1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
//! # Support for type-encodings.
//!
//! This module contains traits for annotating types that has an Objective-C
//! type-encoding: Specifically [`Encode`] for structs/numeric types and
//! [`RefEncode`] for references.
//!
//! Additionally, this exports the [`Encoding`] and [`EncodingBox`] types from
//! [`objc2-encode`][objc2_encode], see that crate for a few more details on
//! what Objective-C type-encodings are.
//!
//!
//! ## Examples
//!
//! Implementing [`Encode`] and [`RefEncode`] for a custom type:
//!
//! ```
//! use objc2::encode::{Encode, Encoding, RefEncode};
//!
//! #[repr(C)]
//! struct MyStruct {
//!     a: f32, // float
//!     b: i16, // int16_t
//! }
//!
//! unsafe impl Encode for MyStruct {
//!     const ENCODING: Encoding = Encoding::Struct(
//!         "MyStruct", // Must use the same name as defined in C header files
//!         &[
//!             f32::ENCODING, // Same as Encoding::Float
//!             i16::ENCODING, // Same as Encoding::Short
//!         ],
//!     );
//! }
//!
//! // @encode(MyStruct) -> "{MyStruct=fs}"
//! assert!(MyStruct::ENCODING.equivalent_to_str("{MyStruct=fs}"));
//!
//! unsafe impl RefEncode for MyStruct {
//!     const ENCODING_REF: Encoding = Encoding::Pointer(&Self::ENCODING);
//! }
//!
//! // @encode(MyStruct*) -> "^{MyStruct=fs}"
//! assert!(MyStruct::ENCODING_REF.equivalent_to_str("^{MyStruct=fs}"));
//! ```
//!
//! Implementing [`Encode`] for a few core-graphics types.
//!
//! Note that these are available in `icrate`, so the implementation here is
//! mostly for demonstration.
//!
//! ```
#![doc = include_str!("../../examples/encode_core_graphics.rs")]
//! ```
//!
//! Implementing [`Encode`] and [`RefEncode`] for a transparent newtype.
//!
//! ```
#![doc = include_str!("../../examples/encode_nsuinteger.rs")]
//! ```
//!
//! Implementing [`RefEncode`] for an object, in this case `NSString`.
//!
//! ```
#![doc = include_str!("../../examples/encode_nsstring.rs")]
//! ```
//!
//! Implementing [`RefEncode`] for a type where you don't necessarily know
//! about the exact internals / the internals are not representable in Rust.
//!
//! ```
#![doc = include_str!("../../examples/encode_opaque_type.rs")]
//! ```

use core::cell::{Cell, UnsafeCell};
use core::ffi::c_void;
use core::mem::{self, ManuallyDrop, MaybeUninit};
use core::num::{
    NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI8, NonZeroIsize, NonZeroU16, NonZeroU32,
    NonZeroU64, NonZeroU8, NonZeroUsize, Wrapping,
};
use core::ptr::NonNull;
use core::sync::atomic;

// Intentionally not `#[doc(hidden)]`
pub mod __unstable;

#[doc(inline)]
pub use objc2_encode::{Encoding, EncodingBox, ParseError};

/// Types that have an Objective-C type-encoding.
///
/// Usually you will want to implement [`RefEncode`] as well.
///
/// If your type is an opaque type you should not need to implement this;
/// there you will only need [`RefEncode`].
///
///
/// # Safety
///
/// The type must be FFI-safe, meaning a C-compatible `repr` (`repr(C)`,
/// `repr(u8)`, `repr(transparent)` where the inner types are C-compatible,
/// and so on). See the [nomicon on other `repr`s][reprs].
///
/// Objective-C will make assumptions about the type (like its size, alignment
/// and ABI) from its encoding, so the implementer must verify that the
/// encoding is accurate.
///
/// Concretely, [`Self::ENCODING`] must match the result of running `@encode`
/// in Objective-C with the type in question.
///
/// You should also beware of having [`Drop`] types implement this, since when
/// passed to Objective-C via. `objc2::msg_send!` their destructor will not be
/// called!
///
///
/// # Examples
///
/// Implementing for a struct:
///
/// ```
/// # use objc2::encode::{Encode, Encoding, RefEncode};
/// # use core::ffi::c_void;
/// #
/// #[repr(C)]
/// struct MyType {
///     a: i32,
///     b: f64,
///     c: *const c_void,
/// }
///
/// unsafe impl Encode for MyType {
///     const ENCODING: Encoding = Encoding::Struct(
///         // The name of the type that Objective-C sees.
///         "MyType",
///         &[
///             // Delegate to field's implementations.
///             // The order is the same as in the definition.
///             i32::ENCODING,
///             f64::ENCODING,
///             <*const c_void>::ENCODING,
///         ],
///     );
/// }
///
/// // Note: You would also implement `RefEncode` for this type.
/// ```
///
/// [reprs]: https://doc.rust-lang.org/nomicon/other-reprs.html
pub unsafe trait Encode {
    /// The Objective-C type-encoding for this type.
    const ENCODING: Encoding;
}

