1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
//! The tensor module defines an N-dimensional matrix for use in scientific computing.
//!
//! Many of the things in this module are lifted out of the `tensor` namespace, which means you can
//! do things like:
//!
//! ```
//! use numeric::Tensor;
//! ```

use std::vec::Vec;
use num::traits::cast;
use std::rc::Rc;
use traits::{TensorTrait, NumericTrait};
use num::traits::{Zero, One};
use std::ops::Add;

/// An implementation of an N-dimensional matrix.
/// A quick example:
///
/// ```
/// use numeric::Tensor;
/// let t = Tensor::new(vec![1.0f64, 3.0, 2.0, 2.0]).reshape(&[2, 2]);
/// println!("t = {}", t);
/// ```
///
/// Will output:
///
/// ```text
/// t =
///  1 3
///  2 2
/// [Tensor<f64> of shape 2x2]
/// ```
pub struct Tensor<T> {
    /// The underlying data matrix, stored in row-major order.
    data: Rc<Vec<T>>,

    /// The shape of the tensor.
    shape: Vec<usize>,

    /// The strides for each axis.
    strides: Vec<isize>,

    /// Memory offset.
    mem_offset: usize,

    /// Canonical C contiguous memory layout. This will likely be removed or changed in future
    /// updates.
    canonical: bool,
}

pub struct TensorIterator<T> {
    tensor: Tensor<T>,
    cur_index: Vec<usize>,
    cur_axis: usize,
    cur_pos: isize,
}

impl<T: TensorTrait> Iterator for TensorIterator<T> {
    type Item = T;
    fn next(&mut self) -> Option<T> {
        let dims = self.tensor.ndim();
        if dims == 0 {
            if self.cur_axis == 0 {
                self.cur_axis = 1;
                return Some(self.tensor.scalar_value());
            }
        } else {
            loop {
                if self.cur_index[self.cur_axis] == self.tensor.shape[self.cur_axis] {
                    if self.cur_axis == 0 {
                        break;
                    }
                    self.cur_pos -= (self.tensor.shape[self.cur_axis] as isize) *
                                     self.tensor.strides[self.cur_axis];
                    self.cur_index[self.cur_axis] = 0;
                    self.cur_axis -= 1;
                    self.cur_index[self.cur_axis] += 1;
                } else {
                    let x = self.tensor.data[self.cur_pos as usize];
                    self.cur_axis = dims - 1;
                    self.cur_index[self.cur_axis] += 1;
                    self.cur_pos += self.tensor.strides[self.cur_axis];
                    return Some(x);
                }
                self.cur_pos += self.tensor.strides[self.cur_axis];
            }
        }
        None
    }
}

// Common type-specific tensors

/// Type alias for `Tensor<f64>`
pub type DoubleTensor = Tensor<f64>;

/// Type alias for `Tensor<f32>`
pub type SingleTensor = Tensor<f32>;

/// Used for advanced slicing of a `Tensor`.
#[derive(Copy, Clone, Debug)]
pub enum AxisIndex {
    /// Indexes from start to end for this axis.
    Full,
    /// Indexes from start to end for all axes in the middle. A maximum of one can be used.
    Ellipsis,
    /// Creates a new axis of length 1 at this location.
    NewAxis,
    /// Picks one element of an axis. This will remove that axis from the tensor.
    Index(isize),
    /// Makes a strided slice `(start, end, step)`, with the same semantics as Python's Numpy. If
    /// `start` is specified as `None`, it will start from the first element if `step` is positive
    /// and last element if `step` is negative. If `end` is `None`, it will imply beyond the last
    /// element if `step` is positive and one before the first element if `step` is negative.
    StridedSlice(Option<isize>, Option<isize>, isize),
}

pub use AxisIndex::{Full, Ellipsis, NewAxis, Index, StridedSlice};

#[macro_use]
pub mod macros;

mod dot;
mod display;
mod generics;
mod summary;
mod eq;
mod indexing;
mod concat;
mod convert;
mod binary;

use num::traits::{Num, NumCast};

fn default_strides_old(shape: &[usize]) -> Vec<isize> {
    let mut strides = Vec::with_capacity(shape.len());

    let mut prod = 1;
    for i in (0..shape.len()).rev() {
        strides.insert(0, prod as isize);
        prod *= shape[i];
    }
    strides
}


impl<T: TensorTrait> Tensor<T> {
    pub unsafe fn as_ptr(&self) -> *const T {
        self.data.as_ptr()
    }

    pub unsafe fn as_mut_ptr(&mut self) -> *mut T {
        self.slice_mut().as_mut_ptr()
    }

