1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
use core::fmt;
use core::marker::PhantomData;
use core::mem::{self, ManuallyDrop};
use core::ops::{Deref, DerefMut};
use core::panic::{RefUnwindSafe, UnwindSafe};
use core::ptr::NonNull;

use super::Allocated;
use super::AutoreleasePool;
use super::{Owned, Ownership, Shared};
use crate::ffi;
use crate::{ClassType, Message};

/// An pointer for Objective-C reference counted objects.
///
/// [`Id`] strongly references or "retains" the given object `T`, and
/// "releases" it again when dropped, thereby ensuring it will be deallocated
/// at the right time.
///
/// An [`Id`] can either be [`Owned`] or [`Shared`], represented with the `O`
/// type parameter.
///
/// If owned, it is guaranteed that there are no other references to the
/// object, and the [`Id`] can therefore be mutably dereferenced.
///
/// If shared, however, it can only be immutably dereferenced because there
/// may be other references to the object, since a shared [`Id`] can be cloned
/// to provide exactly that.
///
/// An [`Id<T, Owned>`] can be safely converted to a [`Id<T, Shared>`] using
/// [`Id::into_shared`] or `From`/`Into`. The opposite is not safely possible,
/// but the unsafe option [`Id::from_shared`] is provided.
///
/// `Option<Id<T, O>>` is guaranteed to have the same size as a pointer to the
/// object.
///
///
/// # Comparison to `std` types
///
/// `Id<T, Owned>` can be thought of as the Objective-C equivalent of [`Box`]
/// from the standard library: It is a unique pointer to some allocated
/// object, and that means you're allowed to get a mutable reference to it.
///
/// Likewise, `Id<T, Shared>` is the Objective-C equivalent of [`Arc`]: It is
/// a reference-counting pointer that, when cloned, increases the reference
/// count.
///
/// [`Box`]: alloc::boxed::Box
/// [`Arc`]: alloc::sync::Arc
///
/// # Caveats
///
/// If the inner type implements [`Drop`], that implementation will not be
/// called, since there is no way to ensure that the Objective-C runtime will
/// do so. If you need to run some code when the object is destroyed,
/// implement the `dealloc` method instead.
///
/// This allows `?Sized` types `T`, but the intention is to only support when
/// `T` is an `extern type` (yet unstable).
///
/// # Examples
///
/// ```no_run
/// use objc2::msg_send_id;
/// use objc2::runtime::{Class, Object};
/// use objc2::rc::{Id, Owned, Shared, WeakId};
///
/// let cls = Class::get("NSObject").unwrap();
/// let obj: Id<Object, Owned> = unsafe { msg_send_id![cls, new] };
/// // obj will be released when it goes out of scope
///
/// // share the object so we can clone it
/// let obj: Id<_, Shared> = obj.into();
/// let another_ref = obj.clone();
/// // dropping our other reference will decrement the retain count
/// drop(another_ref);
///
/// let weak = WeakId::new(&obj);
/// assert!(weak.load().is_some());
/// // After the object is deallocated, our weak pointer returns none
/// drop(obj);
/// assert!(weak.load().is_none());
/// ```
///
/// ```no_run
/// # use objc2::{class, msg_send_id};
/// # use objc2::runtime::Object;
/// # use objc2::rc::{Id, Owned, Shared};
/// # type T = Object;
/// let mut owned: Id<T, Owned>;
/// # owned = unsafe { msg_send_id![class!(NSObject), new] };
/// let mut_ref: &mut T = &mut *owned;
/// // Do something with `&mut T` here
///
/// let shared: Id<T, Shared> = owned.into();
/// let cloned: Id<T, Shared> = shared.clone();
/// // Do something with `&T` here
/// ```
#[repr(transparent)]
// TODO: Figure out if `Message` bound on `T` would be better here?
// TODO: Add `ptr::Thin` bound on `T` to allow for only extern types
// TODO: Consider changing the name of Id -> Retain
pub struct Id<T: ?Sized, O: Ownership> {
    /// A pointer to the contained object. The pointer is always retained.
    ///
    /// It is important that this is `NonNull`, since we want to dereference
    /// it later, and be able to use the null-pointer optimization.
    ///
    /// Additionally, covariance is correct because we're either the unique
    /// owner of `T` (O = Owned), or `T` is immutable (O = Shared).
    ptr: NonNull<T>,
    /// Necessary for dropck even though we never actually run T's destructor,
    /// because it might have a `dealloc` that assumes that contained
    /// references outlive the type.
    ///
    /// See <https://doc.rust-lang.org/nightly/nomicon/phantom-data.html>
    item: PhantomData<T>,
    /// To prevent warnings about unused type parameters.
    own: PhantomData<O>,
    /// Marks the type as !UnwindSafe. Later on we'll re-enable this.
    ///
    /// See <https://github.com/rust-lang/rust/issues/93367> for why this is
    /// required.
    notunwindsafe: PhantomData<&'static mut ()>,
}

