1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
extern crate nalgebra as na;

use self::na::allocator::Allocator;
use self::na::{DefaultAllocator, DimName, U3, Vector3, Vector6, VectorN};

// This determines when to take into consideration the magnitude of the state_delta -- prevents dividing by too small of a number.
const REL_ERR_THRESH: f64 = 0.1;

/// A largest error control which effectively computes the largest error at each component
///
/// This is a standard error computation algorithm, but it's argubly bad if the state's components have different units.
/// It calculates the largest local estimate of the error from the integration (`prop_err`)
/// given the difference in the candidate state and the previous state (`state_delta`).
/// This error estimator is from the physical model estimator of GMAT
/// (Source)[https://github.com/ChristopherRabotin/GMAT/blob/37201a6290e7f7b941bc98ee973a527a5857104b/src/base/forcemodel/PhysicalModel.cpp#L987]
pub fn largest_error<N: DimName>(prop_err: &VectorN<f64, N>, candidate: &VectorN<f64, N>, cur_state: &VectorN<f64, N>) -> f64
where
    DefaultAllocator: Allocator<f64, N>,
{
    let state_delta = candidate - cur_state;
    let mut max_err = 0.0;
    for (i, prop_err_i) in prop_err.iter().enumerate() {
        let err = if state_delta[(i, 0)] > REL_ERR_THRESH {
            (prop_err_i / state_delta[(i, 0)]).abs()
        } else {
            prop_err_i.abs()
        };
        if err > max_err {
            max_err = err;
        }
    }
    max_err
}

/// A largest step error control which effectively computes the L1 norm of the provided Vector of size 3
///
/// Note that this error controller should be preferrably be used only with slices of a state with the same units.
/// For example, one should probably use this for position independently of using it for the velocity.
/// (Source)[https://github.com/ChristopherRabotin/GMAT/blob/37201a6290e7f7b941bc98ee973a527a5857104b/src/base/forcemodel/ODEModel.cpp#L3033]
pub fn largest_step(prop_err: &Vector3<f64>, candidate: &Vector3<f64>, cur_state: &Vector3<f64>) -> f64 {
    let state_delta = candidate - cur_state;
    let mag = state_delta[(0, 0)].abs() + state_delta[(1, 0)].abs() + state_delta[(2, 0)].abs();
    let err = prop_err[(0, 0)].abs() + prop_err[(1, 0)].abs() + prop_err[(2, 0)].abs();
    if mag > REL_ERR_THRESH {
        err / mag
    } else {
        err
    }
}

/// A largest state error control
///
/// (Source)[https://github.com/ChristopherRabotin/GMAT/blob/37201a6290e7f7b941bc98ee973a527a5857104b/src/base/forcemodel/ODEModel.cpp#L3018]
pub fn largest_state(prop_err: &Vector3<f64>, candidate: &Vector3<f64>, cur_state: &Vector3<f64>) -> f64 {
    let sum_state = candidate + cur_state;
    let mag = (sum_state[(0, 0)].abs() + sum_state[(1, 0)].abs() + sum_state[(2, 0)].abs()) * 0.5;
    let err = prop_err[(0, 0)].abs() + prop_err[(1, 0)].abs() + prop_err[(2, 0)].abs();
    if mag > REL_ERR_THRESH {
        err / mag
    } else {
        err
    }
}

/// An RSS step error control which effectively computes the L2 norm of the provided Vector of size 3
///
/// Note that this error controller should be preferrably be used only with slices of a state with the same units.
/// For example, one should probably use this for position independently of using it for the velocity.
/// (Source)[https://github.com/ChristopherRabotin/GMAT/blob/37201a6290e7f7b941bc98ee973a527a5857104b/src/base/forcemodel/ODEModel.cpp#L3045]
pub fn rss_step(prop_err: &Vector3<f64>, candidate: &Vector3<f64>, cur_state: &Vector3<f64>) -> f64 {
    let mag = (candidate - cur_state).norm();
    let err = prop_err.norm();
    if mag > REL_ERR_THRESH {
        err / mag
    } else {
        err
    }
}

