1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2022 Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

extern crate approx;
extern crate hifitime;
extern crate serde;

use self::approx::{abs_diff_eq, relative_eq};
use self::serde::ser::SerializeStruct;
use self::serde::{Serialize, Serializer};
use super::na::{Matrix3, Matrix6, Vector3, Vector6};
use super::State;
use super::{BPlane, Frame};
use crate::linalg::{Const, OVector};
use crate::mc::MultivariateNormal;
use crate::md::ui::Objective;
use crate::md::StateParameter;
use crate::time::{Duration, Epoch, Unit};
use crate::utils::{
    between_0_360, between_pm_180, cartesian_to_spherical, perpv, r1, r3, rss_orbit_errors,
    spherical_to_cartesian,
};
use crate::NyxError;
use std::f64::consts::PI;
use std::f64::EPSILON;
use std::fmt;
use std::ops::{Add, AddAssign, Neg, Sub, SubAssign};

/// If an orbit has an eccentricity below the following value, it is considered circular (only affects warning messages)
pub const ECC_EPSILON: f64 = 1e-11;

pub fn assert_orbit_eq_or_abs(left: &Orbit, right: &Orbit, epsilon: f64, msg: &str) {
    if !(left.to_cartesian_vec() == right.to_cartesian_vec())
        && !abs_diff_eq!(
            left.to_cartesian_vec(),
            right.to_cartesian_vec(),
            epsilon = epsilon
        )
        && left.epoch() != right.epoch()
    {
        panic!(
            r#"assertion failed: `(left == right)`
  left: `{:?}`,
 right: `{:?}`: {}"#,
            left.to_cartesian_vec(),
            right.to_cartesian_vec(),
            msg
        )
    }
}

pub fn assert_orbit_eq_or_rel(left: &Orbit, right: &Orbit, epsilon: f64, msg: &str) {
    if !(left.to_cartesian_vec() == right.to_cartesian_vec())
        && !relative_eq!(
            left.to_cartesian_vec(),
            right.to_cartesian_vec(),
            max_relative = epsilon
        )
        && left.epoch() != right.epoch()
    {
        panic!(
            r#"assertion failed: `(left == right)`
  left: `{:?}`,
 right: `{:?}`: {}"#,
            left.to_cartesian_vec(),
            right.to_cartesian_vec(),
            msg
        )
    }
}

/// Orbit defines an orbital state
///
/// Unless noted otherwise, algorithms are from GMAT 2016a [StateConversionUtil.cpp](https://github.com/ChristopherRabotin/GMAT/blob/37201a6290e7f7b941bc98ee973a527a5857104b/src/base/util/StateConversionUtil.cpp).
/// Regardless of the constructor used, this struct stores all the state information in Cartesian coordinates
/// as these are always non singular.
/// _Note:_ although not yet supported, this struct may change once True of Date or other nutation frames
/// are added to the toolkit.
#[derive(Copy, Clone, Debug)]
pub struct Orbit {
    /// in km
    pub x: f64,
    /// in km
    pub y: f64,
    /// in km
    pub z: f64,
    /// in km/s
    pub vx: f64,
    /// in km/s
    pub vy: f64,
    /// in km/s
    pub vz: f64,
    pub dt: Epoch,
    /// Frame contains everything we need to compute state information
    pub frame: Frame,
    /// Optionally stores the state transition matrix from the start of the propagation until the current time (i.e. trajectory STM, not step-size STM)
    pub stm: Option<Matrix6<f64>>,
}

impl Orbit {
    /// Creates a new Orbit in the provided frame at the provided Epoch.
    ///
    /// **Units:** km, km, km, km/s, km/s, km/s
    pub fn cartesian(
        x: f64,
        y: f64,
        z: f64,
        vx: f64,
        vy: f64,
        vz: f64,
        dt: Epoch,
        frame: Frame,
    ) -> Self {
        Orbit {
            x,
            y,
            z,
            vx,
            vy,
            vz,
            dt,
            frame,
            stm: None,
        }
    }

    /// Creates a new Orbit and initializes its STM.
    pub fn cartesian_stm(
        x: f64,
        y: f64,
        z: f64,
        vx: f64,
        vy: f64,
        vz: f64,
        dt: Epoch,
        frame: Frame,
    ) -> Self {
        let mut me = Self::cartesian(x, y, z, vx, vy, vz, dt, frame);
        me.enable_stm();
        me
    }

    /// Creates a new Orbit in the provided frame at the provided Epoch in time with 0.0 velocity.
    ///
    /// **Units:** km, km, km
    pub fn from_position(x: f64, y: f64, z: f64, dt: Epoch, frame: Frame) -> Self {
        Orbit {
            x,
            y,
            z,
            vx: 0.0,
            vy: 0.0,
            vz: 0.0,
            dt,
            frame,
            stm: None,
        }
    }

    /// Creates a new Orbit around in the provided frame from the borrowed state vector
    ///
    /// The state vector **must** be x, y, z, vx, vy, vz. This function is a shortcut to `cartesian`
    /// and as such it has the same unit requirements.
    pub fn cartesian_vec(state: &Vector6<f64>, dt: Epoch, frame: Frame) -> Self {
        Orbit {
            x: state[0],
            y: state[1],
            z: state[2],
            vx: state[3],
            vy: state[4],
            vz: state[5],
            dt,
            frame,
            stm: None,
        }
    }

    /// Returns the magnitude of the radius vector in km
    pub fn rmag(&self) -> f64 {
        (self.x.powi(2) + self.y.powi(2) + self.z.powi(2)).sqrt()
    }

    /// Returns the magnitude of the velocity vector in km/s
    pub fn vmag(&self) -> f64 {
        (self.vx.powi(2) + self.vy.powi(2) + self.vz.powi(2)).sqrt()
    }

    /// Returns the radius vector of this Orbit in [km, km, km]
    pub fn radius(&self) -> Vector3<f64> {
        Vector3::new(self.x, self.y, self.z)
    }

    /// Returns the velocity vector of this Orbit in [km/s, km/s, km/s]
    pub fn velocity(&self) -> Vector3<f64> {
        Vector3::new(self.vx, self.vy, self.vz)
    }

    /// Returns this state as a Cartesian Vector6 in [km, km, km, km/s, km/s, km/s]
    ///
    /// Note that the time is **not** returned in the vector.
    pub fn to_cartesian_vec(self) -> Vector6<f64> {
        Vector6::new(self.x, self.y, self.z, self.vx, self.vy, self.vz)
    }

    /// Returns the distance in kilometers between this state and another state.
    /// Will **panic** is the frames are different
    pub fn distance_to(&self, other: &Orbit) -> f64 {
        assert_eq!(
            self.frame, other.frame,
            "cannot compute the distance between two states in different frames"
        );
        self.distance_to_point(&other.radius())
    }

    /// Returns the distance in kilometers between this state and a point assumed to be in the same frame.
    pub fn distance_to_point(&self, other: &Vector3<f64>) -> f64 {
        ((self.x - other.x).powi(2) + (self.y - other.y).powi(2) + (self.z - other.z).powi(2))
            .sqrt()
    }

    /// Returns the unit vector in the direction of the state radius
    pub fn r_hat(&self) -> Vector3<f64> {
        self.radius() / self.rmag()
    }

    /// Returns the unit vector in the direction of the state velocity
    pub fn v_hat(&self) -> Vector3<f64> {
        perpv(&self.velocity(), &self.r_hat()) / self.rmag()
    }