impl<T: ?Sized, O: Ownership> Id<T, O> {
    #[inline]
    unsafe fn new_nonnull(ptr: NonNull<T>) -> Self {
        Self {
            ptr,
            item: PhantomData,
            own: PhantomData,
            notunwindsafe: PhantomData,
        }
    }
}

impl<T: Message + ?Sized, O: Ownership> Id<Allocated<T>, O> {
    #[inline]
    pub(crate) unsafe fn new_allocated(ptr: *mut T) -> Option<Self> {
        // SAFETY: Upheld by the caller
        NonNull::new(ptr as *mut Allocated<T>).map(|ptr| unsafe { Self::new_nonnull(ptr) })
    }

    #[inline]
    pub(crate) unsafe fn assume_init(this: Self) -> Id<T, O> {
        let ptr = ManuallyDrop::new(this).ptr;

        // NonNull::cast
        let ptr = ptr.as_ptr() as *mut T;
        let ptr = unsafe { NonNull::new_unchecked(ptr) };

        // SAFETY: The pointer is valid.
        // Caller verifies that the object is allocated.
        unsafe { Id::new_nonnull(ptr) }
    }
}

impl<T: Message + ?Sized, O: Ownership> Id<T, O> {
    /// Constructs an [`Id`] to an object that already has +1 retain count.
    ///
    /// This is useful when you have a retain count that has been handed off
    /// from somewhere else, usually Objective-C methods like `init`, `alloc`,
    /// `new`, `copy`, or methods with the `ns_returns_retained` attribute.
    ///
    /// Since most of the above methods create new objects, and you therefore
    /// hold unique access to the object, you would often set the ownership to
    /// be [`Owned`].
    ///
    /// But some immutable objects (like `NSString`) don't always return
    /// unique references, so in those case you would use [`Shared`].
    ///
    /// Returns `None` if the pointer was null.
    ///
    ///
    /// # Safety
    ///
    /// The caller must ensure the given object has +1 retain count, and that
    /// the object pointer otherwise follows the same safety requirements as
    /// in [`Id::retain`].
    ///
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use objc2::{class, msg_send, msg_send_id};
    /// # use objc2::runtime::{Class, Object};
    /// # use objc2::rc::{Id, Owned};
    /// let cls: &Class;
    /// # let cls = class!(NSObject);
    /// let obj: &mut Object = unsafe { msg_send![cls, alloc] };
    /// let obj: Id<Object, Owned> = unsafe { Id::new(msg_send![obj, init]).unwrap() };
    /// // Or utilizing `msg_send_id`:
    /// let obj = unsafe { msg_send_id![cls, alloc] };
    /// let obj: Id<Object, Owned> = unsafe { msg_send_id![obj, init] };
    /// // Or in this case simply just:
    /// let obj: Id<Object, Owned> = unsafe { msg_send_id![cls, new] };
    /// ```
    ///
    /// ```no_run
    /// # use objc2::{class, msg_send_id};
    /// # use objc2::runtime::Object;
    /// # use objc2::rc::{Id, Shared};
    /// # type NSString = Object;
    /// let cls = class!(NSString);
    /// // NSString is immutable, so don't create an owned reference to it
    /// let obj: Id<NSString, Shared> = unsafe { msg_send_id![cls, new] };
    /// ```
    #[inline]
    // Note: We don't take a reference as a parameter since it would be too
    // easy to accidentally create two aliasing mutable references.
    pub unsafe fn new(ptr: *mut T) -> Option<Id<T, O>> {
        // Should optimize down to nothing.
        // SAFETY: Upheld by the caller
        NonNull::new(ptr).map(|ptr| unsafe { Id::new_nonnull(ptr) })
    }