/// Types whoose references has an Objective-C type-encoding.
///
/// Implementing this for `T` provides [`Encode`] implementations for:
/// - `*const T`
/// - `*mut T`
/// - `&T`
/// - `&mut T`
/// - `NonNull<T>`
/// - `Option<&T>`
/// - `Option<&mut T>`
/// - `Option<NonNull<T>>`
///
///
/// # Reasoning behind this trait's existence
///
/// External crates cannot implement [`Encode`] for pointers or [`Option`]s
/// containing references, so instead, they can implement this trait.
/// Additionally it would be very cumbersome if every type had to implement
/// [`Encode`] for all possible pointer types.
///
/// Finally, having this trait allows for much cleaner generic code that need
/// to represent types that can be encoded as pointers.
///
///
/// # Safety
///
/// References to the object must be FFI-safe.
///
/// See the nomicon entry on [representing opaque structs][opaque] for
/// information on how to represent objects that you don't know the layout of
/// (or use `extern type` ([RFC-1861]) if you're using nightly).
///
/// Objective-C will make assumptions about the type (like its size, alignment
/// and ABI) from its encoding, so the implementer must verify that the
/// encoding is accurate.
///
/// Concretely, [`Self::ENCODING_REF`] must match the result of running
/// `@encode` in Objective-C with a pointer to the type in question.
///
/// [opaque]: https://doc.rust-lang.org/nomicon/ffi.html#representing-opaque-structs
/// [RFC-1861]: https://rust-lang.github.io/rfcs/1861-extern-types.html
pub unsafe trait RefEncode {
    /// The Objective-C type-encoding for a reference of this type.
    ///
    /// Should be one of [`Encoding::Object`], [`Encoding::Block`],
    /// [`Encoding::Class`], [`Encoding::Pointer`], [`Encoding::Sel`] or
    /// [`Encoding::Unknown`].
    ///
    /// # Examples
    ///
    /// This is usually implemented either as an object pointer:
    /// ```
    /// # use objc2::encode::{Encoding, RefEncode};
    /// # #[repr(C)]
    /// # struct MyObject {
    /// #     _priv: [u8; 0],
    /// # }
    /// # unsafe impl RefEncode for MyObject {
    /// const ENCODING_REF: Encoding = Encoding::Object;
    /// # }
    /// ```
    ///
    /// Or as a pointer to the type, delegating the rest to the [`Encode`]
    /// implementation:
    /// ```
    /// # use objc2::encode::{Encode, Encoding, RefEncode};
    /// # #[repr(transparent)]
    /// # struct MyType(i32);
    /// # unsafe impl Encode for MyType {
    /// #     const ENCODING: Encoding = i32::ENCODING;
    /// # }
    /// # unsafe impl RefEncode for MyType {
    /// const ENCODING_REF: Encoding = Encoding::Pointer(&Self::ENCODING);
    /// # }
    /// ```
    const ENCODING_REF: Encoding;
}

