1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2021 Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use super::hyperdual::linalg::norm;
use super::hyperdual::{extract_jacobian_and_result, hyperspace_from_vector, Float, Hyperdual};
use super::{AccelModel, Dynamics, NyxError};
use crate::celestia::{Bodies, Cosm, Frame, LTCorr, Orbit};
use crate::dimensions::{
    DimName, Matrix3, Matrix6, Vector3, Vector6, VectorN, U3, U36, U4, U42, U6, U7,
};
use crate::State;
use std::f64;
use std::sync::Arc;

pub use super::sph_harmonics::Harmonics;

/// `OrbitalDynamics` provides the equations of motion for any celestial dynamic, without state transition matrix computation.
#[derive(Clone)]
pub struct OrbitalDynamics<'a> {
    pub accel_models: Vec<Arc<dyn AccelModel + Sync + 'a>>,
}

impl<'a> OrbitalDynamics<'a> {
    /// Initialize point mass dynamics given the EXB IDs and a Cosm
    pub fn point_masses(bodies: &[Bodies], cosm: Arc<Cosm>) -> Arc<Self> {
        // Create the point masses
        Self::new(vec![PointMasses::new(bodies, cosm)])
    }

    /// Initializes a OrbitalDynamics which does not simulate the gravity pull of other celestial objects but the primary one.
    pub fn two_body() -> Arc<Self> {
        Self::new(vec![])
    }

    /// Initialize orbital dynamics with a list of acceleration models
    pub fn new(accel_models: Vec<Arc<dyn AccelModel + Sync + 'a>>) -> Arc<Self> {
        Arc::new(Self::new_raw(accel_models))
    }

    /// Initialize orbital dynamics with a list of acceleration models, _without_ encapsulating it in an Arc
    /// Use this only if you need to mutate the dynamics as you'll need to wrap it in an Arc before propagation.
    pub fn new_raw(accel_models: Vec<Arc<dyn AccelModel + Sync + 'a>>) -> Self {
        Self { accel_models }
    }

    /// Initialize new orbital mechanics with the provided model.
    /// **Note:** Orbital dynamics _always_ include two body dynamics, these cannot be turned off.
    pub fn from_model(accel_model: Arc<dyn AccelModel + Sync + 'a>) -> Arc<Self> {
        Self::new(vec![accel_model])
    }

    /// Add a model to the currently defined orbital dynamics
    pub fn add_model(&mut self, accel_model: Arc<dyn AccelModel + Sync + 'a>) {
        self.accel_models.push(accel_model);
    }

    /// Clone these dynamics and add a model to the currently defined orbital dynamics
    pub fn with_model(self, accel_model: Arc<dyn AccelModel + Sync + 'a>) -> Arc<Self> {
        let mut me = self.clone();
        me.add_model(accel_model);
        Arc::new(me)
    }
}

impl<'a> Dynamics for OrbitalDynamics<'a> {
    type HyperdualSize = U7;
    type StateType = Orbit;

    fn eom(
        &self,
        delta_t_s: f64,
        state: &VectorN<f64, U42>,
        ctx: &Orbit,
    ) -> Result<VectorN<f64, U42>, NyxError> {
        let (new_state, new_stm) = if ctx.stm.is_some() {
            // Then call the dual_eom with the correct state size
            let pos_vel = state.fixed_rows::<U6>(0).into_owned();
            let (state, grad) = self.eom_grad(delta_t_s, &pos_vel, ctx)?;
            let stm_dt = ctx.stm() * grad;
            // Rebuild the STM as a vector.
            let mut stm_as_vec = VectorN::<f64, U36>::zeros();
            let mut stm_idx = 0;
            for i in 0..U6::dim() {
                for j in 0..U6::dim() {
                    stm_as_vec[(stm_idx, 0)] = stm_dt[(i, j)];
                    stm_idx += 1;
                }
            }
            (state, stm_as_vec)
        } else {
            // Still return something of size 42, but the STM will be zeros.

            let osc = ctx.ctor_from(delta_t_s, state);
            // TODO: Speed check this with the PointMasses only, including the integration frame point mass
            let body_acceleration = (-osc.frame.gm() / osc.rmag().powi(3)) * osc.radius();
            let mut d_x = Vector6::from_iterator(
                osc.velocity()
                    .iter()
                    .chain(body_acceleration.iter())
                    .cloned(),
            );

            // Apply the acceleration models
            for model in &self.accel_models {
                let model_acc = model.eom(&osc)?;
                for i in 0..3 {
                    d_x[i + 3] += model_acc[i];
                }
            }

            (d_x, VectorN::<f64, U36>::zeros())
        };
        Ok(VectorN::<f64, U42>::from_iterator(
            new_state.iter().chain(new_stm.iter()).cloned(),
        ))
    }

    fn dual_eom(
        &self,
        _delta_t_s: f64,
        state: &VectorN<Hyperdual<f64, U7>, U6>,
        ctx: &Orbit,
    ) -> Result<(Vector6<f64>, Matrix6<f64>), NyxError> {
        // Extract data from hyperspace
        let radius = state.fixed_rows::<U3>(0).into_owned();
        let velocity = state.fixed_rows::<U3>(3).into_owned();

        // Code up math as usual
        let rmag = norm(&radius);
        let body_acceleration =
            radius * (Hyperdual::<f64, U7>::from_real(-ctx.frame.gm()) / rmag.powi(3));