    /// Creates a new Orbit around the provided Celestial or Geoid frame from the Keplerian orbital elements.
    ///
    /// **Units:** km, none, degrees, degrees, degrees, degrees
    ///
    /// WARNING: This function will panic if the singularities in the conversion are expected.
    /// NOTE: The state is defined in Cartesian coordinates as they are non-singular. This causes rounding
    /// errors when creating a state from its Keplerian orbital elements (cf. the state tests).
    /// One should expect these errors to be on the order of 1e-12.
    pub fn keplerian(
        sma: f64,
        ecc: f64,
        inc: f64,
        raan: f64,
        aop: f64,
        ta: f64,
        dt: Epoch,
        frame: Frame,
    ) -> Self {
        match frame {
            Frame::Geoid { gm, .. } | Frame::Celestial { gm, .. } => {
                if gm.abs() < EPSILON {
                    warn!(
                        "GM is near zero ({}): expect math errors in Keplerian to Cartesian conversion",
                        gm
                    );
                }
                // Algorithm from GMAT's StateConversionUtil::KeplerianToCartesian
                let ecc = if ecc < 0.0 {
                    warn!("eccentricity cannot be negative: sign of eccentricity changed");
                    ecc * -1.0
                } else {
                    ecc
                };
                let sma = if ecc > 1.0 && sma > 0.0 {
                    warn!("eccentricity > 1 (hyperbolic) BUT SMA > 0 (elliptical): sign of SMA changed");
                    sma * -1.0
                } else if ecc < 1.0 && sma < 0.0 {
                    warn!("eccentricity < 1 (elliptical) BUT SMA < 0 (hyperbolic): sign of SMA changed");
                    sma * -1.0
                } else {
                    sma
                };
                if (sma * (1.0 - ecc)).abs() < 1e-3 {
                    // GMAT errors below one meter. Let's warn for below that, but not panic, might be useful for landing scenarios?
                    warn!("radius of periapsis is less than one meter");
                }
                if (1.0 - ecc).abs() < EPSILON {
                    panic!("parabolic orbits have ill-defined Keplerian orbital elements");
                }
                if ecc > 1.0 {
                    let ta = between_0_360(ta);
                    if ta > (PI - (1.0 / ecc).acos()).to_degrees() {
                        panic!(
                            "true anomaly value ({ta}) physically impossible for a hyperbolic orbit",
                        );
                    }
                }
                if (1.0 + ecc * ta.to_radians().cos()).is_infinite() {
                    panic!("radius of orbit is infinite");
                }
                // Done with all the warnings and errors supported by GMAT
                // The conversion algorithm itself comes from GMAT's StateConversionUtil::ComputeKeplToCart
                // NOTE: GMAT supports mean anomaly instead of true anomaly, but only for backward compatibility reasons
                // so it isn't supported here.
                let inc = inc.to_radians();
                let raan = raan.to_radians();
                let aop = aop.to_radians();
                let ta = ta.to_radians();
                let p = sma * (1.0 - ecc.powi(2));
                if p.abs() < EPSILON {
                    panic!("Semilatus rectum ~= 0.0: parabolic orbit");
                }
                // NOTE: At this point GMAT computes 1+ecc**2 and checks whether it's very small.
                // It then reports that the radius may be too large. We've effectively already done
                // this check above (and panicked if needed), so it isn't repeated here.
                let radius = p / (1.0 + ecc * ta.cos());
                let (sin_aop_ta, cos_aop_ta) = (aop + ta).sin_cos();
                let (sin_inc, cos_inc) = inc.sin_cos();
                let (sin_raan, cos_raan) = raan.sin_cos();
                let (sin_aop, cos_aop) = aop.sin_cos();
                let x = radius * (cos_aop_ta * cos_raan - cos_inc * sin_aop_ta * sin_raan);
                let y = radius * (cos_aop_ta * sin_raan + cos_inc * sin_aop_ta * cos_raan);
                let z = radius * sin_aop_ta * sin_inc;
                let sqrt_gm_p = (gm / p).sqrt();
                let cos_ta_ecc = ta.cos() + ecc;
                let sin_ta = ta.sin();

                let vx =
                    sqrt_gm_p * cos_ta_ecc * (-sin_aop * cos_raan - cos_inc * sin_raan * cos_aop)
                        - sqrt_gm_p * sin_ta * (cos_aop * cos_raan - cos_inc * sin_raan * sin_aop);
                let vy =
                    sqrt_gm_p * cos_ta_ecc * (-sin_aop * sin_raan + cos_inc * cos_raan * cos_aop)
                        - sqrt_gm_p * sin_ta * (cos_aop * sin_raan + cos_inc * cos_raan * sin_aop);
                let vz = sqrt_gm_p * (cos_ta_ecc * sin_inc * cos_aop - sin_ta * sin_inc * sin_aop);
                Orbit {
                    x,
                    y,
                    z,
                    vx,
                    vy,
                    vz,
                    dt,
                    frame,
                    stm: None,
                }
            }
            _ => panic!("Frame is not Celestial or Geoid in kind"),
        }
    }

    /// Creates a new Orbit from the provided semi-major axis altitude in kilometers
    pub fn keplerian_altitude(
        sma_altitude: f64,
        ecc: f64,
        inc: f64,
        raan: f64,
        aop: f64,
        ta: f64,
        dt: Epoch,
        frame: Frame,
    ) -> Self {
        Self::keplerian(
            sma_altitude + frame.equatorial_radius(),
            ecc,
            inc,
            raan,
            aop,
            ta,
            dt,
            frame,
        )
    }

    /// Creates a new Orbit from the provided radii of apoapsis and periapsis, in kilometers
    pub fn keplerian_apsis_radii(
        r_a: f64,
        r_p: f64,
        inc: f64,
        raan: f64,
        aop: f64,
        ta: f64,
        dt: Epoch,
        frame: Frame,
    ) -> Self {
        let sma = (r_a + r_p) / 2.0;
        let ecc = r_a / sma - 1.0;
        Self::keplerian(sma, ecc, inc, raan, aop, ta, dt, frame)
    }

    /// Creates a new Orbit from the provided altitudes of apoapsis and periapsis, in kilometers
    pub fn keplerian_apsis_altitude(
        a_a: f64,
        a_p: f64,
        inc: f64,
        raan: f64,
        aop: f64,
        ta: f64,
        dt: Epoch,
        frame: Frame,
    ) -> Self {
        Self::keplerian_apsis_radii(
            a_a + frame.equatorial_radius(),
            a_p + frame.equatorial_radius(),
            inc,
            raan,
            aop,
            ta,
            dt,
            frame,
        )
    }

    /// Creates a new Orbit around the provided frame from the borrowed state vector
    ///
    /// The state vector **must** be sma, ecc, inc, raan, aop, ta. This function is a shortcut to `cartesian`
    /// and as such it has the same unit requirements.
    pub fn keplerian_vec(state: &Vector6<f64>, dt: Epoch, frame: Frame) -> Self {
        match frame {
            Frame::Geoid { .. } | Frame::Celestial { .. } => Self::keplerian(
                state[0], state[1], state[2], state[3], state[4], state[5], dt, frame,
            ),
            _ => panic!("Frame is not Celestial or Geoid in kind"),
        }
    }

    /// Creates a new Orbit from the geodetic latitude (φ), longitude (λ) and height with respect to the ellipsoid of the frame.
    ///
    /// **Units:** degrees, degrees, km
    /// NOTE: This computation differs from the spherical coordinates because we consider the flattening of body.
    /// Reference: G. Xu and Y. Xu, "GPS", DOI 10.1007/978-3-662-50367-6_2, 2016
    /// **WARNING:** This uses the rotational rates known to Nyx. For other objects, use `from_altlatlong` for other celestial bodies.
    pub fn from_geodesic(
        latitude: f64,
        longitude: f64,
        height: f64,
        dt: Epoch,
        frame: Frame,
    ) -> Self {
        Self::from_altlatlong(
            latitude,
            longitude,
            height,
            frame.angular_velocity(),
            dt,
            frame,
        )
    }

    /// Creates a new Orbit from the latitude (φ), longitude (λ) and height with respect to the frame's ellipsoid.
    ///
    /// **Units:** degrees, degrees, km, rad/s
    /// NOTE: This computation differs from the spherical coordinates because we consider the flattening of body.
    /// Reference: G. Xu and Y. Xu, "GPS", DOI 10.1007/978-3-662-50367-6_2, 2016
    pub fn from_altlatlong(
        latitude: f64,
        longitude: f64,
        height: f64,
        angular_velocity: f64,
        dt: Epoch,
        frame: Frame,
    ) -> Self {
        match frame {
            Frame::Geoid {
                flattening,
                semi_major_radius,
                ..
            } => {
                let e2 = 2.0 * flattening - flattening.powi(2);
                let (sin_long, cos_long) = longitude.to_radians().sin_cos();
                let (sin_lat, cos_lat) = latitude.to_radians().sin_cos();
                // page 144
                let c_body = semi_major_radius / ((1.0 - e2 * sin_lat.powi(2)).sqrt());
                let s_body = (semi_major_radius * (1.0 - flattening).powi(2))
                    / ((1.0 - e2 * sin_lat.powi(2)).sqrt());
                let ri = (c_body + height) * cos_lat * cos_long;
                let rj = (c_body + height) * cos_lat * sin_long;
                let rk = (s_body + height) * sin_lat;
                let radius = Vector3::new(ri, rj, rk);
                let velocity = Vector3::new(0.0, 0.0, angular_velocity).cross(&radius);
                Orbit::cartesian(
                    radius[0],
                    radius[1],
                    radius[2],
                    velocity[0],
                    velocity[1],
                    velocity[2],
                    dt,
                    frame,
                )
            }
            _ => panic!("Frame is not Geoid in kind"),
        }
    }