/// A helper trait for types that are encodable inside an [`Option`].
///
/// See [the nomicon][nomicon-nullable] for details on which types uphold this
/// promise.
///
/// This is used to work around the orphan rule, which would normally prevent
/// you from implementing [`Encode`]/[`RefEncode`] for `Option<CustomType>`.
///
/// [nomicon-nullable]: https://doc.rust-lang.org/nightly/nomicon/ffi.html#the-nullable-pointer-optimization
///
///
/// # Safety
///
/// You must ensure that the implemented type `T` has the same layout as
/// `Option<T>`.
///
///
/// # Examples
///
/// ```
/// use objc2::encode::{Encode, Encoding, OptionEncode};
/// use core::ptr::NonNull;
/// use core::ffi::c_void;
///
/// #[repr(transparent)]
/// struct MyBlockType(NonNull<c_void>);
///
/// // SAFETY: `MyBlockType` is meant to represent a pointer to a block
/// unsafe impl Encode for MyBlockType {
///     const ENCODING: Encoding = Encoding::Block;
/// }
///
/// // SAFETY: `MyBlockType` is `repr(transparent)` over `NonNull`, which
/// // means that `Option<MyBlockType>` has the same layout.
/// unsafe impl OptionEncode for MyBlockType {}
///
/// assert_eq!(<Option<MyBlockType>>::ENCODING, MyBlockType::ENCODING);
/// ```
pub unsafe trait OptionEncode {}

// SAFETY: Implementor of `OptionEncode` guarantees this impl is sound
unsafe impl<T: Encode + OptionEncode> Encode for Option<T> {
    const ENCODING: Encoding = {
        if mem::size_of::<T>() != mem::size_of::<Option<T>>() {
            panic!("invalid OptionEncode + Encode implementation");
        }
        T::ENCODING
    };
}

// SAFETY: Implementor of `OptionEncode` guarantees this impl is sound
unsafe impl<T: RefEncode + OptionEncode> RefEncode for Option<T> {
    const ENCODING_REF: Encoding = {
        if mem::size_of::<T>() != mem::size_of::<Option<T>>() {
            panic!("invalid OptionEncode + RefEncode implementation");
        }
        T::ENCODING_REF
    };
}

// TODO: Implement for `PhantomData` and `PhantomPinned`?

/// Helper for implementing [`Encode`].
macro_rules! encode_impls {
    ($($t:ty => $e:ident,)*) => ($(
        unsafe impl Encode for $t {
            const ENCODING: Encoding = Encoding::$e;
        }
    )*);
}

encode_impls!(
    i8 => Char,
    i16 => Short,
    i32 => Int,
    i64 => LongLong,
    u8 => UChar,
    u16 => UShort,
    u32 => UInt,
    u64 => ULongLong,
    f32 => Float,
    f64 => Double,

    // TODO: i128 & u128
    // https://github.com/rust-lang/rust/issues/54341
);

// TODO: Structs in core::arch?

macro_rules! encode_impls_size {
    ($($t:ty => ($t16:ty, $t32:ty, $t64:ty),)*) => ($(
        #[doc = concat!("The encoding of [`", stringify!($t), "`] varies based on the target pointer width.")]
        unsafe impl Encode for $t {
            #[cfg(target_pointer_width = "16")]
            const ENCODING: Encoding = <$t16>::ENCODING;
            #[cfg(target_pointer_width = "32")]
            const ENCODING: Encoding = <$t32>::ENCODING;
            #[cfg(target_pointer_width = "64")]
            const ENCODING: Encoding = <$t64>::ENCODING;
        }
    )*);
}

encode_impls_size!(
    isize => (i16, i32, i64),
    usize => (u16, u32, u64),
);

/// Helper for implementing [`RefEncode`].
macro_rules! pointer_refencode_impl {
    ($($t:ty),*) => ($(
        unsafe impl RefEncode for $t {
            const ENCODING_REF: Encoding = Encoding::Pointer(&Self::ENCODING);
        }
    )*);
}

pointer_refencode_impl!(i16, i32, i64, isize, u16, u32, u64, usize, f32, f64);

/// Pointers to [`i8`] use the special [`Encoding::String`] encoding.
unsafe impl RefEncode for i8 {
    const ENCODING_REF: Encoding = Encoding::String;
}

/// Pointers to [`u8`] use the special [`Encoding::String`] encoding.
unsafe impl RefEncode for u8 {
    const ENCODING_REF: Encoding = Encoding::String;
}

/// Helper for implementing [`Encode`] for nonzero integer types.
macro_rules! encode_impls_nonzero {
    ($($nonzero:ident => $type:ty,)*) => ($(
        unsafe impl Encode for $nonzero {
            const ENCODING: Encoding = <$type>::ENCODING;
        }

        unsafe impl RefEncode for $nonzero {
            const ENCODING_REF: Encoding = <$type>::ENCODING_REF;
        }

