1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
//! `obkv` stands for optimized-bytes key and a value store.
//!
//! The main purpose of this library is to be able to store key value entries
//! where the key can be represented by an optimized amount of bytes,
//! this allows a lot of optimizations.
//!
//! ## Example: Creating an `obkv` and iterating over the entries
//!
//! ```
//! use obkv::{KvWriterU16, KvReaderU16};
//!
//! let mut writer = KvWriterU16::memory();
//! writer.insert(0, b"hello").unwrap();
//! writer.insert(1, b"blue").unwrap();
//! writer.insert(255, b"world").unwrap();
//! let obkv = writer.into_inner().unwrap();
//!
//! let mut iter = KvReaderU16::new(&obkv).iter();
//! assert_eq!(iter.next(), Some((0, &b"hello"[..])));
//! assert_eq!(iter.next(), Some((1, &b"blue"[..])));
//! assert_eq!(iter.next(), Some((255, &b"world"[..])));
//! assert_eq!(iter.next(), None);
//! assert_eq!(iter.next(), None); // is it fused?
//! ```

#![warn(missing_docs)]

#[cfg(test)]
#[macro_use]
extern crate quickcheck;

mod varint;

use std::convert::{TryFrom, TryInto};
use std::io::{self, Error, ErrorKind::Other};
use std::iter::Fuse;
use std::marker::PhantomData;

use self::varint::{varint_decode32, varint_encode32};

/// An `obkv` writer that uses `u8` keys.
pub type KvWriterU8<W> = KvWriter<W, u8>;
/// An `obkv` writer that uses `u16` keys.
pub type KvWriterU16<W> = KvWriter<W, u16>;
/// An `obkv` writer that uses `u32` keys.
pub type KvWriterU32<W> = KvWriter<W, u32>;
/// An `obkv` writer that uses `u64` keys.
pub type KvWriterU64<W> = KvWriter<W, u64>;

/// A reader that can read `obkv`s with `u8` keys.
pub type KvReaderU8<'a> = KvReader<'a, u8>;
/// A reader that can read `obkv`s with `u16` keys.
pub type KvReaderU16<'a> = KvReader<'a, u16>;
/// A reader that can read `obkv`s with `u32` keys.
pub type KvReaderU32<'a> = KvReader<'a, u32>;
/// A reader that can read `obkv`s with `u64` keys.
pub type KvReaderU64<'a> = KvReader<'a, u64>;

/// An `obkv` database writer.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct KvWriter<W, K> {
    last_key: Option<K>,
    writer: W,
}

impl<K> KvWriter<Vec<u8>, K> {
    /// Creates an in memory `KvWriter` that writes the bytes into a `Vec<u8>`.
    ///
    /// ```
    /// use obkv::KvWriterU16;
    ///
    /// let mut writer = KvWriterU16::memory();
    ///
    /// writer.insert(0, b"hello").unwrap();
    /// writer.insert(1, b"blue").unwrap();
    /// writer.insert(255, b"world").unwrap();
    ///
    /// let vec = writer.into_inner().unwrap();
    /// ```
    pub fn memory() -> KvWriter<Vec<u8>, K> {
        KvWriter {
            last_key: None,
            writer: Vec::new(),
        }
    }
}

impl<W, K> KvWriter<W, K> {
    /// Creates a `KvWriter` that writes the bytes into
    /// the given `io::Write` type (e.g. `File`, `Vec<u8>`).
    ///
    /// ```
    /// use obkv::KvWriterU16;
    ///
    /// let mut writer = KvWriterU16::new(Vec::new());
    ///
    /// writer.insert(0, b"hello").unwrap();
    /// writer.insert(1, b"blue").unwrap();
    /// writer.insert(255, b"world").unwrap();
    ///
    /// let vec = writer.into_inner().unwrap();
    /// ```
    pub fn new(writer: W) -> KvWriter<W, K> {
        KvWriter {
            last_key: None,
            writer,
        }
    }
}

impl<W: io::Write, K: Key + PartialOrd> KvWriter<W, K> {
    /// Insert a key value pair into the database, keys must be
    /// inserted in order and must be inserted only one time.
    ///
    /// ```
    /// use obkv::KvWriterU16;
    ///
    /// let mut writer = KvWriterU16::new(Vec::new());
    ///
    /// writer.insert(0, b"hello").unwrap();
    /// writer.insert(1, b"blue").unwrap();
    /// writer.insert(255, b"world").unwrap();
    ///
    /// let vec = writer.into_inner().unwrap();
    /// ```
    pub fn insert<A: AsRef<[u8]>>(&mut self, key: K, value: A) -> io::Result<()> {
        if self.last_key.map_or(false, |last| key <= last) {
            return Err(Error::new(
                Other,
                "keys must be inserted in order and only one time",
            ));
        }

        let val = value.as_ref();
        let val_len = match val.len().try_into() {
            Ok(len) => len,
            Err(_) => return Err(Error::new(Other, "value length is bigger than u32 MAX")),
        };

        let mut buffer = [0; 5];
        let len_bytes = varint_encode32(&mut buffer, val_len);

        self.writer.write_all(key.to_be_bytes().as_ref())?;
        self.writer.write_all(len_bytes)?;
        self.writer.write_all(val)?;

        self.last_key = Some(key);

        Ok(())
    }

    /// Insert the key value pairs into the database, keys must be
    /// inserted in order and must be inserted only one time.
    pub fn extend<I, V>(&mut self, iter: I) -> io::Result<()>
    where
        I: IntoIterator<Item = (K, V)>,
        V: AsRef<[u8]>,
    {
        for (k, v) in iter {
            self.insert(k, v)?;
        }