    /// Returns this state as a Keplerian Vector6 in [km, none, degrees, degrees, degrees, degrees]
    ///
    /// Note that the time is **not** returned in the vector.
    pub fn to_keplerian_vec(self) -> Vector6<f64> {
        Vector6::new(
            self.sma(),
            self.ecc(),
            self.inc(),
            self.raan(),
            self.aop(),
            self.ta(),
        )
    }

    /// Returns the orbital momentum vector
    pub fn hvec(&self) -> Vector3<f64> {
        self.radius().cross(&self.velocity())
    }

    /// Returns the orbital momentum value on the X axis
    pub fn hx(&self) -> f64 {
        self.hvec()[0]
    }

    /// Returns the orbital momentum value on the Y axis
    pub fn hy(&self) -> f64 {
        self.hvec()[1]
    }

    /// Returns the orbital momentum value on the Z axis
    pub fn hz(&self) -> f64 {
        self.hvec()[2]
    }

    /// Returns the norm of the orbital momentum
    pub fn hmag(&self) -> f64 {
        self.hvec().norm()
    }

    /// Returns the specific mechanical energy in km^2/s^2
    pub fn energy(&self) -> f64 {
        match self.frame {
            Frame::Geoid { gm, .. } | Frame::Celestial { gm, .. } => {
                self.vmag().powi(2) / 2.0 - gm / self.rmag()
            }
            _ => panic!("orbital energy not defined in this frame"),
        }
    }

    /// Returns a copy of the state with a new radius
    pub fn with_radius(self, new_radius: &Vector3<f64>) -> Self {
        let mut me = self;
        me.x = new_radius[0];
        me.y = new_radius[1];
        me.z = new_radius[2];
        me
    }

    /// Returns a copy of the state with a new radius
    pub fn with_velocity(self, new_velocity: &Vector3<f64>) -> Self {
        let mut me = self;
        me.vx = new_velocity[0];
        me.vy = new_velocity[1];
        me.vz = new_velocity[2];
        me
    }

    /// Returns the semi-major axis in km
    pub fn sma(&self) -> f64 {
        match self.frame {
            Frame::Geoid { gm, .. } | Frame::Celestial { gm, .. } => -gm / (2.0 * self.energy()),
            _ => panic!("sma not defined in this frame"),
        }
    }

    /// Mutates this orbit to change the SMA
    pub fn set_sma(&mut self, new_sma_km: f64) {
        let me = Self::keplerian(
            new_sma_km,
            self.ecc(),
            self.inc(),
            self.raan(),
            self.aop(),
            self.ta(),
            self.dt,
            self.frame,
        );

        self.x = me.x;
        self.y = me.y;
        self.z = me.z;
        self.vx = me.vx;
        self.vy = me.vy;
        self.vz = me.vz;
    }

    /// Returns a copy of the state with a new SMA
    pub fn with_sma(self, new_sma_km: f64) -> Self {
        let mut me = self;
        me.set_sma(new_sma_km);
        me
    }

    /// Returns a copy of the state with a provided SMA added to the current one
    pub fn add_sma(self, delta_sma: f64) -> Self {
        let mut me = self;
        me.set_sma(me.sma() + delta_sma);
        me
    }

    /// Returns the SMA altitude in km
    pub fn sma_altitude(&self) -> f64 {
        self.sma() - self.frame.equatorial_radius()
    }

    /// Returns the period in seconds
    pub fn period(&self) -> Duration {
        match self.frame {
            Frame::Geoid { gm, .. } | Frame::Celestial { gm, .. } => {
                2.0 * PI * (self.sma().powi(3) / gm).sqrt() * Unit::Second
            }
            _ => panic!("orbital period not defined in this frame"),
        }
    }

    /// Returns the eccentricity vector (no unit)
    pub fn evec(&self) -> Vector3<f64> {
        match self.frame {
            Frame::Geoid { gm, .. } | Frame::Celestial { gm, .. } => {
                let r = self.radius();
                let v = self.velocity();
                ((v.norm().powi(2) - gm / r.norm()) * r - (r.dot(&v)) * v) / gm
            }
            _ => panic!("eccentricity not defined in this frame"),
        }
    }

    /// Returns the eccentricity (no unit)
    pub fn ecc(&self) -> f64 {
        self.evec().norm()
    }

    /// Mutates this orbit to change the ECC
    pub fn set_ecc(&mut self, new_ecc: f64) {
        let me = Self::keplerian(
            self.sma(),
            new_ecc,
            self.inc(),
            self.raan(),
            self.aop(),
            self.ta(),
            self.dt,
            self.frame,
        );

        self.x = me.x;
        self.y = me.y;
        self.z = me.z;
        self.vx = me.vx;
        self.vy = me.vy;
        self.vz = me.vz;
    }

    /// Returns a copy of the state with a new ECC
    pub fn with_ecc(self, new_ecc: f64) -> Self {
        let mut me = self;
        me.set_ecc(new_ecc);
        me
    }

    /// Returns a copy of the state with a provided ECC added to the current one
    pub fn add_ecc(self, delta_ecc: f64) -> Self {
        let mut me = self;
        me.set_ecc(me.ecc() + delta_ecc);
        me
    }

    /// Returns the inclination in degrees
    pub fn inc(&self) -> f64 {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => {
                (self.hvec()[2] / self.hmag()).acos().to_degrees()
            }
            _ => panic!("inclination not defined in this frame"),
        }
    }

    /// Mutates this orbit to change the INC
    pub fn set_inc(&mut self, new_inc: f64) {
        let me = Self::keplerian(
            self.sma(),
            self.ecc(),
            new_inc,
            self.raan(),
            self.aop(),
            self.ta(),
            self.dt,
            self.frame,
        );

        self.x = me.x;
        self.y = me.y;
        self.z = me.z;
        self.vx = me.vx;
        self.vy = me.vy;
        self.vz = me.vz;
    }

    /// Returns a copy of the state with a new INC
    pub fn with_inc(self, new_inc: f64) -> Self {
        let mut me = self;
        me.set_inc(new_inc);
        me
    }

    /// Returns a copy of the state with a provided INC added to the current one
    pub fn add_inc(self, delta_inc: f64) -> Self {
        let mut me = self;
        me.set_inc(me.inc() + delta_inc);
        me
    }

    /// Returns the argument of periapsis in degrees
    pub fn aop(&self) -> f64 {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => {
                let n = Vector3::new(0.0, 0.0, 1.0).cross(&self.hvec());
                let cos_aop = n.dot(&self.evec()) / (n.norm() * self.ecc());
                let aop = cos_aop.acos();
                if aop.is_nan() {
                    if cos_aop > 1.0 {
                        180.0
                    } else {
                        0.0
                    }
                } else if self.evec()[2] < 0.0 {
                    (2.0 * PI - aop).to_degrees()
                } else {
                    aop.to_degrees()
                }
            }
            _ => panic!("aop not defined in this frame"),
        }
    }

    /// Mutates this orbit to change the AOP
    pub fn set_aop(&mut self, new_aop: f64) {
        let me = Self::keplerian(
            self.sma(),
            self.ecc(),
            self.inc(),
            self.raan(),
            new_aop,
            self.ta(),
            self.dt,
            self.frame,
        );

        self.x = me.x;
        self.y = me.y;
        self.z = me.z;
        self.vx = me.vx;
        self.vy = me.vy;
        self.vz = me.vz;
    }