        // SAFETY: nonzero types have a NUL niche that is exploited by Option
        unsafe impl OptionEncode for $nonzero {}
    )*);
}

encode_impls_nonzero!(
    NonZeroI8 => i8,
    NonZeroI16 => i16,
    NonZeroI32 => i32,
    NonZeroI64 => i64,
    NonZeroIsize => isize,
    NonZeroU8 => u8,
    NonZeroU16 => u16,
    NonZeroU32 => u32,
    NonZeroU64 => u64,
    NonZeroUsize => usize,
);

/// Helper for implementing for atomic types.
macro_rules! encode_atomic_impls {
    ($(
        $(#[$m:meta])*
        $atomic:ident => $type:ty,
    )*) => ($(
        // SAFETY: C11 `_Atomic` types use compatible synchronization
        // primitives, and the atomic type is guaranteed to have the same
        // in-memory representation as the underlying type.
        $(#[$m])*
        unsafe impl Encode for atomic::$atomic {
            const ENCODING: Encoding = Encoding::Atomic(&<$type>::ENCODING);
        }

        $(#[$m])*
        unsafe impl RefEncode for atomic::$atomic {
            const ENCODING_REF: Encoding = Encoding::Pointer(&Self::ENCODING);
        }
    )*);
}

encode_atomic_impls!(
    #[cfg(target_has_atomic = "8")]
    AtomicI8 => i8,
    #[cfg(target_has_atomic = "8")]
    AtomicU8 => u8,

    #[cfg(target_has_atomic = "16")]
    AtomicI16 => i16,
    #[cfg(target_has_atomic = "16")]
    AtomicU16 => u16,

    #[cfg(target_has_atomic = "32")]
    AtomicI32 => i32,
    #[cfg(target_has_atomic = "32")]
    AtomicU32 => u32,

    #[cfg(target_has_atomic = "64")]
    AtomicI64 => i64,
    #[cfg(target_has_atomic = "64")]
    AtomicU64 => u64,

    // TODO
    // #[cfg(target_has_atomic = "128")]
    // AtomicI128 => i128,
    // #[cfg(target_has_atomic = "128")]
    // AtomicU128 => u128,

    #[cfg(target_has_atomic = "ptr")]
    AtomicIsize => isize,
    #[cfg(target_has_atomic = "ptr")]
    AtomicUsize => usize,
);

// SAFETY: Guaranteed to have the same in-memory representation as `*mut T`.
#[cfg(target_has_atomic = "ptr")]
unsafe impl<T: RefEncode> Encode for atomic::AtomicPtr<T> {
    const ENCODING: Encoding = Encoding::Atomic(&T::ENCODING_REF);
}

#[cfg(target_has_atomic = "ptr")]
unsafe impl<T: RefEncode> RefEncode for atomic::AtomicPtr<T> {
    const ENCODING_REF: Encoding = Encoding::Pointer(&Self::ENCODING);
}

/// [`Encode`] is implemented manually for `*const c_void`, `*mut c_void` and
/// `NonNull<c_void>`, instead of implementing [`RefEncode`], to discourage
/// creating `&c_void`/`&mut c_void`.
unsafe impl Encode for *const c_void {
    const ENCODING: Encoding = Encoding::Pointer(&Encoding::Void);
}
unsafe impl RefEncode for *const c_void {
    const ENCODING_REF: Encoding = Encoding::Pointer(&Self::ENCODING);
}
unsafe impl Encode for *mut c_void {
    const ENCODING: Encoding = Encoding::Pointer(&Encoding::Void);
}
unsafe impl RefEncode for *mut c_void {
    const ENCODING_REF: Encoding = Encoding::Pointer(&Self::ENCODING);
}
unsafe impl Encode for NonNull<c_void> {
    const ENCODING: Encoding = Encoding::Pointer(&Encoding::Void);
}
unsafe impl RefEncode for NonNull<c_void> {
    const ENCODING_REF: Encoding = Encoding::Pointer(&Self::ENCODING);
}
unsafe impl OptionEncode for NonNull<c_void> {}

unsafe impl<T: Encode, const LENGTH: usize> Encode for [T; LENGTH] {
    const ENCODING: Encoding = Encoding::Array(LENGTH as u64, &T::ENCODING);
}

