odra_core/
contract_def.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
//! Encapsulates a set of structures that abstract out a smart contract layout.

use crate::prelude::*;
use casper_event_standard::EventInstance;
use casper_types::{
    bytesrepr::{FromBytes, ToBytes},
    CLType, Key, PublicKey, URef, U128, U256, U512
};
use serde::{Deserialize, Serialize};

/// Contract's entrypoint.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct Entrypoint {
    /// The entrypoint's ident.
    pub name: String,
    /// The entrypoint's arguments.
    pub args: Vec<Argument>,
    /// `true` if the entrypoint is mutable.
    pub is_mutable: bool,
    /// The entrypoint's return type.
    pub return_ty: CLType,
    /// The entrypoint's type.
    pub ty: EntrypointType,
    /// The entrypoint's attributes.
    pub attributes: Vec<EntrypointAttribute>
}

/// Defines an argument passed to an entrypoint.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize)]
pub struct Argument {
    /// The argument's ident.
    pub name: String,
    /// The argument's type.
    pub ty: CLType,
    /// `true` if the argument is a reference.
    pub is_ref: bool,
    /// `true` if the argument is a slice.
    pub is_slice: bool,
    /// `true` if the argument is required.
    pub is_required: bool
}

/// Defines an event.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize)]
pub struct Event {
    /// The event's ident.
    pub name: String,
    /// The event's arguments.
    pub args: Vec<Argument>
}

impl Event {
    /// Returns `true` if the event has any argument of `CLType::Any` type.
    pub fn has_any(&self) -> bool {
        self.args.iter().any(|arg| arg.ty == CLType::Any)
    }
}

/// Defines an entrypoint type.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
pub enum EntrypointType {
    /// A special entrypoint that can be called just once on the contract initialization.
    Constructor,
    /// A regular entrypoint.
    Public
}

/// Defines an entrypoint attribute.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
pub enum EntrypointAttribute {
    /// A non-reentrant entrypoint.
    NonReentrant,
    /// A payable entrypoint.
    Payable
}

/// A trait that should be implemented by each smart contract to allow the backend.
pub trait HasIdent {
    /// Returns the contract's ident.
    fn ident() -> String;
}

/// A trait that should be implemented by each smart contract to allow the backend
/// to generate blockchain-specific code.
pub trait HasEntrypoints {
    /// Returns the list of contract's entrypoints.
    fn entrypoints() -> Vec<Entrypoint>;
}

/// A trait that should be implemented by each smart contract to allow the backend.
pub trait HasEvents {
    /// Returns a list of Events used by the contract.
    fn events() -> Vec<Event>;

    /// Returns a map of event schemas used by the contract.
    fn event_schemas() -> crate::prelude::BTreeMap<String, casper_event_standard::Schema> {
        crate::prelude::BTreeMap::new()
    }
}

/// Represents a contract blueprint.
///
/// A contract blueprint is a set of events and entrypoints defined in a smart contract.
/// It is used to generate the contract's ABI.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct ContractBlueprint {
    /// The name of the contract.
    pub name: String,
    /// The events defined in the contract.
    pub events: Vec<Event>,
    /// The entrypoints defined in the contract.
    pub entrypoints: Vec<Entrypoint>
}

impl ContractBlueprint {
    /// Creates a new instance of `ContractBlueprint` using the provided type parameters.
    ///
    /// # Type Parameters
    ///
    /// - `T`: A type that implements the `HasIdent`, `HasEvents`, and `HasEntrypoints` traits.
    ///
    /// # Returns
    ///
    /// A new instance of `ContractBlueprint` with the name, events, and entrypoints
    /// obtained from the type `T`.
    pub fn new<T: HasIdent + HasEvents + HasEntrypoints>() -> Self {
        Self {
            name: T::ident(),
            events: T::events(),
            entrypoints: T::entrypoints()
        }
    }

    /// Converts the `ContractBlueprint` instance to a JSON string representation.
    ///
    /// # Returns
    ///
    /// A `Result` containing the JSON string if the conversion is successful,
    /// or a `serde_json::Error` if an error occurs during serialization.
    pub fn as_json(self) -> Result<String, serde_json::Error> {
        serde_json::to_string_pretty(&self)
    }
}

/// A trait for converting a type into an [Event].
pub trait IntoEvent {
    /// Converts the type into an [Event].
    fn into_event() -> Event;
}

impl<T: EventInstance> IntoEvent for T {
    fn into_event() -> Event {
        let mut schemas = casper_event_standard::Schemas::new();
        schemas.add::<T>();
        let name = <T as EventInstance>::name();
        let schema = <T as EventInstance>::schema();
        let args = schema
            .to_vec()
            .iter()
            .map(|(name, ty)| Argument {
                name: name.clone(),
                ty: ty.clone().downcast(),
                is_ref: false,
                is_slice: false,
                is_required: true
            })
            .collect::<Vec<_>>();
        Event { name, args }
    }
}

macro_rules! impl_has_events {
    ($($t:ty),*) => {
        impl HasEvents for () {
            fn events() -> Vec<Event> {
                vec![]
            }
        }

        $(
            impl HasEvents for $t {
                fn events() -> Vec<Event> {
                    vec![]
                }
            }
        )*
    };
}

impl_has_events!(
    u8, u16, u32, u64, i8, i16, i32, i64, U128, U256, U512, Address, String, bool, Key, URef,
    PublicKey
);

impl<T: ToBytes + FromBytes, const N: usize> HasEvents for [T; N] {
    fn events() -> Vec<Event> {
        vec![]
    }
}

impl<T: ToBytes + FromBytes> HasEvents for Option<T> {
    fn events() -> Vec<Event> {
        vec![]
    }
}

impl<T: ToBytes + FromBytes, E: ToBytes + FromBytes> HasEvents for Result<T, E> {
    fn events() -> Vec<Event> {
        vec![]
    }
}

impl<T: ToBytes + FromBytes, E: ToBytes + FromBytes> HasEvents for BTreeMap<T, E> {
    fn events() -> Vec<Event> {
        vec![]
    }
}

impl<T: ToBytes + FromBytes> HasEvents for Vec<T> {
    fn events() -> Vec<Event> {
        vec![]
    }
}

impl<T1: ToBytes + FromBytes> HasEvents for (T1,) {
    fn events() -> Vec<Event> {
        vec![]
    }
}

impl<T1: ToBytes + FromBytes, T2: ToBytes + FromBytes> HasEvents for (T1, T2) {
    fn events() -> Vec<Event> {
        vec![]
    }
}

impl<T1: ToBytes + FromBytes, T2: ToBytes + FromBytes, T3: ToBytes + FromBytes> HasEvents
    for (T1, T2, T3)
{
    fn events() -> Vec<Event> {
        vec![]
    }
}