    /// Returns a raw pointer to the object.
    ///
    /// The pointer is valid for at least as long as the `Id` is held.
    ///
    /// See [`Id::as_mut_ptr`] for the mutable equivalent.
    ///
    /// This is an associated method, and must be called as `Id::as_ptr(obj)`.
    #[inline]
    pub fn as_ptr(this: &Id<T, O>) -> *const T {
        this.ptr.as_ptr()
    }

    #[inline]
    pub(crate) fn consume_as_ptr(this: ManuallyDrop<Self>) -> *mut T {
        this.ptr.as_ptr()
    }

    #[inline]
    pub(crate) fn option_into_ptr(obj: Option<Self>) -> *mut T {
        // Difficult to write this in an ergonomic way with ?Sized
        // So we just hack it with transmute!

        // SAFETY: Option<Id<T, _>> has the same size as *mut T
        unsafe { mem::transmute::<ManuallyDrop<Option<Self>>, *mut T>(ManuallyDrop::new(obj)) }
    }
}

impl<T: Message + ?Sized> Id<T, Owned> {
    /// Returns a raw mutable pointer to the object.
    ///
    /// The pointer is valid for at least as long as the `Id` is held.
    ///
    /// See [`Id::as_ptr`] for the immutable equivalent.
    ///
    /// This is an associated method, and must be called as
    /// `Id::as_mut_ptr(obj)`.
    #[inline]
    pub fn as_mut_ptr(this: &mut Id<T, Owned>) -> *mut T {
        this.ptr.as_ptr()
    }
}

// TODO: Add ?Sized bound
impl<T: Message, O: Ownership> Id<T, O> {
    /// Convert the type of the given object to another.
    ///
    /// This is equivalent to a `cast` between two pointers.
    ///
    /// See [`Id::into_super`] for a safe alternative.
    ///
    /// This is common to do when you know that an object is a subclass of
    /// a specific class (e.g. casting an instance of `NSString` to `NSObject`
    /// is safe because `NSString` is a subclass of `NSObject`).
    ///
    /// All `'static` objects can safely be cast to [`Object`], since that
    /// assumes no specific class.
    ///
    /// [`Object`]: crate::runtime::Object
    ///
    ///
    /// # Safety
    ///
    /// You must ensure that the object can be reinterpreted as the given
    /// type.
    ///
    /// If `T` is not `'static`, you must ensure that `U` ensures that the
    /// data contained by `T` is kept alive for as long as `U` lives.
    ///
    /// Additionally, you must ensure that any safety invariants that the new
    /// type has are upheld.
    #[inline]
    pub unsafe fn cast<U: Message>(this: Self) -> Id<U, O> {
        let ptr = ManuallyDrop::new(this).ptr.cast();
        // SAFETY: The object is forgotten, so we have +1 retain count.
        //
        // Caller verifies that the returned object is of the correct type.
        unsafe { Id::new_nonnull(ptr) }
    }

    /// Retains the given object pointer.
    ///
    /// This is useful when you have been given a pointer to an object from
    /// some API, and you would like to ensure that the object stays around
    /// so that you can work with it.
    ///
    /// If said API is a normal Objective-C method, you probably want to use
    /// [`Id::retain_autoreleased`] instead.
    ///
    /// This is rarely used to construct owned [`Id`]s, see [`Id::new`] for
    /// that.
    ///
    /// Returns `None` if the pointer was null.
    ///
    ///
    /// # Safety
    ///
    /// The caller must ensure that the ownership is correct; that is, there
    /// must be no [`Owned`] pointers or mutable references to the same
    /// object, and when creating owned [`Id`]s, there must be no other
    /// pointers or references to the object.
    ///
    /// Additionally, the pointer must be valid as a reference (aligned,
    /// dereferencable and initialized, see the [`std::ptr`] module for more
    /// information).
    ///
    /// Finally, if you do not know the concrete type of `T`, it may not be
    /// `'static`, and hence you must ensure that the data that `T` references
    /// lives for as long as `T`.
    ///
    /// [`std::ptr`]: core::ptr
    //
    // This would be illegal:
    // ```no_run
    // let owned: Id<T, Owned>;
    // // Lifetime information is discarded
    // let retained: Id<T, Shared> = unsafe { Id::retain(&*owned) };
    // // Which means we can still mutate `Owned`:
    // let x: &mut T = &mut *owned;
    // // While we have an immutable reference
    // let y: &T = &*retained;
    // ```
    #[doc(alias = "objc_retain")]
    #[inline]
    pub unsafe fn retain(ptr: *mut T) -> Option<Id<T, O>> {
        // SAFETY: The caller upholds that the pointer is valid
        let res: *mut T = unsafe { ffi::objc_retain(ptr.cast()) }.cast();
        debug_assert_eq!(res, ptr, "objc_retain did not return the same pointer");
        // SAFETY: We just retained the object, so it has +1 retain count
        unsafe { Self::new(res) }
    }