    /// Creates a new tensor from a `Vec` object. It will take ownership of the vector.
    pub fn new(data: Vec<T>) -> Tensor<T> {
        let len = data.len();
        Tensor { data: Rc::new(data), shape: vec![len], strides: vec![1],
                 mem_offset: 0, canonical: true }
    }

    /// Creates a zero-filled tensor of the specified shape.
    pub fn empty(shape: &[usize]) -> Tensor<T> {
        //let data = Vector::with_capacity(
        let strides = default_strides_old(shape);
        let size = shape_product(shape);
        let sh = shape.to_vec();

        let mut data = Vec::with_capacity(size);
        // Fill with potentially random elements.
        // TODO: Possibly revise this (solution that doesn't need unsafe?)
        unsafe {
            data.set_len(size);
        }
        Tensor { data: Rc::new(data), shape: sh, strides: strides, mem_offset: 0, canonical: true }
    }

    pub fn mem_slice(&self) -> &[T] {
        &self.data[..]
    }

    pub fn mem_slice_mut(&mut self) -> &mut [T] {
        &mut Rc::make_mut(&mut self.data)[..]
    }

    /// Returns a flat slice of the tensor. Only works for canonical tensors.
    pub fn slice(&self) -> &[T] {
        assert!(self.canonical);
        &self.data[..]
    }

    /// Returns a mutable flat slice of the tensor. Only works for canonical tensors.
    /// Will make a copy of the underyling data if the tensor is not unique.
    pub fn slice_mut(&mut self) -> &mut [T] {
        assert!(self.canonical);
        &mut Rc::make_mut(&mut self.data)[..]
    }

    pub fn iter(&self) -> TensorIterator<T> {
        if self.ndim() == 0 {
            TensorIterator{
                tensor: self.clone(),
                cur_index: vec![],
                cur_axis: 0,
                cur_pos: self.mem_offset as isize,
            }
        } else {
            TensorIterator{
                tensor: self.clone(),
                cur_index: vec![0; self.ndim()],
                cur_axis: self.ndim() - 1,
                cur_pos: self.mem_offset as isize,
            }
        }
    }

    /// Creates a Tensor representing a scalar
    pub fn scalar(value: T) -> Tensor<T> {
        Tensor { data: Rc::new(vec![value]), shape: vec![],
                 strides: vec![], mem_offset: 0, canonical: true }
    }

    pub fn is_scalar(&self) -> bool {
        self.ndim() == 0 && self.size() == 1
    }

    pub fn scalar_value(&self) -> T {
        debug_assert!(self.is_scalar(), "Tensor must be scalar to use scalar_value()");
        self.data[self.mem_offset]
    }

    /// Creates a new tensor of a given shape filled with the specified value.
    pub fn filled(shape: &[usize], v: T) -> Tensor<T> {
        let size = shape_product(shape);
        let strides = default_strides_old(shape);
        let sh = shape.to_vec();
        let data = vec![v; size];
        Tensor { data: Rc::new(data), shape: sh, strides: strides, mem_offset: 0, canonical: true }
    }

    /// Returns the shape of the tensor.
    pub fn shape(&self) -> &Vec<usize> {
        &self.shape
    }

    /// Returns length of single dimension.
    pub fn dim(&self, axis: usize) -> usize {
        self.shape[axis]
    }

    /// Returns a reference of the underlying data vector.
    pub fn data(&self) -> &Vec<T> {
        &self.data
    }

    /// Flattens the tensor to one-dimensional.
    pub fn flatten(&self) -> Tensor<T> {
        let t = self.canonize();
        let s = t.size();
        Tensor { data: t.data, shape: vec![s], strides: vec![1], mem_offset: 0, canonical: true }
    }

