1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2021 Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use super::hyperdual::Hyperdual;
use super::ForceModel;
use crate::celestia::{Cosm, Frame, Spacecraft};
use crate::dimensions::{Matrix3, Vector3, U7};
use crate::errors::NyxError;
use std::sync::Arc;

/// Density in kg/m^3 and altitudes in meters, not kilometers!
#[derive(Clone, Copy, Debug)]
pub enum AtmDensity {
    Constant(f64),
    Exponential { rho0: f64, r0: f64, ref_alt_m: f64 },
    StdAtm { max_alt_m: f64 },
}

/// `ConstantDrag` implements a constant drag model as defined in Vallado, 4th ed., page 551, with an important caveat.
///
/// **WARNING:** This basic model assumes that the velocity of the spacecraft is identical to the velocity of the upper atmosphere,
/// This is a **bad** assumption and **should not** be used for high fidelity simulations.
/// This will be resolved after https://gitlab.com/chrisrabotin/nyx/issues/93 is implemented.
#[derive(Clone)]
pub struct ConstantDrag {
    /// atmospheric density in kg/m^3
    pub rho: f64,
    /// Geoid causing the drag
    pub drag_frame: Frame,
    /// a Cosm reference is needed to convert to the state around the correct planet
    pub cosm: Arc<Cosm>,
}

impl ForceModel for ConstantDrag {
    fn eom(&self, ctx: &Spacecraft) -> Result<Vector3<f64>, NyxError> {
        let osc = self.cosm.frame_chg(&ctx.orbit, self.drag_frame);
        let velocity = osc.velocity();
        Ok(-0.5 * self.rho * ctx.cd * ctx.drag_area_m2 * velocity.norm() * velocity)
    }

    fn dual_eom(
        &self,
        _radius: &Vector3<Hyperdual<f64, U7>>,
        _osc_ctx: &Spacecraft,
    ) -> Result<(Vector3<f64>, Matrix3<f64>), NyxError> {
        Err(NyxError::PartialsUndefined)
    }
}

/// `Drag` implements all three drag models.
#[derive(Clone)]
pub struct Drag {
    /// Density computation method
    pub density: AtmDensity,
    /// Frame to compute the drag in
    pub drag_frame: Frame,
    /// a Cosm reference is needed to convert to the state around the correct planet
    pub cosm: Arc<Cosm>,
}

impl Drag {
    /// Common exponential drag model for the Earth
    pub fn earth_exp(cosm: Arc<Cosm>) -> Arc<Self> {
        Arc::new(Self {
            density: AtmDensity::Exponential {
                rho0: 3.614e-13,
                r0: 700_000.0,
                ref_alt_m: 88_667.0,
            },
            drag_frame: cosm.frame("IAU Earth"),
            cosm,
        })
    }

    /// Drag model which uses the standard atmosphere 1976 model for atmospheric density
    pub fn std_atm1976(cosm: Arc<Cosm>) -> Arc<Self> {
        Arc::new(Self {
            density: AtmDensity::StdAtm {
                max_alt_m: 1_000_000.0,
            },
            drag_frame: cosm.frame("IAU Earth"),
            cosm,
        })
    }
}

impl ForceModel for Drag {
    fn eom(&self, ctx: &Spacecraft) -> Result<Vector3<f64>, NyxError> {
        let integration_frame = ctx.orbit.frame;
        let osc = self.cosm.frame_chg(&ctx.orbit, self.drag_frame);
        match self.density {
            AtmDensity::Constant(rho) => {
                let velocity = osc.velocity();
                Ok(-0.5 * rho * ctx.cd * ctx.drag_area_m2 * velocity.norm() * velocity)
            }

            AtmDensity::Exponential {
                rho0,
                r0,
                ref_alt_m,
            } => {
                let rho = rho0
                    * (-(osc.rmag() - (r0 + self.drag_frame.equatorial_radius())) / ref_alt_m)
                        .exp();

                let velocity_integr_frame = self.cosm.frame_chg(&osc, integration_frame).velocity();

                let velocity = velocity_integr_frame - osc.velocity();
                Ok(-0.5 * rho * ctx.cd * ctx.drag_area_m2 * velocity.norm() * velocity)
            }

            AtmDensity::StdAtm { max_alt_m } => {
                let altitude_km = osc.rmag() - self.drag_frame.equatorial_radius();
                let rho = if altitude_km > max_alt_m / 1_000.0 {
                    // Use a constant density
                    10.0_f64.powf((-7e-5) * altitude_km - 14.464)
                } else {
                    // Code from AVS/Schaub's Basilisk
                    // Calculating the density based on a scaled 6th order polynomial fit to the log of density
                    let scale = (altitude_km - 526.8000) / 292.8563;
                    let logdensity =
                        0.34047 * scale.powi(6) - 0.5889 * scale.powi(5) - 0.5269 * scale.powi(4)
                            + 1.0036 * scale.powi(3)
                            + 0.60713 * scale.powi(2)
                            - 2.3024 * scale
                            - 12.575;

                    /* Calculating density by raising 10 to the log of density */
                    10.0_f64.powf(logdensity)
                };

                let velocity_integr_frame = self.cosm.frame_chg(&osc, integration_frame).velocity();

                let velocity = velocity_integr_frame - osc.velocity();
                Ok(-0.5 * rho * ctx.cd * ctx.drag_area_m2 * velocity.norm() * velocity)
            }
        }
    }

    fn dual_eom(
        &self,
        _radius: &Vector3<Hyperdual<f64, U7>>,
        _osc_ctx: &Spacecraft,
    ) -> Result<(Vector3<f64>, Matrix3<f64>), NyxError> {
        Err(NyxError::PartialsUndefined)
    }
}