    /// Retains a previously autoreleased object pointer.
    ///
    /// This is useful when calling Objective-C methods that return
    /// autoreleased objects, see [Cocoa's Memory Management Policy][mmRules].
    ///
    /// This has exactly the same semantics as [`Id::retain`], except it can
    /// sometimes avoid putting the object into the autorelease pool, possibly
    /// yielding increased speed and reducing memory pressure.
    ///
    /// Note: This relies heavily on being inlined right after [`msg_send!`],
    /// be careful not accidentally require instructions between these.
    ///
    /// [mmRules]: https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html
    /// [`msg_send!`]: crate::msg_send
    ///
    ///
    /// # Safety
    ///
    /// Same as [`Id::retain`].
    #[doc(alias = "objc_retainAutoreleasedReturnValue")]
    #[inline]
    pub unsafe fn retain_autoreleased(ptr: *mut T) -> Option<Id<T, O>> {
        // Add magic nop instruction to participate in the fast autorelease
        // scheme.
        //
        // See `callerAcceptsOptimizedReturn` in `objc-object.h`:
        // https://github.com/apple-oss-distributions/objc4/blob/objc4-838/runtime/objc-object.h#L1209-L1377
        //
        // We will unconditionally emit these instructions, even if they end
        // up being unused (for example because we're unlucky with inlining,
        // some other work is done between the objc_msgSend and this, or the
        // runtime version is too old to support it).
        //
        // It may seem like there should be a better way to do this, but
        // emitting raw assembly is exactly what Clang and Swift does:
        // swiftc: https://github.com/apple/swift/blob/swift-5.5.3-RELEASE/lib/IRGen/GenObjC.cpp#L148-L173
        // Clang: https://github.com/llvm/llvm-project/blob/889317d47b7f046cf0e68746da8f7f264582fb5b/clang/lib/CodeGen/CGObjC.cpp#L2339-L2373
        //
        // Resources:
        // - https://www.mikeash.com/pyblog/friday-qa-2011-09-30-automatic-reference-counting.html
        // - https://www.galloway.me.uk/2012/02/how-does-objc_retainautoreleasedreturnvalue-work/
        // - https://github.com/gfx-rs/metal-rs/issues/222
        // - https://news.ycombinator.com/item?id=29311736
        // - https://stackoverflow.com/a/23765612
        //
        // SAFETY:
        // Based on https://doc.rust-lang.org/stable/reference/inline-assembly.html#rules-for-inline-assembly
        //
        // We don't care about the value of the register (so it's okay to be
        // undefined), and its value is preserved.
        //
        // nomem: No reads or writes to memory are performed (this `mov`
        //   operates entirely on registers).
        // preserves_flags: `mov` doesn't modify any flags.
        // nostack: We don't touch the stack.

        // Only worth doing on the Apple runtime.
        // Not supported on TARGET_OS_WIN32.
        #[cfg(all(feature = "apple", not(target_os = "windows")))]
        {
            // Supported since macOS 10.7.
            #[cfg(target_arch = "x86_64")]
            {
                // x86_64 looks at the next call instruction.
                //
                // This is expected to be a PLT entry - if the user specifies
                // `-Zplt=no`, a GOT entry will be created instead, and this
                // will not work.
            }

            // Supported since macOS 10.8.
            #[cfg(target_arch = "arm")]
            unsafe {
                core::arch::asm!("mov r7, r7", options(nomem, preserves_flags, nostack))
            };

            // Supported since macOS 10.10.
            #[cfg(target_arch = "aarch64")]
            unsafe {
                core::arch::asm!("mov fp, fp", options(nomem, preserves_flags, nostack))
            };