        // Extract result into Vector6 and Matrix6
        let mut fx = Vector6::zeros();
        let mut grad = Matrix6::zeros();
        for i in 0..U6::dim() {
            fx[i] = if i < 3 {
                velocity[i].real()
            } else {
                body_acceleration[i - 3].real()
            };
            for j in 1..U7::dim() {
                grad[(i, j - 1)] = if i < 3 {
                    velocity[i][j]
                } else {
                    body_acceleration[i - 3][j]
                };
            }
        }

        // Apply the acceleration models
        for model in &self.accel_models {
            let (model_acc, model_grad) = model.dual_eom(&radius, ctx)?;
            for i in 0..U3::dim() {
                fx[i + 3] += model_acc[i];
                for j in 1..U4::dim() {
                    grad[(i + 3, j - 1)] += model_grad[(i, j - 1)];
                }
            }
        }

        Ok((fx, grad))
    }
}

/// PointMasses model
pub struct PointMasses {
    pub bodies: Vec<Frame>,
    /// Optional point to a Cosm, needed if extra point masses are needed
    pub cosm: Arc<Cosm>,
    /// Light-time correction computation if extra point masses are needed
    pub correction: LTCorr,
}

impl PointMasses {
    /// Initializes the multibody point mass dynamics with the provided list of bodies
    pub fn new(bodies: &[Bodies], cosm: Arc<Cosm>) -> Arc<Self> {
        Arc::new(Self::with_correction(bodies, cosm, LTCorr::None))
    }

    /// Initializes the multibody point mass dynamics with the provided list of bodies, and accounting for some light time correction
    pub fn with_correction(bodies: &[Bodies], cosm: Arc<Cosm>, correction: LTCorr) -> Self {
        let mut refs = Vec::new();
        // Check that these celestial bodies exist and build their references
        for body in bodies {
            refs.push(cosm.frame_from_ephem_path(&body.ephem_path()));
        }

        Self {
            bodies: refs,
            cosm,
            correction,
        }
    }

    /// Allows using bodies by name, defined in the non-default XB
    pub fn specific(body_names: &[String], cosm: Arc<Cosm>, correction: LTCorr) -> Self {
        let mut refs = Vec::new();
        // Check that these celestial bodies exist and build their references
        for body in body_names {
            refs.push(cosm.frame(body));
        }

        Self {
            bodies: refs,
            cosm,
            correction,
        }
    }
}

impl AccelModel for PointMasses {
    fn eom(&self, osc: &Orbit) -> Result<Vector3<f64>, NyxError> {
        let mut d_x = Vector3::zeros();
        // Get all of the position vectors between the center body and the third bodies
        for third_body in &self.bodies {
            if third_body == &osc.frame {
                // Ignore the contribution of the integration frame, that's handled by OrbitalDynamics
                continue;
            }
            // Orbit of j-th body as seen from primary body
            let st_ij = self.cosm.celestial_state(
                &third_body.ephem_path(),
                osc.dt,
                osc.frame,
                self.correction,
            );

            let r_ij = st_ij.radius();
            let r_ij3 = st_ij.rmag().powi(3);
            let r_j = osc.radius() - r_ij; // sc as seen from 3rd body
            let r_j3 = r_j.norm().powi(3);
            d_x += -third_body.gm() * (r_j / r_j3 + r_ij / r_ij3);
        }
        Ok(d_x)
    }

    fn dual_eom(
        &self,
        state: &VectorN<Hyperdual<f64, U7>, U3>,
        osc: &Orbit,
    ) -> Result<(Vector3<f64>, Matrix3<f64>), NyxError> {
        // Extract data from hyperspace
        let radius = state.fixed_rows::<U3>(0).into_owned();
        // Extract result into Vector6 and Matrix6
        let mut fx = Vector3::zeros();
        let mut grad = Matrix3::zeros();

        // Get all of the position vectors between the center body and the third bodies
        for third_body in &self.bodies {
            if third_body == &osc.frame {
                // Ignore the contribution of the integration frame, that's handled by OrbitalDynamics
                continue;
            }
            let gm_d = Hyperdual::<f64, U7>::from_real(-third_body.gm());

            // Orbit of j-th body as seen from primary body
            let st_ij = self.cosm.celestial_state(
                &third_body.ephem_path(),
                osc.dt,
                osc.frame,
                self.correction,
            );

            let r_ij: Vector3<Hyperdual<f64, U7>> = hyperspace_from_vector(&st_ij.radius());
            let r_ij3 = norm(&r_ij).powi(3) / gm_d; // Dividing the future divisor

            // The difference leads to the dual parts nulling themselves out, so let's fix that.
            let mut r_j = radius - r_ij; // sc as seen from 3rd body
            r_j[0][1] = 1.0;
            r_j[1][2] = 1.0;
            r_j[2][3] = 1.0;

            let r_j3 = norm(&r_j).powi(3) / gm_d; // Dividing the future divisor
            let third_body_acc_d = r_j / r_j3 + r_ij / r_ij3;

            let (fxp, gradp) = extract_jacobian_and_result::<_, U3, U3, _>(&third_body_acc_d);
            fx += fxp;
            grad += gradp;
        }

        Ok((fx, grad))
    }
}