1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
// Copyright (c) Viable Systems and TezEdge Contributors
// SPDX-License-Identifier: MIT

use crate::{
    boxroot::BoxRoot,
    error::OCamlFixnumConversionError,
    memory::{alloc_box, OCamlCell},
    mlvalues::*,
    FromOCaml, OCamlRef, OCamlRuntime,
};
use core::any::Any;
use core::borrow::Borrow;
use core::{marker::PhantomData, ops::Deref, slice, str};
use ocaml_sys::{caml_string_length, int_val, val_int};
use std::pin::Pin;

/// Representation of OCaml values.
pub struct OCaml<'a, T: 'a> {
    pub(crate) _marker: PhantomData<&'a T>,
    pub(crate) raw: RawOCaml,
}

impl<'a, T> Clone for OCaml<'a, T> {
    fn clone(&self) -> Self {
        OCaml {
            _marker: PhantomData,
            raw: self.raw,
        }
    }
}

impl<'a, T> Copy for OCaml<'a, T> {}

impl<'a, T> Deref for OCaml<'a, T> {
    type Target = OCamlCell<T>;

    fn deref(&self) -> OCamlRef<T> {
        self.as_ref()
    }
}

impl<'a, T> OCaml<'a, T> {
    #[doc(hidden)]
    pub unsafe fn new(_cr: &'a OCamlRuntime, x: RawOCaml) -> OCaml<'a, T> {
        OCaml {
            _marker: PhantomData,
            raw: x,
        }
    }

    #[doc(hidden)]
    pub unsafe fn field<F>(&self, i: UIntnat) -> OCaml<'a, F> {
        assert!(
            tag_val(self.raw) < tag::NO_SCAN,
            "unexpected OCaml value tag >= NO_SCAN"
        );
        assert!(
            i < wosize_val(self.raw),
            "trying to access a field bigger than the OCaml block value"
        );
        OCaml {
            _marker: PhantomData,
            raw: *(self.raw as *const RawOCaml).add(i),
        }
    }

    #[doc(hidden)]
    pub fn is_block(&self) -> bool {
        is_block(self.raw)
    }

    #[doc(hidden)]
    pub fn is_block_sized(&self, size: usize) -> bool {
        self.is_block() && unsafe { wosize_val(self.raw) == size }
    }

    #[doc(hidden)]
    pub fn is_long(&self) -> bool {
        is_long(self.raw)
    }

    #[doc(hidden)]
    pub fn tag_value(&self) -> u8 {
        assert!(
            self.is_block(),
            "attempted to access the tag on an OCaml value that isn't a block"
        );
        unsafe { tag_val(self.raw) }
    }

    /// Obtains an [`OCamlRef`]`<T>` for this value.
    pub fn as_ref<'b>(&'b self) -> OCamlRef<'b, T>
    where
        'a: 'b,
    {
        let ptr = &self.raw as *const RawOCaml;
        unsafe { OCamlCell::create_ref(ptr) }
    }

    pub fn root(self) -> BoxRoot<T> {
        BoxRoot::new(self)
    }

    /// Gets the raw representation for this value reference (pointer or int).
    ///
    /// # Safety
    ///
    /// The resulting raw pointer will not be tracked, and may become invalid
    /// after any call into the OCaml runtime. Great care must be taken when
    /// working with these values.
    pub unsafe fn raw(&self) -> RawOCaml {
        self.raw
    }

    /// Converts this OCaml value into a Rust value.
    pub fn to_rust<RustT>(&self) -> RustT
    where
        RustT: FromOCaml<T>,
    {
        RustT::from_ocaml(*self)
    }

    /// Meant to match Data_custom_val from mlvalues.h
    ///
    /// **Experimental**
    ///
    /// # Safety
    ///
    /// Casts to an arbitrary pointer type, take care before
    /// dereferencing
    ///
    /// Similar to raw(), the resulting pointer can become invalid
    /// after any call into the OCaml runtime, for example allocating
    /// OCaml values or calling OCaml functions
    pub unsafe fn custom_ptr_val<U>(&self) -> *const U {
        ocaml_sys::field(self.raw, 1) as *const U
    }
}

impl<'a, T: 'static> OCaml<'a, DynBox<T>> {
    /// Build an OCaml value wrapping a Rust value
    ///
    /// The returned value will be opaque to the OCaml side, though you
    /// can provide functions using it and expose them to OCaml.
    ///
    /// It will be dropped if it stops being referenced by the GC.
    ///
    /// **Experimental**
    pub fn box_value(cr: &'a mut OCamlRuntime, v: T) -> Self {
        alloc_box(cr, v)
    }
}

impl OCaml<'static, ()> {
    /// Returns a value that represent OCaml's unit value.
    pub fn unit() -> Self {
        OCaml {
            _marker: PhantomData,
            raw: UNIT,
        }
    }
}