            // Supported since macOS 10.12.
            #[cfg(target_arch = "x86")]
            unsafe {
                core::arch::asm!("mov ebp, ebp", options(nomem, preserves_flags, nostack))
            };
        }

        // SAFETY: Same as `retain`, this is just an optimization.
        let res: *mut T = unsafe { ffi::objc_retainAutoreleasedReturnValue(ptr.cast()) }.cast();

        // Ideally, we'd be able to specify that the above call should never
        // be tail-call optimized (become a `jmp` instruction instead of a
        // `call`); Rust doesn't really have a way of doing this currently, so
        // we just emit a simple `nop` to make such tail-call optimizations
        // less likely to occur.
        //
        // This is brittle! We should find a better solution!
        #[cfg(all(feature = "apple", not(target_os = "windows"), target_arch = "x86_64"))]
        {
            // SAFETY: Similar to above.
            unsafe { core::arch::asm!("nop", options(nomem, preserves_flags, nostack)) };
            // TODO: Possibly more efficient alternative? Also consider PLT.
            // #![feature(asm_sym)]
            // core::arch::asm!(
            //     "mov rdi, rax",
            //     "call {}",
            //     sym objc2::ffi::objc_retainAutoreleasedReturnValue,
            //     inout("rax") obj,
            //     clobber_abi("C"),
            // );
        }

        debug_assert_eq!(
            res, ptr,
            "objc_retainAutoreleasedReturnValue did not return the same pointer"
        );
        unsafe { Self::new(res) }
    }

    #[inline]
    fn autorelease_inner(self) -> *mut T {
        // Note that this (and the actual `autorelease`) is not an associated
        // function. This breaks the guideline that smart pointers shouldn't
        // add inherent methods, but since autoreleasing only works on already
        // retained objects it is hard to imagine a case where the inner type
        // has a method with the same name.

        let ptr = ManuallyDrop::new(self).ptr.as_ptr();
        // SAFETY: The `ptr` is guaranteed to be valid and have at least one
        // retain count.
        // And because of the ManuallyDrop, we don't call the Drop
        // implementation, so the object won't also be released there.
        let res: *mut T = unsafe { ffi::objc_autorelease(ptr.cast()) }.cast();
        debug_assert_eq!(res, ptr, "objc_autorelease did not return the same pointer");
        res
    }

    /// Autoreleases and prepares the [`Id`] to be returned to Objective-C.
    ///
    /// The object is not immediately released, but will be when the innermost
    /// autorelease pool is drained.
    ///
    /// This is useful when [declaring your own methods][declare] where you
    /// will often find yourself in need of returning autoreleased objects to
    /// properly follow [Cocoa's Memory Management Policy][mmRules].
    ///
    /// To that end, you could use [`Id::autorelease`], but that would require
    /// you to have an [`AutoreleasePool`] object at hand, which you clearly
    /// won't have in such cases. This function doesn't require a `pool`
    /// object (but as a downside returns a pointer instead of a reference).
    ///
    /// This is also more efficient than a normal `autorelease`, it makes a
    /// best effort attempt to hand off ownership of the retain count to a
    /// subsequent call to `objc_retainAutoreleasedReturnValue` /
    /// [`Id::retain_autoreleased`] in the enclosing call frame. Note: This
    /// optimization relies heavily on this function being tail called, so be
    /// careful to call this function at the end of your method.
    ///
    /// [declare]: crate::declare
    /// [mmRules]: https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// use objc2::{class, msg_send_id, sel};
    /// use objc2::declare::ClassBuilder;
    /// use objc2::rc::{Id, Owned};
    /// use objc2::runtime::{Class, Object, Sel};
    /// #
    /// # #[cfg(feature = "gnustep-1-7")]
    /// # unsafe { objc2::__gnustep_hack::get_class_to_force_linkage() };
    ///
    /// let mut builder = ClassBuilder::new("ExampleObject", class!(NSObject)).unwrap();
    ///
    /// extern "C" fn get(cls: &Class, _cmd: Sel) -> *mut Object {
    ///     let obj: Id<Object, Owned> = unsafe { msg_send_id![cls, new] };
    ///     obj.autorelease_return()
    /// }
    ///
    /// unsafe {
    ///     builder.add_class_method(
    ///         sel!(get),
    ///         get as extern "C" fn(_, _) -> _,
    ///     );
    /// }
    ///
    /// let cls = builder.register();
    /// ```
    #[doc(alias = "objc_autoreleaseReturnValue")]
    #[must_use = "If you don't intend to use the object any more, just drop it as usual"]
    #[inline]
    pub fn autorelease_return(self) -> *mut T {
        // See `autorelease_inner` for why this is an inherent method