unsafe impl<T: Encode, const LENGTH: usize> RefEncode for [T; LENGTH] {
    const ENCODING_REF: Encoding = Encoding::Pointer(&Self::ENCODING);
}

macro_rules! encode_impls_transparent {
    ($($t:ident<T $(: ?$b:ident)?>,)*) => ($(
        unsafe impl<T: Encode $(+ ?$b)?> Encode for $t<T> {
            const ENCODING: Encoding = T::ENCODING;
        }

        unsafe impl<T: RefEncode $(+ ?$b)?> RefEncode for $t<T> {
            const ENCODING_REF: Encoding = T::ENCODING_REF;
        }
    )*);
}

encode_impls_transparent! {
    // SAFETY: Guaranteed to have the same layout as `T`, and is subject to
    // the same layout optimizations as `T`.
    // TODO: With specialization: `impl Encode for ManuallyDrop<Box<T>>`
    ManuallyDrop<T: ?Sized>,

    // SAFETY: Guaranteed to have the same in-memory representation `T`.
    //
    // The fact that this has `repr(no_niche)` has no effect on us, since we
    // don't unconditionally implement `Encode` generically over `Option`.
    // (e.g. an `Option<UnsafeCell<&u8>>` impl is not available).
    UnsafeCell<T: ?Sized>,

    // SAFETY: Guaranteed to have the same layout as `UnsafeCell<T>`.
    Cell<T: ?Sized>,

    // The inner field is not public, so may not be safe.
    // TODO: Pin<T>,

    // SAFETY: Guaranteed to have the same size, alignment, and ABI as `T`.
    MaybeUninit<T>,

    // SAFETY: Guaranteed to have the same layout and ABI as `T`.
    Wrapping<T>,

    // TODO: Types that need to be made repr(transparent) first:
    // - core::cell::Ref?
    // - core::cell::RefCell?
    // - core::cell::RefMut?
    // - core::panic::AssertUnwindSafe<T>
    // TODO: core::num::Saturating when that is stabilized
    // TODO: core::cmp::Reverse?
}

/// Helper for implementing `Encode`/`RefEncode` for pointers to types that
/// implement `RefEncode`.
///
/// Using `?Sized` is safe here because we delegate to other implementations
/// (which will verify that the implementation is safe for the unsized type).
macro_rules! encode_pointer_impls {
    (unsafe impl<T: RefEncode> $x:ident for Pointer<T> {
        const $c:ident = $e:expr;
    }) => (
        unsafe impl<T: RefEncode + ?Sized> $x for *const T {
            const $c: Encoding = $e;
        }

        unsafe impl<T: RefEncode + ?Sized> $x for *mut T {
            const $c: Encoding = $e;
        }

        unsafe impl<'a, T: RefEncode + ?Sized> $x for &'a T {
            const $c: Encoding = $e;
        }

        unsafe impl<'a, T: RefEncode + ?Sized> $x for &'a mut T {
            const $c: Encoding = $e;
        }

        unsafe impl<T: RefEncode + ?Sized> $x for NonNull<T> {
            const $c: Encoding = $e;
        }
    );
}

// Implement `Encode` for types that are `RefEncode`.
//
// This allows users to implement `Encode` for custom types that have a
// specific encoding as a pointer, instead of having to implement it for each
// pointer-like type in turn.
encode_pointer_impls!(
    unsafe impl<T: RefEncode> Encode for Pointer<T> {
        const ENCODING = T::ENCODING_REF;
    }
);

// Implement `RefEncode` for pointers to types that are `RefEncode`.
//
// This implements `Encode` for pointers to pointers (to pointers, and so on),
// which would otherwise be very cumbersome to do manually.
encode_pointer_impls!(
    unsafe impl<T: RefEncode> RefEncode for Pointer<T> {
        const ENCODING_REF = Encoding::Pointer(&T::ENCODING_REF);
    }
);

// SAFETY: References and `NonNull` have a NULL niche
unsafe impl<'a, T: RefEncode + ?Sized> OptionEncode for &'a T {}
unsafe impl<'a, T: RefEncode + ?Sized> OptionEncode for &'a mut T {}
unsafe impl<T: RefEncode + ?Sized> OptionEncode for NonNull<T> {}

