1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
//! OCaml types represented in Rust, these are zero-copy and incur no additional overhead

use crate::{sys, CamlError, Error};

use core::marker::PhantomData;
use core::{mem, slice};

use crate::value::{FromValue, Size, ToValue, Value};

/// A handle to a Rust value/reference owned by the OCaml heap.
///
/// This should only be used with values allocated with `alloc_final` or `alloc_custom`,
/// for abstract pointers see `Value::alloc_abstract_ptr` and `Value::abstract_ptr_val`
#[derive(Clone, Copy, PartialEq)]
#[repr(transparent)]
pub struct Pointer<T>(pub Value, PhantomData<T>);

unsafe impl<T> ToValue for Pointer<T> {
    fn to_value(self) -> Value {
        self.0
    }
}

unsafe impl<T> FromValue for Pointer<T> {
    fn from_value(value: Value) -> Self {
        Pointer(value, PhantomData)
    }
}

unsafe extern "C" fn ignore(_: Value) {}

impl<T> Pointer<T> {
    /// Allocate a new value with an optional custom finalizer and used/max
    ///
    /// This calls `caml_alloc_final` under-the-hood, which can has less than ideal performance
    /// behavior. In most cases you should prefer `Poiner::alloc_custom` when possible.
    pub fn alloc_final(
        x: T,
        finalizer: Option<unsafe extern "C" fn(Value)>,
        used_max: Option<(usize, usize)>,
    ) -> Pointer<T> {
        let mut ptr = Pointer::from_value(match finalizer {
            Some(f) => Value::alloc_final::<T>(f, used_max),
            None => Value::alloc_final::<T>(ignore, used_max),
        });
        ptr.set(x);
        ptr
    }

    /// Allocate a `Custom` value
    pub fn alloc_custom(x: T) -> Pointer<T>
    where
        T: crate::Custom,
    {
        let mut ptr = Pointer::from_value(Value::alloc_custom::<T>());
        ptr.set(x);
        ptr
    }

    /// Drop pointer in place
    ///
    /// # Safety
    /// This should only be used when you're in control of the underlying value and want to drop
    /// it. It should only be called once.
    pub unsafe fn drop_in_place(mut self) {
        core::ptr::drop_in_place(self.as_mut_ptr())
    }

    /// Replace the inner value with the provided argument
    pub fn set(&mut self, x: T) {
        unsafe {
            core::ptr::write_unaligned(self.as_mut_ptr(), x);
        }
    }

    /// Access the underlying pointer
    pub fn as_ptr(&self) -> *const T {
        self.0.custom_ptr_val()
    }

    /// Access the underlying mutable pointer
    pub fn as_mut_ptr(&mut self) -> *mut T {
        self.0.custom_ptr_val_mut()
    }
}

impl<T> AsRef<T> for Pointer<T> {
    fn as_ref(&self) -> &T {
        unsafe { &*self.as_ptr() }
    }
}

impl<T> AsMut<T> for Pointer<T> {
    fn as_mut(&mut self) -> &mut T {
        unsafe { &mut *self.as_mut_ptr() }
    }
}

/// `Array<A>` wraps an OCaml `'a array` without converting it to Rust
#[derive(Clone, Copy, PartialEq)]
#[repr(transparent)]
pub struct Array<T: ToValue + FromValue>(Value, PhantomData<T>);

unsafe impl<T: ToValue + FromValue> ToValue for Array<T> {
    fn to_value(self) -> Value {
        self.0
    }
}

unsafe impl<T: ToValue + FromValue> FromValue for Array<T> {
    fn from_value(value: Value) -> Self {
        Array(value, PhantomData)
    }
}

impl<'a> Array<f64> {
    /// Set value to double array
    pub fn set_double(&mut self, i: usize, f: f64) -> Result<(), Error> {
        if i >= self.len() {
            return Err(CamlError::ArrayBoundError.into());
        }

        if !self.is_double_array() {
            return Err(Error::NotDoubleArray);
        }

        unsafe {
            self.set_double_unchecked(i, f);
        };

        Ok(())
    }

    /// Set value to double array without bounds checking
    ///
    /// # Safety
    /// This function performs no bounds checking
    #[inline]
    pub unsafe fn set_double_unchecked(&mut self, i: usize, f: f64) {
        let ptr = ((self.0).0 as *mut f64).add(i);
        *ptr = f;
    }

    /// Get a value from a double array
    pub fn get_double(self, i: usize) -> Result<f64, Error> {
        if i >= self.len() {
            return Err(CamlError::ArrayBoundError.into());
        }
        if !self.is_double_array() {
            return Err(Error::NotDoubleArray);
        }