    /// Returns a copy of the state with a new AOP
    pub fn with_aop(self, new_aop: f64) -> Self {
        let mut me = self;
        me.set_aop(new_aop);
        me
    }

    /// Returns a copy of the state with a provided AOP added to the current one
    pub fn add_aop(self, delta_aop: f64) -> Self {
        let mut me = self;
        me.set_aop(me.aop() + delta_aop);
        me
    }

    /// Returns the right ascension of ther ascending node in degrees
    pub fn raan(&self) -> f64 {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => {
                let n = Vector3::new(0.0, 0.0, 1.0).cross(&self.hvec());
                let cos_raan = n[0] / n.norm();
                let raan = cos_raan.acos();
                if raan.is_nan() {
                    if cos_raan > 1.0 {
                        180.0
                    } else {
                        0.0
                    }
                } else if n[1] < 0.0 {
                    (2.0 * PI - raan).to_degrees()
                } else {
                    raan.to_degrees()
                }
            }
            _ => panic!("RAAN not defined in this frame"),
        }
    }

    /// Mutates this orbit to change the RAAN
    pub fn set_raan(&mut self, new_raan: f64) {
        let me = Self::keplerian(
            self.sma(),
            self.ecc(),
            self.inc(),
            new_raan,
            self.aop(),
            self.ta(),
            self.dt,
            self.frame,
        );

        self.x = me.x;
        self.y = me.y;
        self.z = me.z;
        self.vx = me.vx;
        self.vy = me.vy;
        self.vz = me.vz;
    }

    /// Returns a copy of the state with a new RAAN
    pub fn with_raan(self, new_raan: f64) -> Self {
        let mut me = self;
        me.set_raan(new_raan);
        me
    }

    /// Returns a copy of the state with a provided RAAN added to the current one
    pub fn add_raan(self, delta_raan: f64) -> Self {
        let mut me = self;
        me.set_raan(me.raan() + delta_raan);
        me
    }

    /// Returns the true anomaly in degrees between 0 and 360.0
    ///
    /// NOTE: This function will emit a warning stating that the TA should be avoided if in a very near circular orbit
    /// Code from https://github.com/ChristopherRabotin/GMAT/blob/80bde040e12946a61dae90d9fc3538f16df34190/src/gmatutil/util/StateConversionUtil.cpp#L6835
    ///
    /// LIMITATION: For an orbit whose true anomaly is (very nearly) 0.0 or 180.0, this function may return either 0.0 or 180.0 with a very small time increment.
    /// This is due to the precision of the cosine calculation: if the arccosine calculation is out of bounds, the sign of the cosine of the true anomaly is used
    /// to determine whether the true anomaly should be 0.0 or 180.0. **In other words**, there is an ambiguity in the computation in the true anomaly exactly at 180.0 and 0.0.
    pub fn ta(&self) -> f64 {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => {
                if self.ecc() < ECC_EPSILON {
                    warn!(
                        "true anomaly ill-defined for circular orbit (e = {})",
                        self.ecc()
                    );
                }
                let cos_nu = self.evec().dot(&self.radius()) / (self.ecc() * self.rmag());
                // If we're close the valid bounds, let's just do a sign check and return the true anomaly
                let ta = cos_nu.acos();
                if ta.is_nan() {
                    if cos_nu > 1.0 {
                        180.0
                    } else {
                        0.0
                    }
                } else if self.radius().dot(&self.velocity()) < 0.0 {
                    (2.0 * PI - ta).to_degrees()
                } else {
                    ta.to_degrees()
                }
            }
            _ => panic!("true anomaly not defined in this frame"),
        }
    }

    /// Mutates this orbit to change the TA
    pub fn set_ta(&mut self, new_ta: f64) {
        let me = Self::keplerian(
            self.sma(),
            self.ecc(),
            self.inc(),
            self.raan(),
            self.aop(),
            new_ta,
            self.dt,
            self.frame,
        );

        self.x = me.x;
        self.y = me.y;
        self.z = me.z;
        self.vx = me.vx;
        self.vy = me.vy;
        self.vz = me.vz;
    }

    /// Returns a copy of the state with a new TA
    pub fn with_ta(self, new_ta: f64) -> Self {
        let mut me = self;
        me.set_ta(new_ta);
        me
    }

    /// Returns a copy of the state with a provided TA added to the current one
    pub fn add_ta(self, delta_ta: f64) -> Self {
        let mut me = self;
        me.set_ta(me.ta() + delta_ta);
        me
    }

    /// Returns a copy of this state with the provided apoasis and periapse
    pub fn with_apoapsis_periapsis(self, new_ra: f64, new_rp: f64) -> Self {
        Self::keplerian_apsis_radii(
            new_ra,
            new_rp,
            self.inc(),
            self.raan(),
            self.aop(),
            self.ta(),
            self.dt,
            self.frame,
        )
    }

    /// Returns a copy of this state with the provided apoasis and periapse added to the current values
    pub fn add_apoapsis_periapsis(self, delta_ra: f64, delta_rp: f64) -> Self {
        Self::keplerian_apsis_radii(
            self.apoapsis() + delta_ra,
            self.periapsis() + delta_rp,
            self.inc(),
            self.raan(),
            self.aop(),
            self.ta(),
            self.dt,
            self.frame,
        )
    }

    /// Returns the true longitude in degrees
    pub fn tlong(&self) -> f64 {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => {
                // Angles already in degrees
                between_0_360(self.aop() + self.raan() + self.ta())
            }
            _ => panic!("true longitude not defined in this frame"),
        }
    }

    /// Returns the argument of latitude in degrees
    ///
    /// NOTE: If the orbit is near circular, the AoL will be computed from the true longitude
    /// instead of relying on the ill-defined true anomaly.
    pub fn aol(&self) -> f64 {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => {
                between_0_360(if self.ecc() < ECC_EPSILON {
                    self.tlong() - self.raan()
                } else {
                    self.aop() + self.ta()
                })
            }
            _ => panic!("argument of latitude not defined in this frame"),
        }
    }

    /// Returns the radius of periapsis (or perigee around Earth), in kilometers.
    pub fn periapsis(&self) -> f64 {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => self.sma() * (1.0 - self.ecc()),
            _ => panic!("periapsis not defined in this frame"),
        }
    }

    /// Returns the radius of apoapsis (or apogee around Earth), in kilometers.
    pub fn apoapsis(&self) -> f64 {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => self.sma() * (1.0 + self.ecc()),
            _ => panic!("apoapsis not defined in this frame"),
        }
    }

    /// Returns the altitude of periapsis (or perigee around Earth), in kilometers.
    pub fn periapsis_altitude(&self) -> f64 {
        self.periapsis() - self.frame.equatorial_radius()
    }

    /// Returns the altitude of apoapsis (or apogee around Earth), in kilometers.
    pub fn apoapsis_altitude(&self) -> f64 {
        self.apoapsis() - self.frame.equatorial_radius()
    }

    /// Returns the eccentric anomaly in degrees
    ///
    /// This is a conversion from GMAT's StateConversionUtil::TrueToEccentricAnomaly
    pub fn ea(&self) -> f64 {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => {
                let (sin_ta, cos_ta) = self.ta().to_radians().sin_cos();
                let ecc_cos_ta = self.ecc() * cos_ta;
                let sin_ea = ((1.0 - self.ecc().powi(2)).sqrt() * sin_ta) / (1.0 + ecc_cos_ta);
                let cos_ea = (self.ecc() + cos_ta) / (1.0 + ecc_cos_ta);
                // The atan2 function is a bit confusing: https://doc.rust-lang.org/std/primitive.f64.html#method.atan2 .
                sin_ea.atan2(cos_ea).to_degrees()
            }
            _ => panic!("eccentric anomaly is not defined in this frame"),
        }
    }

    /// Returns the flight path angle in degrees
    pub fn fpa(&self) -> f64 {
        let nu = self.ta().to_radians();
        let ecc = self.ecc();
        let denom = (1.0 + 2.0 * ecc * nu.cos() + ecc.powi(2)).sqrt();
        let sin_fpa = ecc * nu.sin() / denom;
        let cos_fpa = 1.0 + ecc * nu.cos() / denom;
        sin_fpa.atan2(cos_fpa).to_degrees()
    }