        Ok(())
    }

    /// Flushes then extract the internal writer that now contains the keys value entries.
    pub fn into_inner(mut self) -> io::Result<W> {
        self.writer.flush()?;
        Ok(self.writer)
    }

    /// Flushes the internal writer that now contains the keys value entries.
    pub fn finish(self) -> io::Result<()> {
        self.into_inner().map(drop)
    }
}

/// A reader of `obkv` databases.
#[derive(Debug, Default, Clone, Copy, PartialEq, Eq, Hash)]
pub struct KvReader<'a, K> {
    bytes: &'a [u8],
    _phantom: PhantomData<K>,
}

impl<'a, K> KvReader<'a, K> {
    /// Construct a reader on top of a memory area.
    ///
    /// ```
    /// use obkv::KvReaderU16;
    ///
    /// let mut iter = KvReaderU16::new(&[]).iter();
    /// assert_eq!(iter.next(), None);
    /// ```
    pub fn new(bytes: &[u8]) -> KvReader<K> {
        KvReader {
            bytes,
            _phantom: PhantomData,
        }
    }

    /// Returns the value associated with the given key
    /// or `None` if the key is not present.
    ///
    /// ```
    /// use obkv::{KvWriterU16, KvReaderU16};
    ///
    /// let mut writer = KvWriterU16::memory();
    /// writer.insert(0, b"hello").unwrap();
    /// writer.insert(1, b"blue").unwrap();
    /// writer.insert(255, b"world").unwrap();
    /// let obkv = writer.into_inner().unwrap();
    ///
    /// let reader = KvReaderU16::new(&obkv);
    /// assert_eq!(reader.get(0), Some(&b"hello"[..]));
    /// assert_eq!(reader.get(1), Some(&b"blue"[..]));
    /// assert_eq!(reader.get(10), None);
    /// assert_eq!(reader.get(255), Some(&b"world"[..]));
    /// ```
    pub fn get(&self, requested_key: K) -> Option<&'a [u8]>
    where
        K: Key + PartialOrd,
    {
        self.iter()
            .take_while(|(key, _)| *key <= requested_key)
            .find(|(key, _)| *key == requested_key)
            .map(|(_, val)| val)
    }

    /// Returns an iterator over all the keys in the key-value store.
    ///
    /// ```
    /// use obkv::{KvWriterU16, KvReaderU16};
    ///
    /// let mut writer = KvWriterU16::memory();
    /// writer.insert(0, b"hello").unwrap();
    /// writer.insert(1, b"blue").unwrap();
    /// writer.insert(255, b"world").unwrap();
    /// let obkv = writer.into_inner().unwrap();
    ///
    /// let mut iter = KvReaderU16::new(&obkv).iter();
    /// assert_eq!(iter.next(), Some((0, &b"hello"[..])));
    /// assert_eq!(iter.next(), Some((1, &b"blue"[..])));
    /// assert_eq!(iter.next(), Some((255, &b"world"[..])));
    /// assert_eq!(iter.next(), None);
    /// assert_eq!(iter.next(), None); // is it fused?
    /// ```
    pub fn iter(&self) -> Fuse<KvIter<'a, K>>
    where
        K: Key,
    {
        KvIter {
            bytes: self.bytes,
            offset: 0,
            _phantom: PhantomData,
        }
        .fuse()
    }
}

/// An iterator over a `obkv` database.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct KvIter<'a, K> {
    bytes: &'a [u8],
    offset: usize,
    _phantom: PhantomData<K>,
}

impl<'a, K: Key> Iterator for KvIter<'a, K> {
    type Item = (K, &'a [u8]);

    fn next(&mut self) -> Option<Self::Item> {
        let key = self
            .bytes
            .get(self.offset..self.offset + K::BYTES_SIZE)
            .and_then(|s| s.try_into().ok())
            .map(K::from_be_bytes)?;

        self.offset += K::BYTES_SIZE;

        let val_len = {
            let mut val_len = 0;
            let bytes = self.bytes.get(self.offset..)?;
            self.offset += varint_decode32(bytes, &mut val_len)?;
            val_len as usize
        };

        let val = self.bytes.get(self.offset..self.offset + val_len)?;
        self.offset += val_len;

        Some((key, val))
    }
}

/// A trait that represents a key, this key will be encoded to disk.
pub trait Key: Copy {
    /// The number of bytes the `BYTES` array contains.
    const BYTES_SIZE: usize;
    /// The array that will contain the bytes of the key.
    type BYTES: AsRef<[u8]> + for<'a> TryFrom<&'a [u8]>;

    /// Returns an array of the key bytes in big-endian.
    fn to_be_bytes(&self) -> Self::BYTES;
    /// Returns the key that corresponds to the given bytes array.
    fn from_be_bytes(array: Self::BYTES) -> Self;
}

macro_rules! impl_key {
    ($($t:ty),+) => {
        $(impl Key for $t {
            const BYTES_SIZE: usize = std::mem::size_of::<$t>();
            type BYTES = [u8; Self::BYTES_SIZE];

            fn to_be_bytes(&self) -> Self::BYTES {
                <$t>::to_be_bytes(*self)
            }

            fn from_be_bytes(array: Self::BYTES) -> Self {
                Self::from_be_bytes(array)
            }
        })+
    };
}

impl_key!(u8, u16, u32, u64);