// Be careful about not deriving anything on OCaml to
// uphold the Borrow contract on Eq/Ord/Hash
impl<'a, A: 'static> Borrow<A> for OCaml<'a, DynBox<A>> {
    fn borrow(&self) -> &A {
        Pin::get_ref(Pin::as_ref(
            unsafe { self.custom_ptr_val::<Pin<Box<dyn Any>>>().as_ref() }
                .expect("Custom block contains null pointer"),
        ))
        .downcast_ref::<A>()
        .expect("DynBox of wrong type, cannot downcast")
    }
}

impl<T> OCaml<'static, Option<T>> {
    /// Returns a value that represent OCaml's None value.
    pub fn none() -> Self {
        OCaml {
            _marker: PhantomData,
            raw: NONE,
        }
    }
}

impl<'a> OCaml<'a, String> {
    /// Returns an `[u8]` reference to the internal bytes of this value.
    pub fn as_bytes(&self) -> &'a [u8] {
        let s = self.raw;
        unsafe {
            assert!(
                tag_val(s) == tag::STRING,
                "attempt to perform a string operation on an OCaml value that is not a string"
            );
            slice::from_raw_parts(string_val(s), caml_string_length(s))
        }
    }

    /// Returns a `str` reference to the internal bytes of this value.
    ///
    /// # Panics
    ///
    /// Panics if the bytes do not form a valid utf8 string.
    pub fn as_str(&self) -> &'a str {
        str::from_utf8(self.as_bytes()).unwrap()
    }

    /// Returns a `str` reference to the internal bytes of this value.
    ///
    /// # Safety
    ///
    /// No checks are performed to ensure that the returned value is a valid utf8 string.
    pub unsafe fn as_str_unchecked(&self) -> &'a str {
        str::from_utf8_unchecked(self.as_bytes())
    }
}

impl<'a> OCaml<'a, OCamlBytes> {
    /// Returns an `[u8]` reference to the internal bytes of this value.
    pub fn as_bytes(&self) -> &'a [u8] {
        let s = self.raw;
        unsafe {
            assert!(
                tag_val(s) == tag::STRING,
                "attempt to perform a string operation on an OCaml value that is not a string"
            );
            slice::from_raw_parts(string_val(s), caml_string_length(s))
        }
    }

    /// Returns a `str` reference to the internal bytes of this value.
    ///
    /// # Panics
    ///
    /// Panics if the bytes do not form a valid utf8 string.
    pub fn as_str(&self) -> &'a str {
        str::from_utf8(self.as_bytes()).unwrap()
    }

    /// Returns a `str` reference to the internal bytes of this value.
    ///
    /// # Safety
    ///
    /// No checks are performed to ensure that the returned value is a valid utf8 string.
    pub unsafe fn as_str_unchecked(&self) -> &'a str {
        str::from_utf8_unchecked(self.as_bytes())
    }
}

impl<'a> OCaml<'a, OCamlInt> {
    /// Converts an OCaml int to an `i64`.
    pub fn to_i64(&self) -> i64 {
        unsafe { int_val(self.raw) as i64 }
    }

    /// Creates an OCaml int from an `i64` without checking that it fits in an OCaml fixnum.
    ///
    /// # Safety
    ///
    /// OCaml ints are represented as 63bits + 1bit tag, so when converting
    /// from an i64, a bit of precision is lost.
    pub unsafe fn of_i64_unchecked(n: i64) -> OCaml<'static, OCamlInt> {
        OCaml {
            _marker: PhantomData,
            raw: val_int(n as isize),
        }
    }

    // Creates an OCaml int from an `i64`.
    //
    // The conversion fails if the `i64` value doesn't fit in an OCaml fixnum and
    // an error is returned instead.
    pub fn of_i64(n: i64) -> Result<OCaml<'static, OCamlInt>, OCamlFixnumConversionError> {
        if n > MAX_FIXNUM as i64 {
            Err(OCamlFixnumConversionError::InputTooBig(n))
        } else if n < MIN_FIXNUM as i64 {
            Err(OCamlFixnumConversionError::InputTooSmall(n))
        } else {
            Ok(OCaml {
                _marker: PhantomData,
                raw: unsafe { val_int(n as isize) },
            })
        }
    }

    /// Creates an OCaml int from an i32.
    pub fn of_i32(n: i32) -> OCaml<'static, OCamlInt> {
        OCaml {
            _marker: PhantomData,
            raw: unsafe { val_int(n as isize) },
        }
    }
}

impl<'a> OCaml<'a, bool> {
    /// Converts an OCaml boolean into a Rust boolean.
    pub fn to_bool(&self) -> bool {
        unsafe { int_val(self.raw) != 0 }
    }

    /// Creates an OCaml boolean from a Rust boolean.
    pub fn of_bool(b: bool) -> OCaml<'static, bool> {
        OCaml {
            _marker: PhantomData,
            raw: if b { TRUE } else { FALSE },
        }
    }
}

impl<'a, A> OCaml<'a, Option<A>> {
    /// Returns true if this OCaml option value is an OCaml `None`.
    pub fn is_none(&self) -> bool {
        self.raw == NONE
    }