    /// Make a dense copy of the tensor. This means it will have default strides and no memory
    /// offset.
    pub fn canonize(&self) -> Tensor<T> {
        if self.canonical {
            Tensor {
                data: self.data.clone(),
                shape: self.shape.clone(),
                strides: self.strides.clone(),
                mem_offset: self.mem_offset,
                canonical: true,
            }
        } else {
            let s = self.shape.iter().fold(1, |acc, &item| acc * item);
            let mut v: Vec<T> = Vec::with_capacity(s);
            let def_strides = default_strides_old(&self.shape);
            let mut i = self.mem_offset as isize;
            let dims = self.shape.len();
            let mut cur_index: Vec<usize> = vec![0; dims];
            let mut cur_axis = dims - 1;
            loop {
                if cur_index[cur_axis] == self.shape[cur_axis] {
                    if cur_axis == 0 {
                        break;
                    }
                    i -= (self.shape[cur_axis] as isize) * self.strides[cur_axis];
                    cur_index[cur_axis] = 0;
                    cur_axis -= 1;
                    cur_index[cur_axis] += 1;
                } else {
                    let x = self.data[i as usize];
                    v.push(x);
                    cur_axis = dims - 1;
                    cur_index[cur_axis] += 1;
                }
                i += self.strides[cur_axis];
            }
            Tensor {
                data: Rc::new(v),
                shape: self.shape.clone(),
                strides: def_strides,
                mem_offset: 0,
                canonical: true,
            }
        }
    }

    pub fn canonize_inplace(&mut self) -> () {
        if !self.canonical {
            let t = self.canonize();
            self.data = t.data;
            self.shape = t.shape;
            self.strides = t.strides;
            self.mem_offset = t.mem_offset;
            self.canonical = true;
        }
    }

    /*
    fn default_strides(&self) -> Vec<isize> {
        let mut ss = vec![1; self.shape.len()];
        for k in 1..ss.len() {
            let i = ss.len() - 1 - k;
            ss[i] = ss[i + 1] * (self.shape[i + 1] as isize);
        }
        ss
    }
    */

    /// Returns the strides of tensor for each axis.
    /*
    pub fn strides(&self) -> Vec<isize> {
        /*
        let mut ss = vec![1; self.shape.len()];
        for k in 1..ss.len() {
            let i = ss.len() - 1 - k;
            ss[i] = ss[i + 1] * self.shape[i + 1];
        }
        ss
        */
        self.strides.clone()
    }
*/

    /// Returns number of elements in the underlying vector.
    #[inline]
    fn data_size(&self) -> usize {
        self.data.len()
    }

    /// Returns number of elements in the tensor.
    #[inline]
    pub fn size(&self) -> usize {
        shape_product(&self.shape)
    }

    /// Returns the number of axes. This is the same as the length of the shape array.
    #[inline]
    pub fn ndim(&self) -> usize {
        self.shape.len()
    }

    /*
    fn resolve_axis(&self, axis: usize, index: isize) -> usize {
        if index < 0 {
            (self.shape[axis] as isize + index) as usize
        } else {
            index as usize
        }
    }
    */

    fn expand_indices(&self, selection: &[AxisIndex]) -> (Vec<AxisIndex>, Vec<isize>) {
        // The returned axis will not contain any AxisIndex::Ellipsis
        let mut sel: Vec<AxisIndex> = Vec::with_capacity(self.shape.len());
        let mut newaxes: Vec<isize> = Vec::with_capacity(self.shape.len());

        // Count how many non NewAxis and non Ellipsis
        let mut nondotted = 0;
        for s in selection {
            match *s {
                AxisIndex::NewAxis | AxisIndex::Ellipsis => {
                    nondotted += 0;
                },
                _ => {
                    nondotted += 1;
                }
            }
        }

        // Add an extra index to newaxes that represent insertion before the first axis
        newaxes.push(0);
        let mut ellipsis_found = false;
        for s in selection {
            match *s {
                AxisIndex::Ellipsis => {
                    assert!(!ellipsis_found, "At most one AxisIndex::Ellipsis may be used");
                    assert!(self.shape.len() >= nondotted);

                    for _ in 0..(self.shape.len() - nondotted) {
                        sel.push(AxisIndex::Full);
                        newaxes.push(0);
                    }
                    ellipsis_found = true;
                },
                AxisIndex::NewAxis => {
                    // Ignore these at this point
                    let n = newaxes.len();
                    newaxes[n - 1] += 1;
                },
                _ => {
                    newaxes.push(0);
                    sel.push(*s);
                }
            }
        }
        while sel.len() < self.shape.len() {
            sel.push(AxisIndex::Full);
        }
        while newaxes.len() < self.shape.len() + 1 {
            newaxes.push(0)
        }
        assert!(sel.len() == self.shape.len(), "Too many indices specified");
        debug_assert!(newaxes.len() == self.shape.len() + 1, "newaxis wrong length");