/// Helper for implementing [`Encode`]/[`RefEncode`] for function pointers
/// whoose arguments implement [`Encode`].
///
/// Ideally we'd implement it for all function pointers, but due to coherence
/// issues, see <https://github.com/rust-lang/rust/issues/56105>, function
/// pointers that are higher-ranked over lifetimes don't get implemented.
///
/// We could fix it by adding those impls and allowing `coherence_leak_check`,
/// but it would have to be done for _all_ references, `Option<&T>` and such
/// as well. So trying to do it quickly requires generating a polynomial
/// amount of implementations, which IMO is overkill for such a small issue.
///
/// Using `?Sized` is probably not safe here because C functions can only take
/// and return items with a known size.
macro_rules! encode_fn_pointer_impl {
    (@ $FnTy: ty, $($Arg: ident),*) => {
        unsafe impl<Ret: __unstable::EncodeReturn, $($Arg: Encode),*> Encode for $FnTy {
            const ENCODING: Encoding = Encoding::Pointer(&Encoding::Unknown);
        }
        unsafe impl<Ret: __unstable::EncodeReturn, $($Arg: Encode),*> RefEncode for $FnTy {
            const ENCODING_REF: Encoding = Encoding::Pointer(&Self::ENCODING);
        }
        // SAFETY: Function pointers have a NULL niche
        unsafe impl<Ret: __unstable::EncodeReturn, $($Arg: Encode),*> OptionEncode for $FnTy {}
    };
    (# $abi:literal; $($Arg: ident),+) => {
        // Normal functions
        encode_fn_pointer_impl!(@ extern $abi fn($($Arg),+) -> Ret, $($Arg),+ );
        encode_fn_pointer_impl!(@ unsafe extern $abi fn($($Arg),+) -> Ret, $($Arg),+ );
        // Variadic functions
        encode_fn_pointer_impl!(@ extern $abi fn($($Arg),+ , ...) -> Ret, $($Arg),+ );
        encode_fn_pointer_impl!(@ unsafe extern $abi fn($($Arg),+ , ...) -> Ret, $($Arg),+ );
    };
    (# $abi:literal; ) => {
        // No variadic functions with 0 parameters
        encode_fn_pointer_impl!(@ extern $abi fn() -> Ret, );
        encode_fn_pointer_impl!(@ unsafe extern $abi fn() -> Ret, );
    };
    ($($Arg: ident),*) => {
        encode_fn_pointer_impl!(# "C"; $($Arg),*);
        #[cfg(feature = "unstable-c-unwind")]
        encode_fn_pointer_impl!(# "C-unwind"; $($Arg),*);
    };
}

encode_fn_pointer_impl!();
encode_fn_pointer_impl!(A);
encode_fn_pointer_impl!(A, B);
encode_fn_pointer_impl!(A, B, C);
encode_fn_pointer_impl!(A, B, C, D);
encode_fn_pointer_impl!(A, B, C, D, E);
encode_fn_pointer_impl!(A, B, C, D, E, F);
encode_fn_pointer_impl!(A, B, C, D, E, F, G);
encode_fn_pointer_impl!(A, B, C, D, E, F, G, H);
encode_fn_pointer_impl!(A, B, C, D, E, F, G, H, I);
encode_fn_pointer_impl!(A, B, C, D, E, F, G, H, I, J);
encode_fn_pointer_impl!(A, B, C, D, E, F, G, H, I, J, K);
encode_fn_pointer_impl!(A, B, C, D, E, F, G, H, I, J, K, L);

#[cfg(test)]
mod tests {
    use super::*;

    use core::sync::atomic::*;

    #[test]
    fn test_c_string() {
        assert_eq!(i8::ENCODING, Encoding::Char);
        assert_eq!(u8::ENCODING, Encoding::UChar);

        assert_eq!(<*const i8>::ENCODING, Encoding::String);
        assert_eq!(<&u8>::ENCODING, Encoding::String);
        assert_eq!(i8::ENCODING_REF, Encoding::String);
        assert_eq!(i8::ENCODING_REF, Encoding::String);

        assert_eq!(
            <*const *const i8>::ENCODING,
            Encoding::Pointer(&Encoding::String)
        );
        assert_eq!(<&&u8>::ENCODING, Encoding::Pointer(&Encoding::String));
    }

