1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
//! # Objective-C interface and runtime bindings
//!
//! Objective-C is[^note] the standard programming language on Apple platforms
//! like macOS, iOS, iPadOS, tvOS and watchOS. It is an object-oriented
//! language centered around "sending messages" to its instances - this can
//! for the most part be viewed as a simple method call.
//!
//! Most of the core libraries and frameworks that are in use on Apple systems
//! are written in Objective-C, and hence we would like the ability to
//! interract with these using Rust; this crate enables you to do that, in
//! as safe a manner as possible.
//!
//! [^note]: Yes, I know, "was", Swift now exists. All the existing frameworks
//!   are written in Objective-C though, so the point still holds.
//!
//!
//! ## Basic usage
//!
//! This example illustrates major parts of the functionality in this crate:
//!
//! First, we get a reference to the `NSObject`'s [`runtime::Class`] using the
//! [`class!`] macro.
//! Next, we creates a new [`runtime::Object`] pointer, and ensure it is
//! deallocated after we've used it by putting it into an [`rc::Owned`]
//! [`rc::Id`].
//! Now we're free to send messages to the object to our hearts desire using
//! the [`msg_send!`] or [`msg_send_id!`] macros (depending on the return type
//! of the method).
//! Finally, the `Id<Object, _>` goes out of scope, and the object is released
//! and deallocated.
//!
#![cfg_attr(feature = "apple", doc = "```")]
#![cfg_attr(not(feature = "apple"), doc = "```no_run")]
//! use objc2::{class, msg_send, msg_send_id};
//! use objc2::ffi::NSUInteger;
//! use objc2::rc::{Id, Owned, Shared};
//! use objc2::runtime::Object;
//!
//! let cls = class!(NSObject);
//!
//! // Creation
//!
//! let obj1: Id<Object, Owned> = unsafe { msg_send_id![cls, new] };
//! let obj2: Id<Object, Owned> = unsafe {
//!     // Equivalent to using `new`
//!     msg_send_id![msg_send_id![cls, alloc], init]
//! };
//!
//! // Usage
//!
//! let hash1: NSUInteger = unsafe { msg_send![&obj1, hash] };
//! let hash2: NSUInteger = unsafe { msg_send![&obj2, hash] };
//! assert_ne!(hash1, hash2);
//!
//! let is_kind: bool = unsafe { msg_send![&obj1, isKindOfClass: cls] };
//! assert!(is_kind);
//!
//! // We're going to create a new reference to the first object, so
//! // relinquish mutable ownership.
//! let obj1: Id<Object, Shared> = obj1.into();
//! let obj1_self: Id<Object, Shared> = unsafe { msg_send_id![&obj1, self] };
//! let is_equal: bool = unsafe { msg_send![&obj1, isEqual: &*obj1_self] };
//! assert!(is_equal);
//!
//! // Deallocation on drop
//! ```
//!
//! Note that this very simple example contains **a lot** of `unsafe` (which
//! should all ideally be justified with a `// SAFETY` comment). This is
//! required because our compiler can verify very little about the Objective-C
//! invocation, including all argument and return types used in [`msg_send!`];
//! we could have just as easily accidentally made `hash` an `f32`, or any
//! other type, and this would trigger undefined behaviour!
//!
//! Making the ergonomics better is something that is currently being worked
//! on, the [`foundation`] module contains more ergonomic usage of at
//! least parts of the `Foundation` framework.
//!
//! Anyhow, all of this `unsafe` nicely leads us to another feature that this
//! crate has:
//!
//! [`runtime::Class`]: crate::runtime::Class
//! [`runtime::Object`]: crate::runtime::Object
//! [`rc::Owned`]: crate::rc::Owned
//! [`rc::Id`]: crate::rc::Id
//! [`foundation`]: crate::foundation
//!
//!
//! ## Encodings and message type verification
//!
//! The Objective-C runtime includes encodings for each method that describe
//! the argument and return types. See the [`objc2-encode`] crate for the
//! full overview of what this is (its types are re-exported in this crate).
//!
//! The important part is: To make message sending safer, all arguments and
//! return values for messages must implement [`Encode`]. This allows the Rust
//! compiler to prevent you from passing e.g. a [`Box`] into Objective-C,
//! which would both be UB and leak the box.
//!
//! Furthermore, we can take advantage of the encodings provided by the
//! runtime to verify that the types used in Rust actually match the types
//! encoded for the method. This is not a perfect solution for ensuring safety
//! (some Rust types have the same Objective-C encoding, but are not
//! equivalent), but it gets us much closer to it!
//!
//! To use this functionality, enable the `"verify_message"` cargo feature
//! while debugging. With this feature enabled, encodings are checked every
//! time you send a message, and the message send will panic if they are not
//! equivalent.
//!
//! To take the example above, if we changed the `hash` method's return type
//! as in the following example, it panics when the feature is enabled:
//!
#![cfg_attr(
    all(feature = "apple", feature = "verify_message"),
    doc = "```should_panic"
)]
#![cfg_attr(
    not(all(feature = "apple", feature = "verify_message")),
    doc = "```no_run"
)]
//! # use objc2::{class, msg_send, msg_send_id};
//! # use objc2::rc::{Id, Owned};
//! # use objc2::runtime::Object;
//! #
//! # let cls = class!(NSObject);
//! # let obj1: Id<Object, Owned> = unsafe { msg_send_id![cls, new] };
//! #
//! // Wrong return type - this is UB!
//! let hash1: f32 = unsafe { msg_send![&obj1, hash] };
//! ```
//!
//! [`objc2-encode`]: objc2_encode
//! [`Box`]: std::boxed::Box
//!
//!
//! ## Crate features
//!
//! This crate exports several optional cargo features, see [`Cargo.toml`] for
//! an overview and description of these.
//!
//! [`Cargo.toml`]: https://github.com/madsmtm/objc2/blob/master/objc2/Cargo.toml
//!
//!
//! ## Support for other Operating Systems
//!
//! The bindings can be used on Linux or *BSD utilizing the
//! [GNUstep Objective-C runtime](https://www.github.com/gnustep/libobjc2),
//! see the [`objc-sys`][`objc_sys`] crate for how to configure this.
//!
//!
//! ## Other functionality
//!
//! That was a quick introduction, this library also has [support for handling
//! exceptions][exc], [the ability to dynamically declare Objective-C
//! classes][declare], [advanced reference-counting utilities][rc], and more -
//! peruse the documentation at will!
//!
//! [exc]: crate::exception
//! [declare]: crate::declare
//! [rc]: crate::rc

