1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
#![allow(unknown_lints)]
#![allow(clippy::derive_partial_eq_without_eq)]

//! OCaml types represented in Rust, these are zero-copy and incur no additional overhead

use crate::{sys, CamlError, Error, Raw, Runtime, Tag};

use core::{
    iter::{IntoIterator, Iterator},
    marker::PhantomData,
    mem, slice,
};

use crate::value::{FromValue, Size, ToValue, Value};

/// `Array<A>` wraps an OCaml `'a array` without converting it to Rust
#[derive(Clone, PartialEq, Eq)]
#[repr(transparent)]
pub struct Array<T: ToValue + FromValue>(Value, PhantomData<T>);

unsafe impl<T: ToValue + FromValue> ToValue for Array<T> {
    fn to_value(&self, _rt: &Runtime) -> Value {
        self.0.clone()
    }
}

unsafe impl<T: ToValue + FromValue> FromValue for Array<T> {
    fn from_value(value: Value) -> Self {
        Array(value, PhantomData)
    }
}

impl Array<f64> {
    /// Set value to double array
    pub fn set_double(&mut self, i: usize, f: f64) -> Result<(), Error> {
        if i >= self.len() {
            return Err(CamlError::ArrayBoundError.into());
        }

        if !self.is_f64() {
            return Err(Error::NotDoubleArray);
        }

        unsafe {
            self.set_f64_unchecked(i, f);
        };

        Ok(())
    }

    /// Set value to double array without bounds checking
    ///
    /// # Safety
    /// This function performs no bounds checking
    #[inline]
    pub unsafe fn set_f64_unchecked(&mut self, i: usize, f: f64) {
        self.0.store_double_field(i, f)
    }

    /// Get a value from a double array
    pub fn get_f64(&self, i: usize) -> Result<f64, Error> {
        if i >= self.len() {
            return Err(CamlError::ArrayBoundError.into());
        }
        if !self.is_f64() {
            return Err(Error::NotDoubleArray);
        }

        Ok(unsafe { self.get_double_unchecked(i) })
    }

    /// Get a value from a double array without checking if the array is actually a double array
    ///
    /// # Safety
    ///
    /// This function does not perform bounds checking
    #[inline]
    pub unsafe fn get_double_unchecked(&self, i: usize) -> f64 {
        self.0.double_field(i)
    }
}

impl<T: ToValue + FromValue> Array<T> {
    /// Allocate a new Array
    pub unsafe fn alloc(n: usize) -> Array<T> {
        let x = Value::alloc(n, Tag(0));
        Array(x, PhantomData)
    }

    /// Check if Array contains only doubles, if so `get_f64` and `set_f64` should be used
    /// to access values
    pub fn is_f64(&self) -> bool {
        unsafe { sys::caml_is_double_array(self.0.raw().0) == 1 }
    }

    /// Array length
    pub fn len(&self) -> usize {
        unsafe { sys::caml_array_length(self.0.raw().0) }
    }

    /// Returns true when the array is empty
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Set array index
    pub unsafe fn set(&mut self, rt: &Runtime, i: usize, v: &T) -> Result<(), Error> {
        if i >= self.len() {
            return Err(CamlError::ArrayBoundError.into());
        }

        if self.is_f64() {
            self.0.store_double_field(i, v.to_value(rt).double_val())
        } else {
            self.set_unchecked(rt, i, v);
        }
        Ok(())
    }

    /// Set array index without bounds checking
    ///
    /// # Safety
    ///
    /// This function does not perform bounds checking
    #[inline]
    pub unsafe fn set_unchecked(&mut self, rt: &Runtime, i: usize, v: &T) {
        self.0.store_field(rt, i, v);
    }

    /// Get array index
    pub unsafe fn get(&self, rt: &Runtime, i: usize) -> Result<T, Error> {
        if i >= self.len() {
            return Err(CamlError::ArrayBoundError.into());
        }

        if self.is_f64() {
            return Ok(FromValue::from_value(self.0.double_field(i).to_value(rt)));
        }