        let ptr = ManuallyDrop::new(self).ptr.as_ptr();
        // SAFETY: Same as `autorelease_inner`, this is just an optimization.
        let res: *mut T = unsafe { ffi::objc_autoreleaseReturnValue(ptr.cast()) }.cast();
        debug_assert_eq!(
            res, ptr,
            "objc_autoreleaseReturnValue did not return the same pointer"
        );
        res
    }
}

// TODO: Consider something like this
// #[cfg(block)]
// impl<T: Block, O> Id<T, O> {
//     #[doc(alias = "objc_retainBlock")]
//     pub unsafe fn retain_block(block: *mut T) -> Option<Self> {
//         todo!()
//     }
// }

// TODO: Add ?Sized bound
impl<T: Message> Id<T, Owned> {
    /// Autoreleases the owned [`Id`], returning a mutable reference bound to
    /// the pool.
    ///
    /// The object is not immediately released, but will be when the innermost
    /// / current autorelease pool (given as a parameter) is drained.
    #[doc(alias = "objc_autorelease")]
    #[must_use = "If you don't intend to use the object any more, just drop it as usual"]
    #[inline]
    #[allow(clippy::needless_lifetimes)]
    #[allow(clippy::mut_from_ref)]
    pub fn autorelease<'p>(self, pool: &'p AutoreleasePool) -> &'p mut T {
        let ptr = self.autorelease_inner();
        // SAFETY: The pointer is valid as a reference, and we've consumed
        // the unique access to the `Id` so mutability is safe.
        unsafe { pool.ptr_as_mut(ptr) }
    }

    /// Promote a shared [`Id`] to an owned one, allowing it to be mutated.
    ///
    ///
    /// # Safety
    ///
    /// The caller must ensure that there are no other pointers (including
    /// [`WeakId`][`super::WeakId`] pointers) to the same object.
    ///
    /// This also means that the given [`Id`] should have a retain count of
    /// exactly 1 (except when autoreleases are involved).
    ///
    /// In general, this is wildly unsafe, do see if you can find a different
    /// solution!
    #[inline]
    pub unsafe fn from_shared(obj: Id<T, Shared>) -> Self {
        // Note: We can't debug_assert retainCount because of autoreleases
        let ptr = ManuallyDrop::new(obj).ptr;
        // SAFETY: The pointer is valid
        // Ownership rules are upheld by the caller
        unsafe { <Id<T, Owned>>::new_nonnull(ptr) }
    }

    /// Convert an owned to a shared [`Id`], allowing it to be cloned.
    ///
    /// This is also implemented as a `From` conversion, but this name is more
    /// explicit, which may be useful in some cases.
    #[inline]
    pub fn into_shared(obj: Self) -> Id<T, Shared> {
        let ptr = ManuallyDrop::new(obj).ptr;
        // SAFETY: The pointer is valid, and ownership is simply decreased
        unsafe { <Id<T, Shared>>::new_nonnull(ptr) }
    }
}

// TODO: Add ?Sized bound
impl<T: Message> Id<T, Shared> {
    /// Autoreleases the shared [`Id`], returning an aliased reference bound
    /// to the pool.
    ///
    /// The object is not immediately released, but will be when the innermost
    /// / current autorelease pool (given as a parameter) is drained.
    #[doc(alias = "objc_autorelease")]
    #[must_use = "If you don't intend to use the object any more, just drop it as usual"]
    #[inline]
    #[allow(clippy::needless_lifetimes)]
    pub fn autorelease<'p>(self, pool: &'p AutoreleasePool) -> &'p T {
        let ptr = self.autorelease_inner();
        // SAFETY: The pointer is valid as a reference
        unsafe { pool.ptr_as_ref(ptr) }
    }
}

