1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
//! Extra functions for slices

pub mod blocked;
pub mod iter;
pub mod unalign;
pub mod rev;

pub use self::rev::RevSlice;

use crate::std::ptr;
use crate::std::cmp::min;
use crate::std::mem::{align_of, size_of};
use crate::std::slice::from_raw_parts;

use rawslice::SliceIter;
use unchecked_index::get_unchecked;

/// Unaligned load of a u64 at index `i` in `buf`
unsafe fn load_u64(buf: &[u8], i: usize) -> u64 {
    debug_assert!(i + 8 <= buf.len());
    let mut data = 0u64;
    ptr::copy_nonoverlapping(get_unchecked(buf, i), &mut data as *mut _ as *mut u8, 8);
    data
}

/// Return the end index of the longest shared (equal) prefix of `a` and `b`.
pub fn shared_prefix(a: &[u8], b: &[u8]) -> usize {
    let len = min(a.len(), b.len());
    let mut a = &a[..len];
    let mut b = &b[..len];
    let mut offset = 0;
    while a.len() >= 16 {
        unsafe {
            let a0 = load_u64(a, 0);
            let a1 = load_u64(a, 8);
            let b0 = load_u64(b, 0);
            let b1 = load_u64(b, 8);
            let d0 = a0 ^ b0;
            let d1 = a1 ^ b1;
            if d0 ^ d1 != 0 {
                break;
            }
        }
        offset += 16;
        a = &a[16..];
        b = &b[16..];
    }
    for i in 0..a.len() {
        if a[i] != b[i] {
            return offset + i;
        }
    }
    len
}

/// Rotate `steps` towards lower indices.
///
/// The steps to rotate is computed modulo the length of `data`,
/// so any step value is acceptable. This function does not panic.
///
/// ```
/// use odds::slice::rotate_left;
///
/// let mut data = [1, 2, 3, 4];
/// rotate_left(&mut data, 1);
/// assert_eq!(&data, &[2, 3, 4, 1]);
/// rotate_left(&mut data, 2);
/// assert_eq!(&data, &[4, 1, 2, 3]);
/// ```
pub fn rotate_left<T>(data: &mut [T], steps: usize) {
    //return rotate_alt(data, steps);
    // no bounds checks in this method in this version
    if data.len() == 0 {
        return;
    }
    let steps = steps % data.len();

    data[..steps].reverse();
    data[steps..].reverse();
    data.reverse();
}

#[test]
fn test_shared_prefix() {
    let mut a = [0xff; 256];
    let b = [0xff; 256];
    for byte in 0..255 { // don't test byte 255
        for i in 0..a.len() {
            a[i] = byte;
            let ans = shared_prefix(&a, &b);
            assert!(ans == i, "failed for index {} and byte {:x} (got ans={})",
                    i, byte, ans);
            a[i] = 0xff;
        }
    }
}

/// Element-finding methods for slices
pub trait SliceFind {
    type Item;
    /// Linear search for the first occurrence  `elt` in the slice.
    ///
    /// Return its index if it is found, or None.
    fn find<U: ?Sized>(&self, elt: &U) -> Option<usize>
        where Self::Item: PartialEq<U>;

    /// Linear search for the last occurrence  `elt` in the slice.
    ///
    /// Return its index if it is found, or None.
    fn rfind<U: ?Sized>(&self, elt: &U) -> Option<usize>
        where Self::Item: PartialEq<U>;
}

impl<T> SliceFind for [T] { 
    type Item = T;
    fn find<U: ?Sized>(&self, elt: &U) -> Option<usize>
        where Self::Item: PartialEq<U>
    {
        SliceIter::from(self).position(move |x| *x == *elt)
    }

    fn rfind<U: ?Sized>(&self, elt: &U) -> Option<usize>
        where Self::Item: PartialEq<U>
    {
        SliceIter::from(self).rposition(move |x| *x == *elt)
    }
}

/// Element-finding methods for slices
pub trait SliceFindSplit {
    type Item;
    /// Linear search for the first occurrence  `elt` in the slice.
    ///
    /// Return the part before and the part including and after the element.
    /// If the element is not found, the second half is empty.
    fn find_split<U: ?Sized>(&self, elt: &U) -> (&Self, &Self)
        where Self::Item: PartialEq<U>;

    /// Linear search for the last occurrence  `elt` in the slice.
    ///
    /// Return the part before and the part including and after the element.
    /// If the element is not found, the first half is empty.
    fn rfind_split<U: ?Sized>(&self, elt: &U) -> (&Self, &Self)
        where Self::Item: PartialEq<U>;

