1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2021 Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use crate::dimensions::Vector3;
use crate::errors::NyxError;
use std::f64::consts::PI;

const TAU: f64 = 2.0 * PI;
const LAMBERT_EPSILON: f64 = 1e-4; // General epsilon
const LAMBERT_EPSILON_TIME: f64 = 1e-4; // Time epsilon
const LAMBERT_EPSILON_RAD: f64 = (5e-5 / 180.0) * PI; // 0.00005 degrees

/// Define the transfer kind for a Lambert
pub enum TransferKind {
    Auto,
    ShortWay,
    LongWay,
    NRevs(u8),
}

#[derive(Debug)]
pub struct LambertSolution {
    pub v_init: Vector3<f64>,
    pub v_final: Vector3<f64>,
    pub phi: f64,
}

/// Solves the Lambert boundary problem using a standard secant method.
/// Given the initial and final radii, a time of flight, and a gravitational parameters, it returns the needed initial and final velocities
/// along with φ which is the square of the difference in eccentric anomaly. Note that the direction of motion
/// is computed directly in this function to simplify the generation of Pork chop plots.
pub fn standard(
    r_init: Vector3<f64>,
    r_final: Vector3<f64>,
    tof: f64,
    gm: f64,
    kind: TransferKind,
) -> Result<LambertSolution, NyxError> {
    let r_init_norm = r_init.norm();
    let r_final_norm = r_final.norm();

    let cos_dnu = r_init.dot(&r_final) / (r_init_norm * r_final_norm);

    let dm = match kind {
        TransferKind::Auto => {
            let mut dnu = r_final[1].atan2(r_final[0]) - r_init[1].atan2(r_final[1]);
            if dnu > TAU {
                dnu -= TAU;
            } else if dnu < 0.0 {
                dnu += TAU;
            }

            if dnu > std::f64::consts::PI {
                -1.0
            } else {
                1.0
            }
        }
        TransferKind::ShortWay => 1.0,
        TransferKind::LongWay => -1.0,
        _ => return Err(NyxError::LambertMultiRevNotSupported),
    };

    // Compute the direction of motion
    let nu_init = r_init[1].atan2(r_init[0]);
    let nu_final = r_final[1].atan2(r_final[0]);

    let a = dm * (r_init_norm * r_final_norm * (1.0 + cos_dnu)).sqrt();

    if nu_final - nu_init < LAMBERT_EPSILON_RAD && a.abs() < LAMBERT_EPSILON {
        return Err(NyxError::TargetsTooClose);
    }

    // Define the search space (note that we do not support multirevs in this algorithm)
    let mut phi_upper = 4.0 * PI.powi(2);
    let mut phi_lower = -4.0 * PI.powi(2);
    let mut phi = 0.0; // ??!?

    // Initial guesses for c2 and c3
    let mut c2: f64 = 1.0 / 2.0;
    let mut c3: f64 = 1.0 / 6.0;
    let mut iter: usize = 0;
    let mut cur_tof: f64 = 0.0;
    let mut y = 0.0;

    while (cur_tof - tof).abs() > LAMBERT_EPSILON_TIME {
        if iter > 1000 {
            return Err(NyxError::MaxIterReached(format!(
                "Lambert solver failed after {} iterations",
                1000
            )));
        }
        iter += 1;

        y = r_init_norm + r_final_norm + a * (phi * c3 - 1.0) / c2.sqrt();
        if a > 0.0 && y < 0.0 {
            // Try to increase phi
            for _ in 0..500 {
                phi += 0.1;
                // Recompute y
                y = r_init_norm + r_final_norm + a * (phi * c3 - 1.0) / c2.sqrt();
                if y >= 0.0 {
                    break;
                }
            }
            if y < 0.0 {
                // If y is still negative, then our attempts have failed.
                return Err(NyxError::LambertNotReasonablePhi);
            }
        }

        let chi = (y / c2).sqrt();
        // Compute the current time of flight
        cur_tof = (chi.powi(3) * c3 + a * y.sqrt()) / gm.sqrt();
        // Update the next TOF we should use
        if cur_tof < tof {
            phi_lower = phi;
        } else {
            phi_upper = phi;
        }

        // Compute the next phi
        phi = (phi_upper + phi_lower) / 2.0;

        // Update c2 and c3
        if phi > LAMBERT_EPSILON {
            let sqrt_phi = phi.sqrt();
            let (s_sphi, c_sphi) = sqrt_phi.sin_cos();
            c2 = (1.0 - c_sphi) / phi;
            c3 = (sqrt_phi - s_sphi) / phi.powi(3).sqrt();
        } else if phi < -LAMBERT_EPSILON {
            let sqrt_phi = (-phi).sqrt();
            c2 = (1.0 - sqrt_phi.cosh()) / phi;
            c3 = (sqrt_phi.sinh() - sqrt_phi) / (-phi).powi(3).sqrt();
        } else {
            // Reset c2 and c3 and try again
            c2 = 0.5;
            c3 = 1.0 / 6.0;
        }
    }

    // Time of flight matches!

    let f = 1.0 - y / r_init_norm;
    let g_dot = 1.0 - y / r_final_norm;
    let g = a * (y / gm).sqrt();

    // Compute velocities
    Ok(LambertSolution {
        v_init: (r_final - f * r_init) / g,
        v_final: (1.0 / g) * (g_dot * r_final - r_init),
        phi,
    })
}

#[test]
fn test_lambert_vallado_shortway() {
    let ri = Vector3::new(15945.34, 0.0, 0.0);
    let rf = Vector3::new(12214.83899, 10249.46731, 0.0);
    let tof_s = 76.0 * 60.0;
    let gm = 3.98600433e5;

    let exp_vi = Vector3::new(2.058913, 2.915965, 0.0);
    let exp_vf = Vector3::new(-3.451565, 0.910315, 0.0);

    let sol = standard(ri, rf, tof_s, gm, TransferKind::ShortWay).unwrap();

    assert!((sol.v_init - exp_vi).norm() < 1e-6);
    assert!((sol.v_final - exp_vf).norm() < 1e-6);
}

#[test]
fn test_lambert_vallado_lonway() {
    let ri = Vector3::new(15945.34, 0.0, 0.0);
    let rf = Vector3::new(12214.83899, 10249.46731, 0.0);
    let tof_s = 76.0 * 60.0;
    let gm = 3.98600433e5;

    let exp_vi = Vector3::new(-3.811158, -2.003854, 0.0);
    let exp_vf = Vector3::new(4.207569, 0.914724, 0.0);

    let sol = standard(ri, rf, tof_s, gm, TransferKind::LongWay).unwrap();

    assert!((sol.v_init - exp_vi).norm() < 1e-6);
    assert!((sol.v_final - exp_vf).norm() < 1e-6);
}