        Ok(self.get_unchecked(i))
    }

    /// Get array index without bounds checking
    ///
    /// # Safety
    ///
    /// This function does not perform bounds checking
    #[inline]
    pub unsafe fn get_unchecked(&self, i: usize) -> T {
        FromValue::from_value(self.0.field(i))
    }

    #[doc(hidden)]
    pub fn as_slice(&self) -> &[Raw] {
        unsafe { self.0.slice() }
    }

    #[doc(hidden)]
    pub fn as_mut_slice(&mut self) -> &mut [Raw] {
        unsafe { self.0.slice_mut() }
    }

    /// Array as `Vec`
    #[cfg(not(feature = "no-std"))]
    pub fn into_vec(self) -> Vec<T> {
        FromValue::from_value(self.0)
    }

    /// Array as `Vec`
    #[cfg(not(feature = "no-std"))]
    pub unsafe fn as_vec(&self, rt: &Runtime) -> Result<Vec<T>, Error> {
        let mut dest = Vec::new();
        let len = self.len();

        for i in 0..len {
            let x = self.get(rt, i)?;
            dest.push(x)
        }

        Ok(dest)
    }
}

/// `List<A>` wraps an OCaml `'a list` without converting it to Rust, this introduces no
/// additional overhead compared to a `Value` type
#[derive(Clone, PartialEq, Eq)]
#[repr(transparent)]
pub struct List<T: ToValue + FromValue>(Value, PhantomData<T>);

unsafe impl<T: ToValue + FromValue> ToValue for List<T> {
    fn to_value(&self, _rt: &Runtime) -> Value {
        self.0.clone()
    }
}

unsafe impl<T: ToValue + FromValue> FromValue for List<T> {
    fn from_value(value: Value) -> Self {
        List(value, PhantomData)
    }
}

impl<T: ToValue + FromValue> List<T> {
    /// An empty list
    #[inline(always)]
    pub fn empty() -> List<T> {
        List(Value::unit(), PhantomData)
    }

    /// Returns the number of items in `self`
    pub unsafe fn len(&self) -> usize {
        let mut length = 0;
        let mut tmp = self.0.raw();
        while tmp.0 != sys::EMPTY_LIST {
            let p = sys::field(tmp.0, 1);
            if p.is_null() {
                break;
            }
            tmp = (*p).into();
            length += 1;
        }
        length
    }

    /// Returns true when the list is empty
    pub fn is_empty(&self) -> bool {
        self.0 == Self::empty().0
    }

    /// Add an element to the front of the list returning the new list
    #[must_use]
    #[allow(clippy::should_implement_trait)]
    pub unsafe fn add(self, rt: &Runtime, v: &T) -> List<T> {
        let item = v.to_value(rt);
        let mut dest = Value::alloc(2, Tag(0));
        dest.store_field(rt, 0, &item);
        dest.store_field(rt, 1, &self.0);
        List(dest, PhantomData)
    }

    /// List head
    pub fn hd(&self) -> Option<Value> {
        if self.is_empty() {
            return None;
        }

        unsafe { Some(self.0.field(0)) }
    }

    /// List tail
    pub fn tl(&self) -> List<T> {
        if self.is_empty() {
            return Self::empty();
        }

        unsafe { List(self.0.field(1), PhantomData) }
    }

    #[cfg(not(feature = "no-std"))]
    /// List as `Vec`
    pub fn into_vec(self) -> Vec<T> {
        self.into_iter().map(T::from_value).collect()
    }

    #[cfg(not(feature = "no-std"))]
    /// List as `LinkedList`
    pub fn into_linked_list(self) -> std::collections::LinkedList<T> {
        FromValue::from_value(self.0)
    }