    /// Returns the mean anomaly in degrees
    ///
    /// This is a conversion from GMAT's StateConversionUtil::TrueToMeanAnomaly
    pub fn ma(&self) -> f64 {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => {
                if self.ecc() < 1.0 {
                    between_0_360(
                        (self.ea().to_radians() - self.ecc() * self.ea().to_radians().sin())
                            .to_degrees(),
                    )
                } else if self.ecc() > 1.0 {
                    info!("computing the hyperbolic anomaly");
                    // From GMAT's TrueToHyperbolicAnomaly
                    ((self.ta().to_radians().sin() * (self.ecc().powi(2) - 1.0)).sqrt()
                        / (1.0 + self.ecc() * self.ta().to_radians().cos()))
                    .asinh()
                    .to_degrees()
                } else {
                    error!("parabolic orbit: setting mean anomaly to 0.0");
                    0.0
                }
            }
            _ => panic!("mean anomaly is not defined in this frame"),
        }
    }

    /// Returns the semi parameter (or semilatus rectum)
    pub fn semi_parameter(&self) -> f64 {
        match self.frame {
            Frame::Celestial { .. } | Frame::Geoid { .. } => {
                self.sma() * (1.0 - self.ecc().powi(2))
            }
            _ => panic!("semi parameter is not defined in this frame"),
        }
    }

    /// Returns whether this state satisfies the requirement to compute the Mean Brouwer Short orbital
    /// element set.
    ///
    /// This is a conversion from GMAT's StateConversionUtil::CartesianToBrouwerMeanShort.
    /// The details are at the log level `info`.
    /// NOTE: Mean Brouwer Short are only defined around Earth. However, `nyx` does *not* check the
    /// main celestial body around which the state is defined (GMAT does perform this verification).
    pub fn is_brouwer_short_valid(&self) -> bool {
        if self.inc() > 180.0 {
            info!("Brouwer Mean Short only applicable for inclinations less than 180.0");
            false
        } else if self.ecc() >= 1.0 || self.ecc() < 0.0 {
            info!("Brouwer Mean Short only applicable for elliptical orbits");
            false
        } else if self.periapsis() < 3000.0 {
            // NOTE: GMAT emits a warning if the periagee is less than the Earth radius, but we do not do that here.
            info!("Brouwer Mean Short only applicable for if perigee is greater than 3000 km");
            false
        } else {
            true
        }
    }

    /// Returns the geodetic longitude (λ) in degrees. Value is between 0 and 360 degrees.
    ///
    /// Although the reference is not Vallado, the math from Vallado proves to be equivalent.
    /// Reference: G. Xu and Y. Xu, "GPS", DOI 10.1007/978-3-662-50367-6_2, 2016
    pub fn geodetic_longitude(&self) -> f64 {
        match self.frame {
            Frame::Geoid { .. } => between_0_360(self.y.atan2(self.x).to_degrees()),
            _ => panic!("geodetic elements only defined in a Geoid frame"),
        }
    }

    /// Returns the geodetic latitude (φ) in degrees. Value is between -180 and +180 degrees.
    ///
    /// Reference: Vallado, 4th Ed., Algorithm 12 page 172.
    pub fn geodetic_latitude(&self) -> f64 {
        match self.frame {
            Frame::Geoid {
                flattening,
                semi_major_radius,
                ..
            } => {
                if !self.frame.is_body_fixed() {
                    warn!("Computation of geodetic latitude must be done in a body fixed frame and {} is not one!", self.frame);
                }
                let eps = 1e-12;
                let max_attempts = 20;
                let mut attempt_no = 0;
                let r_delta = (self.x.powi(2) + self.y.powi(2)).sqrt();
                let mut latitude = (self.z / self.rmag()).asin();
                let e2 = flattening * (2.0 - flattening);
                loop {
                    attempt_no += 1;
                    let c_earth =
                        semi_major_radius / ((1.0 - e2 * (latitude).sin().powi(2)).sqrt());
                    let new_latitude = (self.z + c_earth * e2 * (latitude).sin()).atan2(r_delta);
                    if (latitude - new_latitude).abs() < eps {
                        return between_pm_180(new_latitude.to_degrees());
                    } else if attempt_no >= max_attempts {
                        error!(
                            "geodetic latitude failed to converge -- error = {}",
                            (latitude - new_latitude).abs()
                        );
                        return between_pm_180(new_latitude.to_degrees());
                    }
                    latitude = new_latitude;
                }
            }
            _ => panic!("geodetic elements only defined in a Geoid frame"),
        }
    }

    /// Returns the geodetic height in km.
    ///
    /// Reference: Vallado, 4th Ed., Algorithm 12 page 172.
    pub fn geodetic_height(&self) -> f64 {
        match self.frame {
            Frame::Geoid {
                flattening,
                semi_major_radius,
                ..
            } => {
                if !self.frame.is_body_fixed() {
                    warn!("Computation of geodetic height must be done in a body fixed frame and {} is not one!", self.frame);
                }
                let e2 = flattening * (2.0 - flattening);
                let latitude = self.geodetic_latitude().to_radians();
                let sin_lat = latitude.sin();
                if (latitude - 1.0).abs() < 0.1 {
                    // We are near poles, let's use another formulation.
                    let s_earth = (semi_major_radius * (1.0 - flattening).powi(2))
                        / ((1.0 - e2 * sin_lat.powi(2)).sqrt());
                    self.z / latitude.sin() - s_earth
                } else {
                    let c_earth = semi_major_radius / ((1.0 - e2 * sin_lat.powi(2)).sqrt());
                    let r_delta = (self.x.powi(2) + self.y.powi(2)).sqrt();
                    r_delta / latitude.cos() - c_earth
                }
            }
            _ => panic!("geodetic elements only defined in a Geoid frame"),
        }
    }

    /// Returns the right ascension of this orbit in degrees
    pub fn right_ascension(&self) -> f64 {
        between_0_360((self.y.atan2(self.x)).to_degrees())
    }

    /// Returns the declination of this orbit in degrees
    pub fn declination(&self) -> f64 {
        between_pm_180((self.z / self.rmag()).asin().to_degrees())
    }

    /// Returns the semi minor axis in km, includes code for a hyperbolic orbit
    pub fn semi_minor_axis(&self) -> f64 {
        if self.ecc() <= 1.0 {
            ((self.sma() * self.ecc()).powi(2) - self.sma().powi(2)).sqrt()
        } else {
            self.hmag().powi(2) / (self.frame.gm() * (self.ecc().powi(2) - 1.0).sqrt())
        }
    }

    /// Returns the velocity declination of this orbit in degrees
    pub fn velocity_declination(&self) -> f64 {
        between_pm_180((self.vz / self.vmag()).asin().to_degrees())
    }

    pub fn b_plane(&self) -> Result<BPlane, NyxError> {
        BPlane::new(*self)
    }

    /// Returns the $C_3$ of this orbit
    pub fn c3(&self) -> f64 {
        -self.frame.gm() / self.sma()
    }

    /// Returns the radius of periapse in kilometers for the provided turn angle of this hyperbolic orbit.
    pub fn vinf_periapsis(&self, turn_angle_degrees: f64) -> Result<f64, NyxError> {
        if self.ecc() <= 1.0 {
            Err(NyxError::NotHyperbolic(
                "Orbit is not hyperbolic. Convert to target object first".to_string(),
            ))
        } else {
            let cos_rho = (0.5 * (PI - turn_angle_degrees.to_radians())).cos();

            Ok((1.0 / cos_rho - 1.0) * self.frame.gm() / self.vmag().powi(2))
        }
    }

    /// Returns the turn angle in degrees for the provided radius of periapse passage of this hyperbolic orbit
    pub fn vinf_turn_angle(&self, periapsis_km: f64) -> Result<f64, NyxError> {
        if self.ecc() <= 1.0 {
            Err(NyxError::NotHyperbolic(
                "Orbit is not hyperbolic. Convert to target object first".to_string(),
            ))
        } else {
            let rho = (1.0 / (1.0 + self.vmag().powi(2) * (periapsis_km / self.frame.gm()))).acos();
            Ok(between_0_360((PI - 2.0 * rho).to_degrees()))
        }
    }