        Ok(unsafe { self.get_double_unchecked(i) })
    }

    /// Get a value from a double array without checking if the array is actually a double array
    ///
    /// # Safety
    ///
    /// This function does not perform bounds checking
    #[inline]
    pub unsafe fn get_double_unchecked(self, i: usize) -> f64 {
        *((self.0).0 as *mut f64).add(i)
    }
}

impl<T: ToValue + FromValue> Array<T> {
    /// Allocate a new Array
    pub fn alloc(n: usize) -> Array<T> {
        let x = crate::frame!((x) {
            x = unsafe { Value(sys::caml_alloc(n, 0)) };
            x
        });
        Array(x, PhantomData)
    }

    /// Check if Array contains only doubles, if so `get_double` and `set_double` should be used
    /// to access values
    pub fn is_double_array(&self) -> bool {
        unsafe { sys::caml_is_double_array((self.0).0) == 1 }
    }

    /// Array length
    pub fn len(&self) -> usize {
        unsafe { sys::caml_array_length((self.0).0) }
    }

    /// Returns true when the array is empty
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Set array index
    pub fn set(&mut self, i: usize, v: T) -> Result<(), Error> {
        if i >= self.len() {
            return Err(CamlError::ArrayBoundError.into());
        }
        unsafe { self.set_unchecked(i, v) }
        Ok(())
    }

    /// Set array index without bounds checking
    ///
    /// # Safety
    ///
    /// This function does not perform bounds checking
    #[inline]
    pub unsafe fn set_unchecked(&mut self, i: usize, v: T) {
        self.0.store_field(i, v);
    }

    /// Get array index
    pub fn get(&self, i: usize) -> Result<T, Error> {
        if i >= self.len() {
            return Err(CamlError::ArrayBoundError.into());
        }
        Ok(unsafe { self.get_unchecked(i) })
    }

    /// Get array index without bounds checking
    ///
    /// # Safety
    ///
    /// This function does not perform bounds checking
    #[inline]
    pub unsafe fn get_unchecked(&self, i: usize) -> T {
        T::from_value(self.0.field(i))
    }

    /// Array as slice
    pub fn as_slice(&self) -> &[Value] {
        FromValue::from_value(self.0)
    }

    /// Array as mutable slice
    pub fn as_mut_slice(&mut self) -> &mut [Value] {
        FromValue::from_value(self.0)
    }

    /// Array as `Vec`
    #[cfg(not(feature = "no-std"))]
    pub fn to_vec(&self) -> Vec<T> {
        FromValue::from_value(self.0)
    }
}

/// `List<A>` wraps an OCaml `'a list` without converting it to Rust, this introduces no
/// additional overhead compared to a `Value` type
#[derive(Clone, Copy, PartialEq)]
#[repr(transparent)]
pub struct List<T: ToValue + FromValue>(Value, PhantomData<T>);

unsafe impl<T: ToValue + FromValue> ToValue for List<T> {
    fn to_value(self) -> Value {
        self.0
    }
}

unsafe impl<T: ToValue + FromValue> FromValue for List<T> {
    fn from_value(value: Value) -> Self {
        List(value, PhantomData)
    }
}

impl<T: ToValue + FromValue> List<T> {
    /// An empty list
    #[inline(always)]
    pub fn empty() -> List<T> {
        List(Value::unit(), PhantomData)
    }

    /// Returns the number of items in `self`
    pub fn len(&self) -> usize {
        let mut length = 0;
        let mut tmp = self.0;
        while tmp.0 != sys::EMPTY_LIST {
            tmp = tmp.field(1);
            length += 1;
        }
        length
    }

    /// Returns true when the list is empty
    pub fn is_empty(&self) -> bool {
        self.0 == Self::empty().0
    }

    /// Add an element to the front of the list returning the new list
    #[must_use]
    #[allow(clippy::should_implement_trait)]
    pub fn add(self, v: T) -> List<T> {
        local!(x, tmp);
        x = v.to_value();
        unsafe {
            tmp = Value(sys::caml_alloc(2, 0));
            tmp.store_field(0, x);
            tmp.store_field(1, self.0);
        }
        List(tmp, PhantomData)
    }

    /// List head
    pub fn hd(&self) -> Option<T> {
        if self.is_empty() {
            return None;
        }

        Some(self.0.field(0))
    }

    /// List tail
    pub fn tl(&self) -> List<T> {
        if self.is_empty() {
            return Self::empty();
        }

        self.0.field(1)
    }

    #[cfg(not(feature = "no-std"))]
    /// List as `Vec`
    pub fn to_vec(&self) -> Vec<T> {
        let mut vec: Vec<T> = Vec::new();
        let mut value = self.0;
        let empty = Self::empty().0;
        while value != empty {
            let val = value.field(0);
            vec.push(T::from_value(val));
            value = value.field(1);
        }
        vec
    }

    #[cfg(not(feature = "no-std"))]
    /// List as `LinkedList`
    pub fn to_linked_list(&self) -> std::collections::LinkedList<T> {
        FromValue::from_value(self.0)
    }
}