    /// List iterator
    #[allow(clippy::should_implement_trait)]
    pub fn into_iter(self) -> ListIterator {
        ListIterator { inner: self.0 }
    }
}

impl<T: ToValue + FromValue> IntoIterator for List<T> {
    type Item = Value;
    type IntoIter = ListIterator;

    fn into_iter(self) -> Self::IntoIter {
        List::into_iter(self)
    }
}

/// List iterator.
pub struct ListIterator {
    inner: Value,
}

impl Iterator for ListIterator {
    type Item = Value;

    fn next(&mut self) -> Option<Self::Item> {
        if self.inner.raw().0 != sys::UNIT {
            unsafe {
                let val = self.inner.field(0);
                self.inner = self.inner.field(1);
                Some(val)
            }
        } else {
            None
        }
    }
}

/// `bigarray` contains wrappers for OCaml `Bigarray` values. These types can be used to transfer arrays of numbers between Rust
/// and OCaml directly without the allocation overhead of an `array` or `list`
pub mod bigarray {
    use super::*;
    use crate::sys::bigarray;

    /// Bigarray kind
    pub trait Kind {
        /// Array item type
        type T: Clone + Copy;

        /// OCaml bigarray type identifier
        fn kind() -> i32;
    }

    macro_rules! make_kind {
        ($t:ty, $k:ident) => {
            impl Kind for $t {
                type T = $t;

                fn kind() -> i32 {
                    bigarray::Kind::$k as i32
                }
            }
        };
    }

    make_kind!(u8, UINT8);
    make_kind!(i8, SINT8);
    make_kind!(u16, UINT16);
    make_kind!(i16, SINT16);
    make_kind!(f32, FLOAT32);
    make_kind!(f64, FLOAT64);
    make_kind!(i64, INT64);
    make_kind!(i32, INT32);
    make_kind!(char, CHAR);

    /// OCaml Bigarray.Array1 type, this introduces no
    /// additional overhead compared to a `Value` type
    #[repr(transparent)]
    #[derive(Clone, PartialEq, Eq)]
    pub struct Array1<T>(Value, PhantomData<T>);

    unsafe impl<T> crate::FromValue for Array1<T> {
        fn from_value(value: Value) -> Array1<T> {
            Array1(value, PhantomData)
        }
    }

    unsafe impl<T> crate::ToValue for Array1<T> {
        fn to_value(&self, _rt: &Runtime) -> Value {
            self.0.clone()
        }
    }

    impl<T: Copy + Kind> Array1<T> {
        /// Array1::of_slice is used to convert from a slice to OCaml Bigarray,
        /// the `data` parameter must outlive the resulting bigarray or there is
        /// no guarantee the data will be valid. Use `Array1::from_slice` to clone the
        /// contents of a slice.
        pub unsafe fn of_slice(data: &mut [T]) -> Array1<T> {
            let x = Value::new(bigarray::caml_ba_alloc_dims(
                T::kind() | bigarray::Managed::EXTERNAL as i32,
                1,
                data.as_mut_ptr() as bigarray::Data,
                data.len() as sys::Intnat,
            ));
            Array1(x, PhantomData)
        }

        /// Convert from a slice to OCaml Bigarray, copying the array. This is the implemtation
        /// used by `Array1::from` for slices to avoid any potential lifetime issues
        #[cfg(not(feature = "no-std"))]
        pub unsafe fn from_slice(data: impl AsRef<[T]>) -> Array1<T> {
            let x = data.as_ref();
            let mut arr = Array1::<T>::create(x.len());
            let data = arr.data_mut();
            data.copy_from_slice(x);
            arr
        }

        /// Create a new OCaml `Bigarray.Array1` with the given type and size
        pub unsafe fn create(n: Size) -> Array1<T> {
            let data = { bigarray::malloc(n * mem::size_of::<T>()) };
            let x = Value::new(bigarray::caml_ba_alloc_dims(
                T::kind() | bigarray::Managed::EXTERNAL as i32,
                1,
                data as bigarray::Data,
                n as sys::Intnat,
            ));
            Array1(x, PhantomData)
        }