    /// Returns the hyperbolic anomaly in degrees between 0 and 360.0
    pub fn hyperbolic_anomaly(&self) -> Result<f64, NyxError> {
        if self.ecc() <= 1.0 {
            Err(NyxError::NotHyperbolic(
                "Orbit is not hyperbolic so there is no hyperbolic anomaly.".to_string(),
            ))
        } else {
            let (sin_ta, cos_ta) = self.ta().to_radians().sin_cos();
            let sinh_h = (sin_ta * (self.ecc().powi(2) - 1.0).sqrt()) / (1.0 + self.ecc() * cos_ta);
            Ok(between_0_360(sinh_h.asinh().to_degrees()))
        }
    }

    /// Returns the direct cosine rotation matrix to convert to this state's frame (inertial or otherwise).
    /// ## Example
    /// let dcm_vnc2inertial = orbit.dcm_from_traj_frame(Frame::VNC)?;
    /// let vector_inertial = dcm_vnc2inertial * vector_vnc;
    pub fn dcm_from_traj_frame(&self, from: Frame) -> Result<Matrix3<f64>, NyxError> {
        match from {
            Frame::RIC => Ok(r3(-self.raan().to_radians())
                * r1(-self.inc().to_radians())
                * r3(-self.aol().to_radians())),
            Frame::VNC => {
                let v = self.velocity() / self.vmag();
                let n = self.hvec() / self.hmag();
                let c = v.cross(&n);
                Ok(Matrix3::new(v[0], v[1], v[2], n[0], n[1], n[2], c[0], c[1], c[2]).transpose())
            }
            Frame::RCN => {
                let r = self.radius() / self.rmag();
                let n = self.hvec() / self.hmag();
                let c = n.cross(&r);
                Ok(Matrix3::new(r[0], r[1], r[2], c[0], c[1], c[2], n[0], n[1], n[2]).transpose())
            }
            Frame::SEZ => {
                // From the GMAT MathSpec, page 30 section 2.6.9 and from `Calculate_RFT` in `TopocentricAxes.cpp`, this returns the
                // rotation matrix from the topocentric frame (SEZ) to body fixed frame.
                // In the GMAT MathSpec notation, R_{IF} is the DCM from body fixed to inertial. Similarly, R{FT} is from topocentric
                // to body fixed.
                if !self.frame.is_body_fixed() {
                    warn!("Computation of SEZ rotation matrix must be done in a body fixed frame and {} is not one!", self.frame);
                }
                if (self.x.powi(2) + self.y.powi(2)).sqrt() < 1e-3 {
                    warn!("SEZ frame ill-defined when close to the poles");
                }
                let phi = self.geodetic_latitude().to_radians();
                let lambda = self.geodetic_longitude().to_radians();
                let z_hat = Vector3::new(
                    phi.cos() * lambda.cos(),
                    phi.cos() * lambda.sin(),
                    phi.sin(),
                );
                // y_hat MUST be renormalized otherwise it's about 0.76 and therefore the rotation looses the norms conservation property.
                let mut y_hat = Vector3::new(0.0, 0.0, 1.0).cross(&z_hat);
                y_hat /= y_hat.norm();
                let x_hat = y_hat.cross(&z_hat);
                Ok(Matrix3::new(
                    x_hat[0], y_hat[0], z_hat[0], x_hat[1], y_hat[1], z_hat[1], x_hat[2], y_hat[2],
                    z_hat[2],
                ))
            }
            _ => Err(NyxError::CustomError(
                "did not provide a local frame".to_string(),
            )),
        }
    }

    /// Returns a 6x6 DCM to convert to this inertial state.
    /// WARNING: This DCM does NOT contain the corrections needed for the transport theorem, and therefore the velocity rotation is wrong.
    pub fn dcm6x6_from_traj_frame(&self, from: Frame) -> Result<Matrix6<f64>, NyxError> {
        let dcm3x3 = self.dcm_from_traj_frame(from)?;

        let mut dcm = Matrix6::zeros();
        for i in 0..3 {
            for j in 0..3 {
                dcm[(i, j)] = dcm3x3[(i, j)];
                dcm[(i + 3, j + 3)] = dcm3x3[(i, j)];
            }
        }

        Ok(dcm)
    }

    /// Apply the provided delta-v (in km/s)
    pub fn apply_dv(&mut self, dv: Vector3<f64>) {
        self.vx += dv[0];
        self.vy += dv[1];
        self.vz += dv[2];
    }

    /// Copies this orbit after applying the provided delta-v (in km/s)
    pub fn with_dv(self, dv: Vector3<f64>) -> Self {
        let mut me = self;
        me.apply_dv(dv);
        me
    }

    /// Rotate this state provided a direct cosine matrix of position and velocity
    pub fn rotate_by(&mut self, dcm: Matrix6<f64>) {
        let new_orbit = dcm * self.to_cartesian_vec();
        self.x = new_orbit[0];
        self.y = new_orbit[1];
        self.z = new_orbit[2];

        self.vx = new_orbit[3];
        self.vy = new_orbit[4];
        self.vz = new_orbit[5];
    }

    /// Rotate this state provided a direct cosine matrix of position and velocity
    pub fn with_rotation_by(&self, dcm: Matrix6<f64>) -> Self {
        let mut me = *self;
        me.rotate_by(dcm);
        me
    }

    /// Rotate the position and the velocity of this state provided a direct cosine matrix of position and velocity
    /// WARNING: You only want to use this if you'll only be using the position components of the rotated state.
    /// This does not account for the transport theorem and therefore is physically WRONG.
    pub fn position_rotated_by(&mut self, dcm: Matrix3<f64>) {
        let new_radius = dcm * self.radius();
        self.x = new_radius[0];
        self.y = new_radius[1];
        self.z = new_radius[2];

        let new_velocity = dcm * self.velocity();
        self.vx = new_velocity[0];
        self.vy = new_velocity[1];
        self.vz = new_velocity[2];
    }

    /// Rotate the position of this state provided a direct cosine matrix of position and velocity
    /// WARNING: You only want to use this if you'll only be using the position components of the rotated state.
    /// This does not account for the transport theorem and therefore is physically WRONG.
    pub fn with_position_rotated_by(&self, dcm: Matrix3<f64>) -> Self {
        let mut me = *self;
        me.position_rotated_by(dcm);
        me
    }

    /// Sets the STM of this state of identity, which also enables computation of the STM for spacecraft navigation
    pub fn enable_stm(&mut self) {
        self.stm = Some(Matrix6::identity());
    }

    /// Disable the STM of this state
    pub fn disable_stm(&mut self) {
        self.stm = None;
    }

    /// Copies the current state but sets the STM to identity
    pub fn with_stm(self) -> Self {
        let mut me = self;
        me.enable_stm();
        me
    }

    /// Copies the current state but disables the STM
    pub fn without_stm(self) -> Self {
        let mut me = self;
        me.disable_stm();
        me
    }

    /// Returns the root sum square error between this state and the other, in kilometers for the position and kilometers per second in velocity
    pub fn rss(&self, other: &Self) -> (f64, f64) {
        rss_orbit_errors(self, other)
    }

    /// Returns whether this orbit and another are equal within the specified radial and velocity absolute tolerances
    pub fn eq_within(&self, other: &Self, radial_tol: f64, velocity_tol: f64) -> bool {
        self.dt == other.dt
            && (self.x - other.x).abs() < radial_tol
            && (self.y - other.y).abs() < radial_tol
            && (self.z - other.z).abs() < radial_tol
            && (self.vx - other.vx).abs() < velocity_tol
            && (self.vy - other.vy).abs() < velocity_tol
            && (self.vz - other.vz).abs() < velocity_tol
            && self.frame == other.frame
            && self.stm.is_some() == other.stm.is_some()
            && if self.stm.is_some() {
                self.stm.unwrap() == other.stm.unwrap()
            } else {
                true
            }
    }

    /// Use the current orbit as a template to generate mission design objectives.
    /// Note: this sets the objective tolerances to be quite tight, so consider modifying them.
    pub fn to_objectives(&self, params: &[StateParameter]) -> Result<Vec<Objective>, NyxError> {
        let mut rtn = Vec::with_capacity(params.len());
        for parameter in params {
            rtn.push(Objective::new(*parameter, self.value(parameter)?));
        }
        Ok(rtn)
    }