/// An RSS state error control: when in doubt, use this error controller, especially for high accurracy.
///
/// Here is the warning from GMAT R2016a on this error controller:
/// > This is a more stringent error control method than [`rss_step`] that is often used as the default in other software such as STK.
/// > If you set [the] accuracy to a very small number, 1e-13 for example, and set  the error control to [`rss_step`], integrator
/// > performance will be poor, for little if any improvement in the accuracy of the orbit integration.
/// For more best practices of these integrators (which clone those in GMAT), please refer to the
/// [GMAT reference](https://github.com/ChristopherRabotin/GMAT/blob/37201a6290e7f7b941bc98ee973a527a5857104b/doc/help/src/Resource_NumericalIntegrators.xml#L1292).
/// (Source)[https://github.com/ChristopherRabotin/GMAT/blob/37201a6290e7f7b941bc98ee973a527a5857104b/src/base/forcemodel/ODEModel.cpp#L3004]
pub fn rss_state(prop_err: &Vector3<f64>, candidate: &Vector3<f64>, cur_state: &Vector3<f64>) -> f64 {
    let mag = 0.5 * (candidate + cur_state).norm();
    let err = prop_err.norm();
    if mag > REL_ERR_THRESH {
        err / mag
    } else {
        err
    }
}

/// A largest step error control which effectively computes the L1 norm of the provided vector
/// composed of two vectors of the same unit, both of size 3 (e.g. position + velocity).
pub fn largest_step_pos_vel(prop_err: &Vector6<f64>, candidate: &Vector6<f64>, cur_state: &Vector6<f64>) -> f64 {
    let err_radius = largest_step(
        &prop_err.fixed_rows::<U3>(0).into_owned(),
        &candidate.fixed_rows::<U3>(3).into_owned(),
        &cur_state.fixed_rows::<U3>(0).into_owned(),
    );
    let err_velocity = largest_step(
        &prop_err.fixed_rows::<U3>(3).into_owned(),
        &candidate.fixed_rows::<U3>(3).into_owned(),
        &cur_state.fixed_rows::<U3>(3).into_owned(),
    );

    if err_radius > err_velocity {
        err_radius
    } else {
        err_velocity
    }
}

/// An RSS state error control which effectively for the provided vector
/// composed of two vectors of the same unit, both of size 3 (e.g. position + velocity).
pub fn rss_state_pos_vel(prop_err: &Vector6<f64>, candidate: &Vector6<f64>, cur_state: &Vector6<f64>) -> f64 {
    let err_radius = rss_state(
        &prop_err.fixed_rows::<U3>(0).into_owned(),
        &candidate.fixed_rows::<U3>(3).into_owned(),
        &cur_state.fixed_rows::<U3>(0).into_owned(),
    );
    let err_velocity = rss_state(
        &prop_err.fixed_rows::<U3>(3).into_owned(),
        &candidate.fixed_rows::<U3>(3).into_owned(),
        &cur_state.fixed_rows::<U3>(3).into_owned(),
    );

    if err_radius > err_velocity {
        err_radius
    } else {
        err_velocity
    }
}

/// A largest step error control which effectively computes the L1 norm of the provided vector
/// composed of two vectors of the same unit, both of size 3 (e.g. position + velocity).
pub fn rss_step_pos_vel(prop_err: &Vector6<f64>, candidate: &Vector6<f64>, cur_state: &Vector6<f64>) -> f64 {
    let err_radius = rss_step(
        &prop_err.fixed_rows::<U3>(0).into_owned(),
        &candidate.fixed_rows::<U3>(3).into_owned(),
        &cur_state.fixed_rows::<U3>(0).into_owned(),
    );
    let err_velocity = rss_step(
        &prop_err.fixed_rows::<U3>(3).into_owned(),
        &candidate.fixed_rows::<U3>(3).into_owned(),
        &cur_state.fixed_rows::<U3>(3).into_owned(),
    );

    if err_radius > err_velocity {
        err_radius
    } else {
        err_velocity
    }
}