    /// Returns true if this OCaml option value is an OCaml `Some`.
    pub fn is_some(&self) -> bool {
        self.is_block()
    }

    /// Converts an OCaml `Option<T>` value into a Rust `Option<OCaml<T>>`.
    pub fn to_option(&self) -> Option<OCaml<'a, A>> {
        if self.is_none() {
            None
        } else {
            let value: OCaml<A> = unsafe { self.field(0) };
            Some(OCaml {
                _marker: PhantomData,
                raw: value.raw,
            })
        }
    }
}

impl<'a, A, Err> OCaml<'a, Result<A, Err>> {
    /// Returns true if this OCaml result value is an OCaml `Ok`.
    pub fn is_ok(&self) -> bool {
        self.tag_value() == tag::TAG_OK
    }

    /// Returns true if this OCaml result value is an OCaml `Error`.
    pub fn is_error(&self) -> bool {
        self.tag_value() == tag::TAG_ERROR
    }

    /// Converts an OCaml `Result<T, E>` value into a Rust `Result<OCaml<T>, OCaml<E>>`.
    pub fn to_result(&self) -> Result<OCaml<'a, A>, OCaml<'a, Err>> {
        if self.is_ok() {
            let value: OCaml<A> = unsafe { self.field(0) };
            Ok(OCaml {
                _marker: PhantomData,
                raw: value.raw,
            })
        } else if self.is_error() {
            let value: OCaml<Err> = unsafe { self.field(0) };
            Err(OCaml {
                _marker: PhantomData,
                raw: value.raw,
            })
        } else {
            panic!(
                "Unexpected tag value for OCaml<Result<...>>: {}",
                self.tag_value()
            )
        }
    }
}

impl<'a, A> OCaml<'a, OCamlList<A>> {
    /// Returns an OCaml nil (empty list) value.
    pub fn nil() -> Self {
        OCaml {
            _marker: PhantomData,
            raw: EMPTY_LIST,
        }
    }

    /// Returns true if the value is OCaml's nil (empty list).
    pub fn is_empty(&self) -> bool {
        self.raw == EMPTY_LIST
    }

    /// Returns the head of an OCaml list.
    pub fn hd(&self) -> Option<OCaml<'a, A>> {
        if self.is_empty() {
            None
        } else {
            Some(unsafe { self.field(0) })
        }
    }

    /// Returns the tail of an OCaml list.
    pub fn tl(&self) -> Option<OCaml<'a, OCamlList<A>>> {
        if self.is_empty() {
            None
        } else {
            Some(unsafe { self.field(1) })
        }
    }

    /// Returns a tuple of the head and tail of an OCaml list.
    pub fn uncons(&self) -> Option<(OCaml<'a, A>, Self)> {
        if self.is_empty() {
            None
        } else {
            Some(unsafe { (self.field(0), self.field(1)) })
        }
    }
}

// Tuples

macro_rules! impl_tuple {
    ($($n:tt: $accessor:ident -> $t:ident),+) => {
        impl<'a, $($t),+> OCaml<'a, ($($t),+)>
        {
            pub fn to_tuple(&self) -> ($(OCaml<'a, $t>),+) {
                ($(self.$accessor()),+)
            }

            $(
                pub fn $accessor(&self) -> OCaml<'a, $t> {
                    unsafe { self.field($n) }
                }
            )+
        }
    };
}

impl_tuple!(
    0: fst -> A,
    1: snd -> B);
impl_tuple!(
    0: fst -> A,
    1: snd -> B,
    2: tuple_3 -> C);
impl_tuple!(
    0: fst -> A,
    1: snd -> B,
    2: tuple_3 -> C,
    3: tuple_4 -> D);
impl_tuple!(
    0: fst -> A,
    1: snd -> B,
    2: tuple_3 -> C,
    3: tuple_4 -> D,
    4: tuple_5 -> E);
impl_tuple!(
    0: fst -> A,
    1: snd -> B,
    2: tuple_3 -> C,
    3: tuple_4 -> D,
    4: tuple_5 -> E,
    5: tuple_6 -> F);
impl_tuple!(
    0: fst -> A,
    1: snd -> B,
    2: tuple_3 -> C,
    3: tuple_4 -> D,
    4: tuple_5 -> E,
    5: tuple_6 -> F,
    6: tuple_7 -> G);
impl_tuple!(
    0: fst -> A,
    1: snd -> B,
    2: tuple_3 -> C,
    3: tuple_4 -> D,
    4: tuple_5 -> E,
    5: tuple_6 -> F,
    6: tuple_7 -> G,
    7: tuple_8 -> H);
impl_tuple!(
    0: fst -> A,
    1: snd -> B,
    2: tuple_3 -> C,
    3: tuple_4 -> D,
    4: tuple_5 -> E,
    5: tuple_6 -> F,
    6: tuple_7 -> G,
    7: tuple_8 -> H,
    8: tuple_9 -> I);