/// `bigarray` contains wrappers for OCaml `Bigarray` values. These types can be used to transfer arrays of numbers between Rust
/// and OCaml directly without the allocation overhead of an `array` or `list`
pub mod bigarray {
    use super::*;
    use crate::sys::bigarray;

    /// Bigarray kind
    pub trait Kind {
        /// Array item type
        type T: Clone + Copy;

        /// OCaml bigarray type identifier
        fn kind() -> i32;
    }

    macro_rules! make_kind {
        ($t:ty, $k:ident) => {
            impl Kind for $t {
                type T = $t;

                fn kind() -> i32 {
                    bigarray::Kind::$k as i32
                }
            }
        };
    }

    make_kind!(u8, UINT8);
    make_kind!(i8, SINT8);
    make_kind!(u16, UINT16);
    make_kind!(i16, SINT16);
    make_kind!(f32, FLOAT32);
    make_kind!(f64, FLOAT64);
    make_kind!(i64, INT64);
    make_kind!(i32, INT32);
    make_kind!(char, CHAR);

    /// OCaml Bigarray.Array1 type, , this introduces no
    /// additional overhead compared to a `Value` type
    #[repr(transparent)]
    #[derive(Clone, Copy, PartialEq)]
    pub struct Array1<T>(Value, PhantomData<T>);

    unsafe impl<T> crate::FromValue for Array1<T> {
        fn from_value(value: Value) -> Array1<T> {
            Array1(value, PhantomData)
        }
    }

    unsafe impl<T> crate::ToValue for Array1<T> {
        fn to_value(self) -> Value {
            self.0
        }
    }

    #[cfg(not(feature = "no-std"))]
    impl<T: Copy + Kind> From<&'static [T]> for Array1<T> {
        fn from(x: &'static [T]) -> Array1<T> {
            Array1::from_slice(x)
        }
    }

    #[cfg(not(feature = "no-std"))]
    impl<T: Copy + Kind> From<Vec<T>> for Array1<T> {
        fn from(x: Vec<T>) -> Array1<T> {
            let mut arr = Array1::<T>::create(x.len());
            let data = arr.data_mut();
            data.copy_from_slice(x.as_slice());
            arr
        }
    }

    impl<T: Copy + Kind> Array1<T> {
        /// Array1::of_slice is used to convert from a slice to OCaml Bigarray,
        /// the `data` parameter must outlive the resulting bigarray or there is
        /// no guarantee the data will be valid. Use `Array1::from_slice` to clone the
        /// contents of a slice.
        pub fn of_slice(data: &mut [T]) -> Array1<T> {
            let x = crate::frame!((x) {
                x = unsafe {
                    Value(bigarray::caml_ba_alloc_dims(
                        T::kind() | bigarray::Managed::EXTERNAL as i32,
                        1,
                        data.as_mut_ptr() as bigarray::Data,
                        data.len() as i32,
                    ))
                };
                x
            });
            Array1(x, PhantomData)
        }

        /// Convert from a slice to OCaml Bigarray, copying the array. This is the implemtation
        /// used by `Array1::from` for slices to avoid any potential lifetime issues
        #[cfg(not(feature = "no-std"))]
        pub fn from_slice(data: &[T]) -> Array1<T> {
            Array1::from(data.to_vec())
        }

        /// Create a new OCaml `Bigarray.Array1` with the given type and size
        pub fn create(n: Size) -> Array1<T> {
            let x = crate::frame!((x) {
                let data = unsafe { bigarray::malloc(n * mem::size_of::<T>()) };
                x = unsafe {
                    Value(bigarray::caml_ba_alloc_dims(
                        T::kind() | bigarray::Managed::MANAGED as i32,
                        1,
                        data,
                        n as sys::Intnat,
                    ))
                };
                x
            });
            Array1(x, PhantomData)
        }

        /// Returns the number of items in `self`
        pub fn len(self) -> Size {
            let ba = self.0.custom_ptr_val::<bigarray::Bigarray>();
            unsafe { (*ba).dim as usize }
        }

        /// Returns true when `self.len() == 0`
        pub fn is_empty(self) -> bool {
            self.len() == 0
        }

        /// Get underlying data as Rust slice
        pub fn data(&self) -> &[T] {
            let ba = self.0.custom_ptr_val::<bigarray::Bigarray>();
            unsafe { slice::from_raw_parts((*ba).data as *const T, self.len()) }
        }

        /// Get underlying data as mutable Rust slice
        pub fn data_mut(&mut self) -> &mut [T] {
            let ba = self.0.custom_ptr_val::<bigarray::Bigarray>();
            unsafe { slice::from_raw_parts_mut((*ba).data as *mut T, self.len()) }
        }
    }
}