    /// Linear search for the first occurrence  `elt` in the slice.
    ///
    /// Return the part before and the part including and after the element.
    /// If the element is not found, the second half is empty.
    fn find_split_mut<U: ?Sized>(&mut self, elt: &U) -> (&mut Self, &mut Self)
        where Self::Item: PartialEq<U>;

    /// Linear search for the last occurrence  `elt` in the slice.
    ///
    /// Return the part before and the part including and after the element.
    /// If the element is not found, the first half is empty.
    fn rfind_split_mut<U: ?Sized>(&mut self, elt: &U) -> (&mut Self, &mut Self)
        where Self::Item: PartialEq<U>;
}


/// Unchecked version of `xs.split_at(i)`.
unsafe fn split_at_unchecked<T>(xs: &[T], i: usize) -> (&[T], &[T]) {
    (get_unchecked(xs, ..i),
     get_unchecked(xs, i..))
}

impl<T> SliceFindSplit for [T] { 
    type Item = T;
    fn find_split<U: ?Sized>(&self, elt: &U) -> (&Self, &Self)
        where Self::Item: PartialEq<U>
    {
        let i = self.find(elt).unwrap_or(self.len());
        unsafe {
            split_at_unchecked(self, i)
        }
    }

    fn find_split_mut<U: ?Sized>(&mut self, elt: &U) -> (&mut Self, &mut Self)
        where Self::Item: PartialEq<U>
    {
        let i = self.find(elt).unwrap_or(self.len());
        self.split_at_mut(i)
    }

    fn rfind_split<U: ?Sized>(&self, elt: &U) -> (&Self, &Self)
        where Self::Item: PartialEq<U>
    {
        let i = self.rfind(elt).unwrap_or(0);
        unsafe {
            split_at_unchecked(self, i)
        }
    }

    fn rfind_split_mut<U: ?Sized>(&mut self, elt: &U) -> (&mut Self, &mut Self)
        where Self::Item: PartialEq<U>
    {
        let i = self.rfind(elt).unwrap_or(0);
        self.split_at_mut(i)
    }
}


/// "plain old data": Types that we can stick arbitrary bit patterns into,
/// and thus use them as blocks in `split_aligned_for` or in `UnalignedIter`.
pub unsafe trait Pod : Copy { }
macro_rules! impl_pod {
    (@array $($e:expr),+) => {
        $(
        unsafe impl<T> Pod for [T; $e] where T: Pod { }
        )+
    };
    ($($t:ty)+) => {
        $(
        unsafe impl Pod for $t { }
        )+
    };
}
impl_pod!{u8 u16 u32 u64 usize i8 i16 i32 i64 isize}
impl_pod!{@array 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}


/// Split the input slice into three chunks,
/// so that the middle chunk is a slice of a larger "block size"
/// (for example T could be u64) that is correctly aligned for `T`.
///
/// The first and last returned slices are the remaining head and tail
/// parts that could not be baked into `&[T]`
///
/// # Examples
///
/// ```
/// extern crate odds;
/// use odds::slice::split_aligned_for;
///
/// fn count_ones(data: &[u8]) -> u32 {
///     let mut total = 0;
///     let (head, mid, tail) = split_aligned_for::<[u64; 2]>(data);
///     total += head.iter().map(|x| x.count_ones()).sum::<u32>();
///     total += mid.iter().map(|x| x[0].count_ones() + x[1].count_ones()).sum::<u32>();
///     total += tail.iter().map(|x| x.count_ones()).sum::<u32>();
///     total
/// }
///
/// fn main() {
///     assert_eq!(count_ones(&vec![3u8; 127]), 127 * 2);
/// }
/// ```
pub fn split_aligned_for<T: Pod>(data: &[u8]) -> (&[u8], &[T], &[u8]) {
    let ptr = data.as_ptr();
    let align_t = align_of::<T>();
    let size_t = size_of::<T>();
    let align_ptr = ptr as usize & (align_t - 1);
    let prefix = if align_ptr == 0 { 0 } else { align_t - align_ptr };
    let t_len;

    if prefix > data.len() {
        t_len = 0;
    } else {
        t_len = (data.len() - prefix) / size_t;
    }
    unsafe {
        (from_raw_parts(ptr, prefix),
         from_raw_parts(ptr.offset(prefix as isize) as *const T, t_len),
         from_raw_parts(ptr.offset((prefix + t_len * size_t) as isize),
                        data.len() - t_len * size_t - prefix))
    }
}

