result<(), EvalError> {
        match self.memory_pointer.checked_sub(1) {
            Some(memory_pointer) => self.memory_pointer = memory_pointer,
            None => return Err(EvalError::MemoryOutOfRange),
        }
        Ok(())
    }

    fn value_increment(&mut self) -> Result<(), EvalError> {
        let value = self.memory[self.memory_pointer].checked_add(1).unwrap_or(0);
        self.memory[self.memory_pointer] = value;
        Ok(())
    }

    fn value_decrement(&mut self) -> Result<(), EvalError> {
        let value = self.memory[self.memory_pointer]
            .checked_sub(1)
            .unwrap_or(std::u8::MAX);
        self.memory[self.memory_pointer] = value;
        Ok(())
    }

    fn put_char(&mut self) -> Result<(), EvalError> {
        let c = self.memory[self.memory_pointer];
        self.output_buffer.push(c as char);
        Ok(())
    }

    fn get_char(&mut self) -> Result<(), EvalError> {
        self.memory[self.memory_pointer] = match self.input_buffer.pop_front() {
            Some(input) => input,
            None => return Err(EvalError::InputExhausted),
        };
        Ok(())
    }

    fn begin_loop(&mut self) -> Result<(), EvalError> {
        self.loop_stack.push(self.instruction_pointer);
        if self.memory[self.memory_pointer] == 0 {
            self.instruction_pointer = self.corresponding_loop_end()?;
        }
        Ok(())
    }

    // Returns index of corresponding loop end.
    fn corresponding_loop_end(&self) -> Result<usize, EvalError> {
        let mut nest_level = 0;
        let mut instruction_pointer = self.instruction_pointer + 1;
        while nest_level > 0 || self.instructions[instruction_pointer] != Instructions::EndLoop {
            if self.instructions[instruction_pointer] == Instructions::BeginLoop {
                nest_level += 1;
            } else if self.instructions[instruction_pointer] == Instructions::EndLoop {
                nest_level -= 1;
            }
            instruction_pointer += 1;
            if instruction_pointer == self.instructions.len() {
                return Err(EvalError::UnbalancedBracket);
            }
        }
        Ok(instruction_pointer)
    }

    // By using stack to memorize index of `[`, jump to corresponding loop origin without scanning code again.
    fn end_loop(&mut self) -> Result<(), EvalError> {
        let loop_begin = match self.loop_stack.pop() {
            Some(pointer) => pointer,
            None => return Err(EvalError::UnbalancedBracket),
        };
        if self.memory[self.memory_pointer] != 0 {
            self.instruction_pointer = loop_begin;
            self.loop_stack.push(loop_begin);
        }
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use crate::interpreter::Interpreter;

    #[test]
    fn overflowing_addtion() {
        // `+`
        let source = "😘";
        let mut interpreter = Interpreter::new(source, String::new());
        interpreter.memory[0] = 255;
        interpreter.eval().unwrap();
        assert_eq!(0, interpreter.memory[0]);
    }

    #[test]
    fn overflowing_subtraction() {
        // `-`
        let source = "😚";
        let mut interpreter = Interpreter::new(source, String::new());
        interpreter.eval().unwrap();
        assert_eq!(255, interpreter.memory[0]);
    }

    #[test]
    fn test_jump_to_loop_end() {
        // `[+]+
        let source = "✋😘🤟😘";
        let interpreter = Interpreter::new(source, String::new());
        assert_eq!(2, interpreter.corresponding_loop_end().unwrap());
    }

    #[test]
    fn test_jump_to_nested_loop_end() {
        // `[+++[>++<-]-]+`
        let source = "✋😘😘😘✋😅😘😘😭😚🤟😚🤟😘";
        let mut interpreter = Interpreter::new(source, String::new());
        assert_eq!(
            12,
            interpreter.corresponding_loop_end().unwrap(),
            "Matching outer loop"
        );
        interpreter.instruction_pointer = 4;
        assert_eq!(
            10,
            interpreter.corresponding_loop_end().unwrap(),
            "Matching inner loop"
        );
    }

    #[test]
    #[should_panic]
    fn test_lacking_end_of_loop() {
        // `[+++[>++<-]-`
        let source = "✋😘😘😘✋😅😘😘😭😚🤟😚";
        let mut interpreter = Interpreter::new(source, String::new());
        interpreter.eval().unwrap();
    }

    #[test]
    #[should_panic]
    fn test_lacking_begining_of_loop() {
        // `+[-]-]+`
        let source = "😘✋😚🤟😚🤟😘";
        let mut interpreter = Interpreter::new(source, String::new());
        interpreter.eval().unwrap();
    }

    #[test]
    fn test_input() {
        // `,.,.,.`
        let source = "⁉💦⁉💦⁉💦";
        let mut interpreter = Interpreter::new(source, "abc".to_string());
        interpreter.eval().unwrap();
        assert_eq!("abc", interpreter.output());
    }

    #[test]
    #[should_panic]
    fn test_exhaustive_input() {
        // `,.,.,.`
        let source = "⁉💦⁉💦⁉💦";
        let mut interpreter = Interpreter::new(source, "ab".to_string());
        interpreter.eval().unwrap();
    }
}