impl<T: ClassType + 'static, O: Ownership> Id<T, O>
where
    T::Super: 'static,
{
    /// Convert the object into it's superclass.
    #[inline]
    pub fn into_super(this: Self) -> Id<T::Super, O> {
        // SAFETY:
        // - The casted-to type is a superclass of the type.
        // - Both types are `'static` (this could maybe be relaxed a bit, but
        //   let's just be on the safe side)!
        unsafe { Self::cast::<T::Super>(this) }
    }
}

impl<T: Message> From<Id<T, Owned>> for Id<T, Shared> {
    /// Convert an owned to a shared [`Id`], allowing it to be cloned.
    ///
    /// Same as [`Id::into_shared`].
    #[inline]
    fn from(obj: Id<T, Owned>) -> Self {
        Id::into_shared(obj)
    }
}

// TODO: Add ?Sized bound
impl<T: Message> Clone for Id<T, Shared> {
    /// Makes a clone of the shared object.
    ///
    /// This increases the object's reference count.
    #[doc(alias = "objc_retain")]
    #[doc(alias = "retain")]
    #[inline]
    fn clone(&self) -> Self {
        // SAFETY: The pointer is valid
        let obj = unsafe { Id::retain(self.ptr.as_ptr()) };
        // SAFETY: `objc_retain` always returns the same object pointer, and
        // the pointer is guaranteed non-null by Id.
        unsafe { obj.unwrap_unchecked() }
    }
}

/// `#[may_dangle]` (see [this][dropck_eyepatch]) doesn't apply here since we
/// don't run `T`'s destructor (rather, we want to discourage having `T`s with
/// a destructor); and even if we did run the destructor, it would not be safe
/// to add since we cannot verify that a `dealloc` method doesn't access
/// borrowed data.
///
/// [dropck_eyepatch]: https://doc.rust-lang.org/nightly/nomicon/dropck.html#an-escape-hatch
impl<T: ?Sized, O: Ownership> Drop for Id<T, O> {
    /// Releases the retained object.
    ///
    /// The contained object's destructor (if it has one) is never run!
    #[doc(alias = "objc_release")]
    #[doc(alias = "release")]
    #[inline]
    fn drop(&mut self) {
        // We could technically run the destructor for `T` when `O = Owned`,
        // and when `O = Shared` with (retainCount == 1), but that would be
        // confusing and inconsistent since we cannot guarantee that it's run.

        // SAFETY: The `ptr` is guaranteed to be valid and have at least one
        // retain count
        unsafe { ffi::objc_release(self.ptr.as_ptr().cast()) };
    }
}

// https://doc.rust-lang.org/nomicon/arc-mutex/arc-base.html#send-and-sync
/// The `Send` implementation requires `T: Sync` because `Id<T, Shared>` give
/// access to `&T`.
///
/// Additiontally, it requires `T: Send` because if `T: !Send`, you could
/// clone a `Id<T, Shared>`, send it to another thread, and drop the clone
/// last, making `dealloc` get called on the other thread, and violate
/// `T: !Send`.
unsafe impl<T: Sync + Send + ?Sized> Send for Id<T, Shared> {}

/// The `Sync` implementation requires `T: Sync` because `&Id<T, Shared>` give
/// access to `&T`.
///
/// Additiontally, it requires `T: Send`, because if `T: !Send`, you could
/// clone a `&Id<T, Shared>` from another thread, and drop the clone last,
/// making `dealloc` get called on the other thread, and violate `T: !Send`.
unsafe impl<T: Sync + Send + ?Sized> Sync for Id<T, Shared> {}

/// `Id<T, Owned>` are `Send` if `T` is `Send` because they give the same
/// access as having a T directly.
unsafe impl<T: Send + ?Sized> Send for Id<T, Owned> {}

/// `Id<T, Owned>` are `Sync` if `T` is `Sync` because they give the same
/// access as having a `T` directly.
unsafe impl<T: Sync + ?Sized> Sync for Id<T, Owned> {}

impl<T: ?Sized, O: Ownership> Deref for Id<T, O> {
    type Target = T;

