1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
use super::celestial::CelestialDynamics;
use super::deltavctrl::DeltaVctrl;
use super::Dynamics;
use crate::dimensions::{VectorN, U6};
use celestia::State;

pub struct MissionArc<'a, D: DeltaVctrl> {
    pub celestial: CelestialDynamics<'a>,
    pub ctrl: D,
}

impl<'a, D: DeltaVctrl> MissionArc<'a, D> {
    pub fn new(celestial: CelestialDynamics<'a>, ctrl: D) -> Self {
        Self { celestial, ctrl }
    }
}

impl<'a, D: DeltaVctrl> Dynamics for MissionArc<'a, D> {
    type StateSize = U6;
    type StateType = State;

    /// Returns the relative time
    fn time(&self) -> f64 {
        self.celestial.time()
    }

    /// State of the mission arc is always the celestial state
    fn state(&self) -> Self::StateType {
        self.celestial.state()
    }

    /// Mission arc state is a vector of six zeros followed by the fuel mass
    fn state_vector(&self) -> VectorN<f64, Self::StateSize> {
        self.celestial.state_vector()
    }

    fn set_state(&mut self, new_t: f64, new_state: &VectorN<f64, Self::StateSize>) {
        self.celestial.set_state(new_t, new_state);
        self.ctrl.next(&self.celestial.state());
    }

    fn eom(&self, t: f64, state: &VectorN<f64, Self::StateSize>) -> VectorN<f64, Self::StateSize> {
        let mut d_x = self.celestial.eom(t, &state);
        let eom_state = self.celestial.state_ctor(t, &state);
        let dv_inertial = self.ctrl.ctrl_vector(&eom_state);

        for i in 0..3 {
            d_x[i + 3] = dv_inertial[i];
        }

        d_x
    }
}