    /// Create a multivariate normal dispersion structure from this orbit with the provided mean and covariance,
    /// specified as {X, Y, Z, VX, VY, VZ} in km and km/s
    pub fn disperse(
        &self,
        mean: Vector6<f64>,
        cov: Matrix6<f64>,
    ) -> Result<MultivariateNormal<Orbit>, NyxError> {
        MultivariateNormal::new(
            *self,
            vec![
                StateParameter::X,
                StateParameter::Y,
                StateParameter::Z,
                StateParameter::VX,
                StateParameter::VY,
                StateParameter::VZ,
            ],
            mean,
            cov,
        )
    }

    /// Create a multivariate normal dispersion structure from this orbit with the provided covariance,
    /// specified as {X, Y, Z, VX, VY, VZ} in km and km/s
    pub fn disperse_zero_mean(
        &self,
        cov: Matrix6<f64>,
    ) -> Result<MultivariateNormal<Orbit>, NyxError> {
        MultivariateNormal::zero_mean(
            *self,
            vec![
                StateParameter::X,
                StateParameter::Y,
                StateParameter::Z,
                StateParameter::VX,
                StateParameter::VY,
                StateParameter::VZ,
            ],
            cov,
        )
    }
}

impl PartialEq for Orbit {
    /// Two states are equal if their position are equal within one centimeter and their velocities within one centimeter per second.
    fn eq(&self, other: &Orbit) -> bool {
        let radial_tol = 1e-5; // centimeter
        let velocity_tol = 1e-5; // centimeter per second
        self.eq_within(other, radial_tol, velocity_tol)
    }
}

impl Add for Orbit {
    type Output = Orbit;

    /// Add one state from another. Frame must be manually changed if needed. STM will be copied from &self.
    fn add(self, other: Orbit) -> Orbit {
        Orbit {
            x: self.x + other.x,
            y: self.y + other.y,
            z: self.z + other.z,
            vx: self.vx + other.vx,
            vy: self.vy + other.vy,
            vz: self.vz + other.vz,
            dt: self.dt,
            frame: self.frame,
            stm: self.stm,
        }
    }
}

impl Sub for Orbit {
    type Output = Orbit;

    /// Subtract one state from another. STM will be copied from &self.
    fn sub(self, other: Orbit) -> Orbit {
        Orbit {
            x: self.x - other.x,
            y: self.y - other.y,
            z: self.z - other.z,
            vx: self.vx - other.vx,
            vy: self.vy - other.vy,
            vz: self.vz - other.vz,
            dt: self.dt,
            frame: self.frame,
            stm: self.stm,
        }
    }
}

impl Neg for Orbit {
    type Output = Orbit;

    /// Subtract one state from another. STM will be copied from &self.
    fn neg(self) -> Self::Output {
        Orbit {
            x: -self.x,
            y: -self.y,
            z: -self.z,
            vx: -self.vx,
            vy: -self.vy,
            vz: -self.vz,
            dt: self.dt,
            frame: self.frame,
            stm: self.stm,
        }
    }
}

impl Add for &Orbit {
    type Output = Orbit;

    /// Add one state from another. Frame must be manually changed if needed. STM will be copied from &self.
    fn add(self, other: &Orbit) -> Orbit {
        Orbit {
            x: self.x + other.x,
            y: self.y + other.y,
            z: self.z + other.z,
            vx: self.vx + other.vx,
            vy: self.vy + other.vy,
            vz: self.vz + other.vz,
            dt: self.dt,
            frame: self.frame,
            stm: self.stm,
        }
    }
}

impl AddAssign for Orbit {
    fn add_assign(&mut self, other: Self) {
        *self = *self + other;
    }
}

impl Sub for &Orbit {
    type Output = Orbit;

    /// Subtract one state from another. STM will be copied from &self.
    fn sub(self, other: &Orbit) -> Orbit {
        Orbit {
            x: self.x - other.x,
            y: self.y - other.y,
            z: self.z - other.z,
            vx: self.vx - other.vx,
            vy: self.vy - other.vy,
            vz: self.vz - other.vz,
            dt: self.dt,
            frame: self.frame,
            stm: self.stm,
        }
    }
}

impl SubAssign for Orbit {
    fn sub_assign(&mut self, other: Self) {
        *self = *self - other;
    }
}

impl Neg for &Orbit {
    type Output = Orbit;

    /// Subtract one state from another. STM will be copied form &self.
    fn neg(self) -> Self::Output {
        Orbit {
            x: -self.x,
            y: -self.y,
            z: -self.z,
            vx: -self.vx,
            vy: -self.vy,
            vz: -self.vz,
            dt: self.dt,
            frame: self.frame,
            stm: self.stm,
        }
    }
}

impl Serialize for Orbit {
    /// NOTE: This is not part of unit testing because there is no deseralization of Orbit (yet)
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        let mut state = serializer.serialize_struct("Orbit", 7)?;
        state.serialize_field("dt", &self.dt.as_jde_et_days())?;
        state.serialize_field("x", &self.x)?;
        state.serialize_field("y", &self.y)?;
        state.serialize_field("z", &self.z)?;
        state.serialize_field("vx", &self.vx)?;
        state.serialize_field("vy", &self.vy)?;
        state.serialize_field("vz", &self.vz)?;
        state.end()
    }
}

#[allow(clippy::format_in_format_args)]
impl fmt::Display for Orbit {
    // Prints as Cartesian in floating point with units
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let decimals = f.precision().unwrap_or(6);
        write!(
            f,
            "[{}] {}\tposition = [{}, {}, {}] km\tvelocity = [{}, {}, {}] km/s",
            self.frame,
            self.dt.as_gregorian_utc_str(),
            format!("{:.*}", decimals, self.x),
            format!("{:.*}", decimals, self.y),
            format!("{:.*}", decimals, self.z),
            format!("{:.*}", decimals, self.vx),
            format!("{:.*}", decimals, self.vy),
            format!("{:.*}", decimals, self.vz)
        )
    }
}

#[allow(clippy::format_in_format_args)]
impl fmt::LowerExp for Orbit {
    // Prints as Cartesian in scientific notation with units
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let decimals = f.precision().unwrap_or(6);
        write!(
            f,
            "[{}] {}\tposition = [{}, {}, {}] km\tvelocity = [{}, {}, {}] km/s",
            self.frame,
            self.dt.as_gregorian_utc_str(),
            format!("{:.*e}", decimals, self.x),
            format!("{:.*e}", decimals, self.y),
            format!("{:.*e}", decimals, self.z),
            format!("{:.*e}", decimals, self.vx),
            format!("{:.*e}", decimals, self.vy),
            format!("{:.*e}", decimals, self.vz)
        )
    }
}

#[allow(clippy::format_in_format_args)]
impl fmt::UpperExp for Orbit {
    // Prints as Cartesian in scientific notation with units
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let decimals = f.precision().unwrap_or(6);
        write!(
            f,
            "[{}] {}\tposition = [{}, {}, {}] km\tvelocity = [{}, {}, {}] km/s",
            self.frame,
            self.dt.as_gregorian_utc_str(),
            format!("{:.*E}", decimals, self.x),
            format!("{:.*E}", decimals, self.y),
            format!("{:.*E}", decimals, self.z),
            format!("{:.*E}", decimals, self.vx),
            format!("{:.*E}", decimals, self.vy),
            format!("{:.*E}", decimals, self.vz)
        )
    }
}

#[allow(clippy::format_in_format_args)]
impl fmt::LowerHex for Orbit {
    // Prints the Keplerian orbital elements in floating point with units
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let decimals = f.precision().unwrap_or(6);
        write!(
            f,
            "[{}] {}\tsma = {} km\tecc = {}\tinc = {} deg\traan = {} deg\taop = {} deg\tta = {} deg",
            self.frame,
            self.dt.as_gregorian_utc_str(),
            format!("{:.*}", decimals, self.sma()),
            format!("{:.*}", decimals, self.ecc()),
            format!("{:.*}", decimals, self.inc()),
            format!("{:.*}", decimals, self.raan()),
            format!("{:.*}", decimals, self.aop()),
            format!("{:.*}", decimals, self.ta()),
        )
    }
}