    #[test]
    fn test_i32() {
        assert_eq!(i32::ENCODING, Encoding::Int);
        assert_eq!(<&i32>::ENCODING, Encoding::Pointer(&Encoding::Int));
        assert_eq!(
            <&&i32>::ENCODING,
            Encoding::Pointer(&Encoding::Pointer(&Encoding::Int))
        );
    }

    #[test]
    fn test_atomic() {
        assert_eq!(AtomicI32::ENCODING, Encoding::Atomic(&Encoding::Int));
        assert_eq!(
            AtomicI32::ENCODING_REF,
            Encoding::Pointer(&Encoding::Atomic(&Encoding::Int))
        );
        assert_eq!(
            AtomicPtr::<i32>::ENCODING,
            Encoding::Atomic(&Encoding::Pointer(&Encoding::Int))
        );

        assert_eq!(AtomicI8::ENCODING, Encoding::Atomic(&Encoding::Char));
        assert_eq!(
            AtomicI8::ENCODING_REF,
            Encoding::Pointer(&Encoding::Atomic(&Encoding::Char))
        );
        assert_eq!(
            AtomicPtr::<i8>::ENCODING,
            Encoding::Atomic(&Encoding::String)
        );
    }

    #[test]
    fn test_void() {
        assert_eq!(
            <*const c_void>::ENCODING,
            Encoding::Pointer(&Encoding::Void)
        );
        assert_eq!(
            <&*const c_void>::ENCODING,
            Encoding::Pointer(&Encoding::Pointer(&Encoding::Void))
        );
    }

    #[test]
    fn test_transparent() {
        assert_eq!(<ManuallyDrop<u8>>::ENCODING, u8::ENCODING);
        assert_eq!(<ManuallyDrop<&u8>>::ENCODING, u8::ENCODING_REF);
        assert_eq!(<ManuallyDrop<Option<&u8>>>::ENCODING, u8::ENCODING_REF);
        assert_eq!(<&ManuallyDrop<Option<&u8>>>::ENCODING, <&&u8>::ENCODING);

        assert_eq!(<UnsafeCell<u8>>::ENCODING, u8::ENCODING);
        assert_eq!(<UnsafeCell<&u8>>::ENCODING, <&u8>::ENCODING);
        assert_eq!(<Cell<u8>>::ENCODING, u8::ENCODING);
        assert_eq!(<Cell<&u8>>::ENCODING, <&u8>::ENCODING);
        // assert_eq!(<Pin<u8>>::ENCODING, u8::ENCODING);
        assert_eq!(<MaybeUninit<u8>>::ENCODING, u8::ENCODING);
        assert_eq!(<Wrapping<u8>>::ENCODING, u8::ENCODING);
    }

    #[test]
    fn test_extern_fn_pointer() {
        assert_eq!(
            <extern "C" fn()>::ENCODING,
            Encoding::Pointer(&Encoding::Unknown)
        );
        assert_eq!(
            <extern "C" fn(x: i32) -> u32>::ENCODING,
            Encoding::Pointer(&Encoding::Unknown)
        );
        assert_eq!(
            <Option<unsafe extern "C" fn()>>::ENCODING,
            Encoding::Pointer(&Encoding::Unknown)
        );
        #[cfg(feature = "unstable-c-unwind")]
        assert_eq!(
            <extern "C-unwind" fn()>::ENCODING,
            Encoding::Pointer(&Encoding::Unknown)
        );
    }

    #[test]
    fn test_extern_fn_pointer_elided_lifetime() {
        fn impls_encode<T: Encode>(_x: T) {}

        extern "C" fn my_fn1(_x: &i32) {}
        extern "C" fn my_fn2(_x: &i32, _y: &u8) {}
        extern "C" fn my_fn3(x: &u8) -> &u8 {
            x
        }
        extern "C" fn my_fn4<'a>(x: &'a u8, _y: &i32) -> &'a u8 {
            x
        }

        impls_encode(my_fn1 as extern "C" fn(_));
        impls_encode(my_fn2 as extern "C" fn(_, _));
        impls_encode(my_fn3 as extern "C" fn(_) -> _);
        impls_encode(my_fn4 as extern "C" fn(_, _) -> _);
    }
}