#[cfg(feature = "std")]
#[test]
fn test_split_aligned() {
    let data = vec![0; 1024];
    assert_eq!(data.as_ptr() as usize & 7, 0);
    let (a, b, c) = split_aligned_for::<u8>(&data);
    assert_eq!(a.len(), 0);
    assert_eq!(b.len(), data.len());
    assert_eq!(c.len(), 0);

    let (a, b, c) = split_aligned_for::<u64>(&data);
    assert_eq!(a.len(), 0);
    assert_eq!(b.len(), data.len() / 8);
    assert_eq!(c.len(), 0);

    let offset1 = &data[1..data.len() - 2];
    let (a, b, c) = split_aligned_for::<u64>(offset1);
    assert_eq!(a.len(), 7);
    assert_eq!(b.len(), data.len() / 8 - 2);
    assert_eq!(c.len(), 6);

    let data = [0; 7];
    let (a, b, c) = split_aligned_for::<u64>(&data);
    assert_eq!(a.len() + c.len(), 7);
    assert_eq!(b.len(), 0);
}


/* All of these use this trick:
 *
    for i in 0..4 {
        if i < data.len() {
            f(&data[i]);
        }
    }
 * The intention is that the range makes sure the compiler
 * sees that the loop is not autovectorized or something that generates
 * a lot of code in vain that does not pay off when it's only 3 elements or less.
 */

#[cfg(test)]
pub fn unroll_2<'a, T, F>(data: &'a [T], mut f: F)
    where F: FnMut(&'a T)
{
    let mut data = data;
    while data.len() >= 2 {
        f(&data[0]);
        f(&data[1]);
        data = &data[2..];
    }
    // tail
    if 0 < data.len() {
        f(&data[0]);
    }
}
#[cfg(test)]
pub fn unroll_4<'a, T, F>(data: &'a [T], mut f: F)
    where F: FnMut(&'a T)
{
    let mut data = data;
    while data.len() >= 4 {
        f(&data[0]);
        f(&data[1]);
        f(&data[2]);
        f(&data[3]);
        data = &data[4..];
    }
    // tail
    for i in 0..3 {
        if i < data.len() {
            f(&data[i]);
        }
    }
}

#[cfg(test)]
pub fn unroll_8<'a, T, F>(data: &'a [T], mut f: F)
    where F: FnMut(&'a T)
{
    let mut data = data;
    while data.len() >= 8 {
        f(&data[0]);
        f(&data[1]);
        f(&data[2]);
        f(&data[3]);
        f(&data[4]);
        f(&data[5]);
        f(&data[6]);
        f(&data[7]);
        data = &data[8..];
    }
    // tail
    for i in 0..7 {
        if i < data.len() {
            f(&data[i]);
        }
    }
}

#[cfg(test)]
pub fn zip_unroll_4<'a, 'b, A, B, F>(a: &'a [A], b: &'b [B], mut f: F)
    where F: FnMut(usize, &'a A, &'b B)
{
    let len = min(a.len(), b.len());
    let mut a = &a[..len];
    let mut b = &b[..len];
    while a.len() >= 4 {
        f(0, &a[0], &b[0]);
        f(1, &a[1], &b[1]);
        f(2, &a[2], &b[2]);
        f(3, &a[3], &b[3]);
        a = &a[4..];
        b = &b[4..];
    }
    // tail
    for i in 0..3 {
        if i < a.len() {
            f(0, &a[i], &b[i]);
        }
    }
}

#[cfg(test)]
pub fn zip_unroll_8<'a, 'b, A, B, F>(a: &'a [A], b: &'b [B], mut f: F)
    where F: FnMut(usize, &'a A, &'b B)
{
    let len = min(a.len(), b.len());
    let mut a = &a[..len];
    let mut b = &b[..len];
    while a.len() >= 8 {
        f(0, &a[0], &b[0]);
        f(1, &a[1], &b[1]);
        f(2, &a[2], &b[2]);
        f(3, &a[3], &b[3]);
        f(4, &a[4], &b[4]);
        f(5, &a[5], &b[5]);
        f(6, &a[6], &b[6]);
        f(7, &a[7], &b[7]);
        a = &a[8..];
        b = &b[8..];
    }

    // tail
    for i in 0..7 {
        if i < a.len() {
            f(0, &a[i], &b[i]);
        }
    }
}

#[cfg(test)]
pub fn f64_dot(xs: &[f64], ys: &[f64]) -> f64 {
    let mut sum = [0.; 8];
    zip_unroll_8(xs, ys, |i, x, y| sum[i] += x * y);
    sum[0] += sum[4];
    sum[1] += sum[5];
    sum[2] += sum[6];
    sum[3] += sum[7];
    sum[0] += sum[2];
    sum[1] += sum[3];
    sum[0] + sum[1]
}

#[test]
fn test_find() {
    let v = [0, 1, 7, 0, 0, 2, 3, 5, 1, 5, 3, 1, 2, 1];
    assert_eq!(v.find_split(&7), v.split_at(2));
    assert_eq!(v.rfind_split(&7), v.split_at(2));
    assert_eq!(v.rfind_split(&2), v.split_at(v.len() - 2));
}