#[allow(clippy::format_in_format_args)]
impl fmt::UpperHex for Orbit {
    // Prints the Keplerian orbital elements in scientific notation with units
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let decimals = f.precision().unwrap_or(6);
        write!(
            f,
            "[{}] {}\tsma = {} km\tecc = {}\tinc = {} deg\traan = {} deg\taop = {} deg\tta = {} deg",
            self.frame,
            self.dt.as_gregorian_utc_str(),
            format!("{:.*e}", decimals, self.sma()),
            format!("{:.*e}", decimals, self.ecc()),
            format!("{:.*e}", decimals, self.inc()),
            format!("{:.*e}", decimals, self.raan()),
            format!("{:.*e}", decimals, self.aop()),
            format!("{:.*e}", decimals, self.ta()),
        )
    }
}

/// Implementation of Orbit as a State for orbital dynamics with STM
impl State for Orbit {
    type Size = Const<6>;
    type VecLength = Const<42>;

    fn reset_stm(&mut self) {
        self.stm = Some(Matrix6::identity());
    }

    /// Returns a state whose position, velocity and frame are zero, and STM is I_{6x6}.
    fn zeros() -> Self {
        let frame = Frame::Celestial {
            gm: 1.0,
            ephem_path: [None, None, None],
            frame_path: [None, None, None],
        };

        Self {
            x: 0.0,
            y: 0.0,
            z: 0.0,
            vx: 0.0,
            vy: 0.0,
            vz: 0.0,
            dt: Epoch::from_tai_seconds(0.0),
            frame,
            stm: Some(Matrix6::identity()),
        }
    }

    fn as_vector(&self) -> Result<OVector<f64, Const<42>>, NyxError> {
        let mut as_vec = OVector::<f64, Const<42>>::zeros();
        as_vec[0] = self.x;
        as_vec[1] = self.y;
        as_vec[2] = self.z;
        as_vec[3] = self.vx;
        as_vec[4] = self.vy;
        as_vec[5] = self.vz;
        if let Some(stm) = self.stm {
            for (idx, stm_val) in stm.as_slice().iter().enumerate() {
                as_vec[idx + 6] = *stm_val;
            }
        }
        Ok(as_vec)
    }

    fn set(&mut self, epoch: Epoch, vector: &OVector<f64, Const<42>>) -> Result<(), NyxError> {
        self.set_epoch(epoch);
        self.x = vector[0];
        self.y = vector[1];
        self.z = vector[2];
        self.vx = vector[3];
        self.vy = vector[4];
        self.vz = vector[5];
        // And update the STM if applicable
        if self.stm.is_some() {
            let stm_k_to_0 = Matrix6::from_column_slice(&vector.as_slice()[6..]);
            self.stm = Some(stm_k_to_0);
        }
        Ok(())
    }

    fn stm(&self) -> Result<Matrix6<f64>, NyxError> {
        match self.stm {
            Some(stm) => Ok(stm),
            None => Err(NyxError::StateTransitionMatrixUnset),
        }
    }

    fn epoch(&self) -> Epoch {
        self.dt
    }

    fn set_epoch(&mut self, epoch: Epoch) {
        self.dt = epoch
    }

    fn add(self, other: OVector<f64, Self::Size>) -> Self {
        self + other
    }

    fn value(&self, param: &StateParameter) -> Result<f64, NyxError> {
        match *param {
            StateParameter::ApoapsisRadius => Ok(self.apoapsis()),
            StateParameter::AoL => Ok(self.aol()),
            StateParameter::AoP => Ok(self.aop()),
            StateParameter::BdotR => Ok(BPlane::new(*self)?.b_r.real()),
            StateParameter::BdotT => Ok(BPlane::new(*self)?.b_t.real()),
            StateParameter::BLTOF => Ok(BPlane::new(*self)?.ltof_s.real()),
            StateParameter::C3 => Ok(self.c3()),
            StateParameter::Declination => Ok(self.declination()),
            StateParameter::EccentricAnomaly => Ok(self.ea()),
            StateParameter::Eccentricity => Ok(self.ecc()),
            StateParameter::Energy => Ok(self.energy()),
            StateParameter::FlightPathAngle => Ok(self.fpa()),
            StateParameter::GeodeticHeight => Ok(self.geodetic_height()),
            StateParameter::GeodeticLatitude => Ok(self.geodetic_latitude()),
            StateParameter::GeodeticLongitude => Ok(self.geodetic_longitude()),
            StateParameter::Hmag => Ok(self.hmag()),
            StateParameter::HX => Ok(self.hx()),
            StateParameter::HY => Ok(self.hy()),
            StateParameter::HZ => Ok(self.hz()),
            StateParameter::HyperbolicAnomaly => self.hyperbolic_anomaly(),
            StateParameter::Inclination => Ok(self.inc()),
            StateParameter::MeanAnomaly => Ok(self.ma()),
            StateParameter::PeriapsisRadius => Ok(self.periapsis()),
            StateParameter::Period => Ok(self.period().in_seconds()),
            StateParameter::RightAscension => Ok(self.right_ascension()),
            StateParameter::RAAN => Ok(self.raan()),
            StateParameter::Rmag => Ok(self.rmag()),
            StateParameter::SemiMinorAxis => Ok(self.semi_minor_axis()),
            StateParameter::SemiParameter => Ok(self.semi_parameter()),
            StateParameter::SlantAngle { x, y, z } => {
                let mut tgt = Vector3::new(x, y, z);
                tgt /= tgt.norm();

                Ok(self.r_hat().dot(&tgt).acos().to_degrees())
            }
            StateParameter::SMA => Ok(self.sma()),
            StateParameter::TrueAnomaly => Ok(self.ta()),
            StateParameter::TrueLongitude => Ok(self.tlong()),
            StateParameter::VelocityDeclination => Ok(self.velocity_declination()),
            StateParameter::Vmag => Ok(self.vmag()),
            StateParameter::X => Ok(self.x),
            StateParameter::Y => Ok(self.y),
            StateParameter::Z => Ok(self.z),
            StateParameter::VX => Ok(self.vx),
            StateParameter::VY => Ok(self.vy),
            StateParameter::VZ => Ok(self.vz),
            _ => Err(NyxError::StateParameterUnavailable),
        }
    }

    fn set_value(&mut self, param: &StateParameter, val: f64) -> Result<(), NyxError> {
        match *param {
            StateParameter::AoP => self.set_aop(val),
            StateParameter::Eccentricity => self.set_ecc(val),
            StateParameter::Inclination => self.set_inc(val),
            StateParameter::RAAN => self.set_raan(val),
            StateParameter::SMA => self.set_sma(val),
            StateParameter::TrueAnomaly => self.set_ta(val),
            StateParameter::X => self.x = val,
            StateParameter::Y => self.y = val,
            StateParameter::Z => self.z = val,
            StateParameter::Rmag => {
                // Convert the position to spherical coordinates
                let (_, θ, φ) = cartesian_to_spherical(&self.radius());
                // Convert back to cartesian after setting the new range value
                let new_radius = spherical_to_cartesian(val, θ, φ);
                self.x = new_radius.x;
                self.y = new_radius.y;
                self.z = new_radius.z;
            }
            StateParameter::VX => self.vx = val,
            StateParameter::VY => self.vy = val,
            StateParameter::VZ => self.vz = val,
            StateParameter::Vmag => {
                // Convert the velocity to spherical coordinates
                let (_, θ, φ) = cartesian_to_spherical(&self.velocity());
                // Convert back to cartesian after setting the new range value
                let new_radius = spherical_to_cartesian(val, θ, φ);
                self.vx = new_radius.x;
                self.vy = new_radius.y;
                self.vz = new_radius.z;
            }
            _ => return Err(NyxError::StateParameterUnavailable),
        }
        Ok(())
    }
}

impl Add<OVector<f64, Const<6>>> for Orbit {
    type Output = Self;

    /// Adds the provided state deviation to this orbit
    fn add(self, other: OVector<f64, Const<6>>) -> Self {
        let mut me = self;
        me.x += other[0];
        me.y += other[1];
        me.z += other[2];
        me.vx += other[3];
        me.vy += other[4];
        me.vz += other[5];

        me
    }
}

impl Default for Orbit {
    fn default() -> Self {
        Self::zeros()
    }
}