        /// Returns the number of items in `self`
        pub fn len(&self) -> Size {
            unsafe {
                let ba = self.0.custom_ptr_val::<bigarray::Bigarray>();
                let dim = slice::from_raw_parts((*ba).dim.as_ptr() as *const usize, 1);
                dim[0]
            }
        }

        /// Returns true when `self.len() == 0`
        pub fn is_empty(&self) -> bool {
            self.len() == 0
        }

        /// Get underlying data as Rust slice
        pub fn data(&self) -> &[T] {
            unsafe {
                let ba = self.0.custom_ptr_val::<bigarray::Bigarray>();
                slice::from_raw_parts((*ba).data as *const T, self.len())
            }
        }

        /// Get underlying data as mutable Rust slice
        pub fn data_mut(&mut self) -> &mut [T] {
            unsafe {
                let ba = self.0.custom_ptr_val::<bigarray::Bigarray>();
                slice::from_raw_parts_mut((*ba).data as *mut T, self.len())
            }
        }
    }

    #[cfg(all(feature = "bigarray-ext", not(feature = "no-std")))]
    pub use super::bigarray_ext::*;
}

#[cfg(all(feature = "bigarray-ext", not(feature = "no-std")))]
pub(crate) mod bigarray_ext {
    use ndarray::{ArrayView2, ArrayView3, ArrayViewMut2, ArrayViewMut3, Dimension};

    use core::{marker::PhantomData, mem, ptr, slice};

    use crate::{
        bigarray::Kind,
        sys::{self, bigarray},
        FromValue, Runtime, ToValue, Value,
    };

    /// OCaml Bigarray.Array2 type, this introduces no
    /// additional overhead compared to a `Value` type
    #[repr(transparent)]
    #[derive(Clone, PartialEq, Eq)]
    pub struct Array2<T>(Value, PhantomData<T>);

    impl<T: Copy + Kind> Array2<T> {
        /// Returns array view
        pub fn view(&self) -> ArrayView2<T> {
            let ba = unsafe { self.0.custom_ptr_val::<bigarray::Bigarray>() };
            unsafe { ArrayView2::from_shape_ptr(self.shape(), (*ba).data as *const T) }
        }

        /// Returns mutable array view
        pub fn view_mut(&mut self) -> ArrayViewMut2<T> {
            let ba = unsafe { self.0.custom_ptr_val::<bigarray::Bigarray>() };
            unsafe { ArrayViewMut2::from_shape_ptr(self.shape(), (*ba).data as *mut T) }
        }

        /// Returns the shape of `self`
        pub fn shape(&self) -> (usize, usize) {
            let dim = self.dim();
            (dim[0], dim[1])
        }

        /// Returns the number of items in `self`
        pub fn len(&self) -> usize {
            let dim = self.dim();
            dim[0] * dim[1]
        }

        /// Returns true when the list is empty
        pub fn is_empty(&self) -> bool {
            self.len() == 0
        }

        fn dim(&self) -> &[usize] {
            let ba = unsafe { self.0.custom_ptr_val::<bigarray::Bigarray>() };
            unsafe { slice::from_raw_parts((*ba).dim.as_ptr() as *const usize, 2) }
        }
    }

    unsafe impl<T> FromValue for Array2<T> {
        fn from_value(value: Value) -> Array2<T> {
            Array2(value, PhantomData)
        }
    }

    unsafe impl<T> ToValue for Array2<T> {
        fn to_value(&self, _rt: &Runtime) -> Value {
            self.0.clone()
        }
    }

    impl<T: Copy + Kind> Array2<T> {
        /// Create a new OCaml `Bigarray.Array2` with the given type and shape
        pub unsafe fn create(dim: ndarray::Ix2) -> Array2<T> {
            let data = bigarray::malloc(dim.size() * mem::size_of::<T>());
            let x = Value::new(bigarray::caml_ba_alloc_dims(
                T::kind() | bigarray::Managed::EXTERNAL as i32,
                2,
                data as bigarray::Data,
                dim[0] as sys::Intnat,
                dim[1] as sys::Intnat,
            ));
            Array2(x, PhantomData)
        }