#![no_std]
#![cfg_attr(
    feature = "unstable-autoreleasesafe",
    feature(negative_impls, auto_traits)
)]
#![cfg_attr(feature = "unstable-c-unwind", feature(c_unwind))]
#![cfg_attr(feature = "unstable-docsrs", feature(doc_auto_cfg))]
#![warn(elided_lifetimes_in_paths)]
#![warn(missing_docs)]
#![deny(non_ascii_idents)]
#![warn(unreachable_pub)]
#![deny(unsafe_op_in_unsafe_fn)]
#![warn(clippy::cargo)]
#![warn(clippy::ptr_as_ptr)]
// Update in Cargo.toml as well.
#![doc(html_root_url = "https://docs.rs/objc2/0.3.0-beta.3")]

#[cfg(not(feature = "alloc"))]
compile_error!("The `alloc` feature currently must be enabled.");

#[cfg(not(feature = "std"))]
compile_error!("The `std` feature currently must be enabled.");

extern crate alloc;
extern crate std;

// The example uses NSObject without doing the __gnustep_hack
#[cfg(all(feature = "apple", doctest))]
#[doc = include_str!("../README.md")]
extern "C" {}

pub use objc2_encode as encode;
pub use objc_sys as ffi;

#[doc(no_inline)]
pub use objc2_encode::{Encode, EncodeArguments, Encoding, RefEncode};

pub use crate::class_type::ClassType;
pub use crate::message::{Message, MessageArguments, MessageReceiver};
#[cfg(feature = "malloc")]
pub use crate::verify::VerificationError;

#[cfg(feature = "objc2-proc-macros")]
#[doc(hidden)]
pub use objc2_proc_macros::__hash_idents;

#[cfg(not(feature = "objc2-proc-macros"))]
#[doc(hidden)]
#[macro_export]
macro_rules! __hash_idents {
    // Noop; used to make our other macros a bit easier to read
    ($($x:tt)*) => {$($x)*};
}

#[doc(hidden)]
pub mod __macro_helpers;
mod cache;
mod class_type;
pub mod declare;
pub mod exception;
#[cfg(feature = "foundation")]
pub mod foundation;
mod macros;
mod message;
pub mod rc;
pub mod runtime;
#[cfg(test)]
mod test_utils;
#[cfg(feature = "malloc")]
mod verify;

/// Hacky way to make GNUStep link properly to Foundation while testing.
///
/// This is a temporary solution to make our CI work for now!
#[doc(hidden)]
#[cfg(feature = "gnustep-1-7")]
pub mod __gnustep_hack {
    use super::runtime::Class;

    extern "C" {
        // The linking changed in libobjc2 v2.0
        #[cfg_attr(feature = "gnustep-2-0", link_name = "._OBJC_CLASS_NSObject")]
        #[cfg_attr(not(feature = "gnustep-2-0"), link_name = "_OBJC_CLASS_NSObject")]
        static OBJC_CLASS_NSObject: Class;
        // Others:
        // __objc_class_name_NSObject
        // _OBJC_CLASS_REF_NSObject
    }

    pub unsafe fn get_class_to_force_linkage() -> &'static Class {
        unsafe { core::ptr::read_volatile(&&OBJC_CLASS_NSObject) }
    }

    #[test]
    fn ensure_linkage() {
        unsafe { get_class_to_force_linkage() };
    }
}