    /// Obtain an immutable reference to the object.
    // Box doesn't inline, but that's because it's a compiler built-in
    #[inline]
    fn deref(&self) -> &T {
        // SAFETY: The pointer's validity is verified when the type is created
        unsafe { self.ptr.as_ref() }
    }
}

impl<T: ?Sized> DerefMut for Id<T, Owned> {
    /// Obtain a mutable reference to the object.
    #[inline]
    fn deref_mut(&mut self) -> &mut T {
        // SAFETY: The pointer's validity is verified when the type is created
        // Additionally, the owned `Id` is the unique owner of the object, so
        // mutability is safe.
        unsafe { self.ptr.as_mut() }
    }
}

impl<T: ?Sized, O: Ownership> fmt::Pointer for Id<T, O> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Pointer::fmt(&self.ptr.as_ptr(), f)
    }
}

// This is valid without `T: Unpin` because we don't implement any projection.
//
// See https://doc.rust-lang.org/1.54.0/src/alloc/boxed.rs.html#1652-1675
// and the `Arc` implementation.
impl<T: ?Sized, O: Ownership> Unpin for Id<T, O> {}

impl<T: RefUnwindSafe + ?Sized, O: Ownership> RefUnwindSafe for Id<T, O> {}

// Same as `Arc<T>`.
impl<T: RefUnwindSafe + ?Sized> UnwindSafe for Id<T, Shared> {}

// Same as `Box<T>`.
impl<T: UnwindSafe + ?Sized> UnwindSafe for Id<T, Owned> {}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::msg_send;
    use crate::rc::{autoreleasepool, RcTestObject, ThreadTestData};
    use crate::runtime::Object;

    #[track_caller]
    fn assert_retain_count(obj: &Object, expected: usize) {
        let retain_count: usize = unsafe { msg_send![obj, retainCount] };
        assert_eq!(retain_count, expected);
    }

    #[test]
    fn test_drop() {
        let mut expected = ThreadTestData::current();

        let obj = RcTestObject::new();
        expected.alloc += 1;
        expected.init += 1;
        expected.assert_current();

        drop(obj);
        expected.release += 1;
        expected.dealloc += 1;
        expected.assert_current();
    }

    #[test]
    fn test_autorelease() {
        let obj: Id<_, Shared> = RcTestObject::new().into();
        let cloned = obj.clone();
        let mut expected = ThreadTestData::current();

        autoreleasepool(|pool| {
            let _ref = obj.autorelease(pool);
            expected.autorelease += 1;
            expected.assert_current();
            assert_retain_count(&cloned, 2);
        });
        expected.release += 1;
        expected.assert_current();
        assert_retain_count(&cloned, 1);

        autoreleasepool(|pool| {
            let _ref = cloned.autorelease(pool);
            expected.autorelease += 1;
            expected.assert_current();
        });
        expected.release += 1;
        expected.dealloc += 1;
        expected.assert_current();
    }

    #[test]
    fn test_clone() {
        let obj: Id<_, Owned> = RcTestObject::new();
        assert_retain_count(&obj, 1);
        let mut expected = ThreadTestData::current();

        let obj: Id<_, Shared> = obj.into();
        expected.assert_current();
        assert_retain_count(&obj, 1);

        let cloned = obj.clone();
        expected.retain += 1;
        expected.assert_current();
        assert_retain_count(&cloned, 2);
        assert_retain_count(&obj, 2);

        drop(obj);
        expected.release += 1;
        expected.assert_current();
        assert_retain_count(&cloned, 1);

        drop(cloned);
        expected.release += 1;
        expected.dealloc += 1;
        expected.assert_current();
    }

    #[test]
    fn test_retain_autoreleased_works_as_retain() {
        let obj: Id<_, Shared> = RcTestObject::new().into();
        let mut expected = ThreadTestData::current();

        let ptr = Id::as_ptr(&obj) as *mut RcTestObject;
        let _obj2: Id<_, Shared> = unsafe { Id::retain_autoreleased(ptr) }.unwrap();
        expected.retain += 1;
        expected.assert_current();
    }

    #[test]
    fn test_cast() {
        let obj: Id<RcTestObject, _> = RcTestObject::new();
        let expected = ThreadTestData::current();

        // SAFETY: Any object can be cast to `Object`
        let obj: Id<Object, _> = unsafe { Id::cast(obj) };
        expected.assert_current();

        // SAFETY: The object was originally `RcTestObject`
        let _obj: Id<RcTestObject, _> = unsafe { Id::cast(obj) };
        expected.assert_current();
    }
}