        /// Create Array2 from ndarray
        pub unsafe fn from_ndarray(data: ndarray::Array2<T>) -> Array2<T> {
            let dim = data.raw_dim();
            let array = Array2::create(dim);
            let ba = { array.0.custom_ptr_val::<bigarray::Bigarray>() };
            {
                ptr::copy_nonoverlapping(data.as_ptr(), (*ba).data as *mut T, dim.size());
            }
            array
        }
    }

    /// OCaml Bigarray.Array3 type, this introduces no
    /// additional overhead compared to a `Value` type
    #[repr(transparent)]
    #[derive(Clone, PartialEq, Eq)]
    pub struct Array3<T>(Value, PhantomData<T>);

    impl<T: Copy + Kind> Array3<T> {
        /// Returns array view
        pub fn view(&self) -> ArrayView3<T> {
            let ba = unsafe { self.0.custom_ptr_val::<bigarray::Bigarray>() };
            unsafe { ArrayView3::from_shape_ptr(self.shape(), (*ba).data as *const T) }
        }

        /// Returns mutable array view
        pub fn view_mut(&mut self) -> ArrayViewMut3<T> {
            let ba = unsafe { self.0.custom_ptr_val::<bigarray::Bigarray>() };
            unsafe { ArrayViewMut3::from_shape_ptr(self.shape(), (*ba).data as *mut T) }
        }

        /// Returns the shape of `self`
        pub fn shape(&self) -> (usize, usize, usize) {
            let dim = self.dim();
            (dim[0], dim[1], dim[2])
        }

        /// Returns the number of items in `self`
        pub fn len(&self) -> usize {
            let dim = self.dim();
            dim[0] * dim[1] * dim[2]
        }

        /// Returns true when the list is empty
        pub fn is_empty(&self) -> bool {
            self.len() == 0
        }

        fn dim(&self) -> &[usize] {
            let ba = unsafe { self.0.custom_ptr_val::<bigarray::Bigarray>() };
            unsafe { slice::from_raw_parts((*ba).dim.as_ptr() as *const usize, 3) }
        }
    }

    unsafe impl<T> FromValue for Array3<T> {
        fn from_value(value: Value) -> Array3<T> {
            Array3(value, PhantomData)
        }
    }

    unsafe impl<T> ToValue for Array3<T> {
        fn to_value(&self, _rt: &Runtime) -> Value {
            self.0.clone()
        }
    }

    impl<T: Copy + Kind> Array3<T> {
        /// Create a new OCaml `Bigarray.Array3` with the given type and shape
        pub unsafe fn create(dim: ndarray::Ix3) -> Array3<T> {
            let data = { bigarray::malloc(dim.size() * mem::size_of::<T>()) };
            let x = Value::new(bigarray::caml_ba_alloc_dims(
                T::kind() | bigarray::Managed::MANAGED as i32,
                3,
                data,
                dim[0] as sys::Intnat,
                dim[1] as sys::Intnat,
                dim[2] as sys::Intnat,
            ));
            Array3(x, PhantomData)
        }

        /// Create Array3 from ndarray
        pub unsafe fn from_ndarray(data: ndarray::Array3<T>) -> Array3<T> {
            let dim = data.raw_dim();
            let array = Array3::create(dim);
            let ba = { array.0.custom_ptr_val::<bigarray::Bigarray>() };
            {
                ptr::copy_nonoverlapping(data.as_ptr(), (*ba).data as *mut T, dim.size());
            }
            array
        }
    }
}