        (sel, newaxes)
    }

    /// Takes slices (subsets) of tensors and returns a tensor as a new object. Uses the
    /// `AxisIndex` enum to specify indexing for each axis.
    ///
    /// ```
    /// use numeric::{DoubleTensor, Ellipsis, StridedSlice, Index, Full};
    ///
    /// let t = DoubleTensor::ones(&[2, 3, 4]);
    ///
    /// t.index(&[Ellipsis, StridedSlice(Some(1), Some(3), 1)]); // shape [2, 3, 2]
    /// t.index(&[Index(-1)]); // shape [3, 4]
    /// t.index(&[Full, StridedSlice(Some(1), None, 1), Index(1)]); // shape [2, 2]
    /// ```
    pub fn index(&self, selection: &[AxisIndex]) -> Tensor<T> {
        let (sel, mut newaxes) = self.expand_indices(selection);
        debug_assert!(sel.len() == self.ndim());
        debug_assert!(newaxes.len() == self.ndim() + 1);

        let dims = sel.len();

        let mut shape: Vec<usize> = Vec::with_capacity(dims);
        let mut strides: Vec<isize> = Vec::with_capacity(dims);
        let mut offsets: Vec<usize> = Vec::with_capacity(dims);

        //let mut ss = 1usize;
        let mut i = dims;
        for &s in sel.iter().rev() {
            let axis_size = self.shape[i - 1];
            let (offset, size, step): (usize, isize, isize) = match s {
                AxisIndex::Full => {
                    (0, axis_size as isize, 1)
                },
                AxisIndex::Index(idx) => {
                    newaxes[i - 1] -= 1;
                    if idx >= 0 {
                        (idx as usize, 1isize, 1)
                    } else if -idx as usize <= axis_size {
                        ((axis_size as isize + idx) as usize, 1isize, 1)
                    } else {
                        // Out of index
                        panic!("Out of index");
                    }
                },
                AxisIndex::StridedSlice(maybe_start, maybe_end, step) => {
                    let st = match maybe_start {
                        Some(v) => if v >= 0 { v
                        } else {
                            axis_size as isize + v
                        },
                        None => if step >= 0 {
                            0
                        } else {
                            axis_size as isize - 1
                        },
                    };

                    let en = match maybe_end {
                        Some(v) => if v >= 0 {
                            v
                        } else {
                            axis_size as isize + v
                        },
                        None => if step >= 0 {
                            axis_size as isize
                        } else {
                            -1
                        },
                    };

                    (st as usize, ((en - st).abs() + step.abs() - 1) / step.abs(), step)
                },
                AxisIndex::Ellipsis | AxisIndex::NewAxis => {
                    // Should have been removed by expand_indices at this point
                    unreachable!();
                },
            };

            shape.insert(0, size as usize);
            strides.insert(0, self.strides[i-1] * step);
            offsets.insert(0, offset);
            i -= 1;
        }

        let mut mem_offset = self.mem_offset as isize;
        for j in 0..dims {
            mem_offset += self.strides[j] * offsets[j] as isize;
        }

        let mut new_shape = Vec::new();
        let mut new_strides = Vec::new();
        for i in 0..shape.len() {
            if newaxes[i] >= 0 {
                for _ in 0..newaxes[i] {
                    new_shape.push(1);
                    new_strides.push(strides[i]);
                }
                new_shape.push(shape[i]);
                new_strides.push(strides[i]);
            }
        }
        for _ in 0..newaxes[newaxes.len() - 1] {
            new_shape.push(1);
            new_strides.push(1);
        }

        Tensor {
            data: self.data.clone(),
            shape: new_shape,
            strides: new_strides,
            mem_offset: mem_offset as usize,
            canonical: false,
        }
    }

    /// Returns the underlying memory as a vector.
    pub fn base(&self) -> Tensor<T> {
        Tensor {
            data: self.data.clone(),
            shape: vec![self.data.len()],
            strides: vec![1],
            mem_offset: 0,
            canonical: true,
        }
    }

    /// Similar to `index`, except this updates the tensor with `other` instead of returning them.
    pub fn index_set(&mut self, selection: &[AxisIndex], other: &Tensor<T>) {
        // TODO: This is a quick and dirty way and can be made much faster
        let indices: Tensor<usize> = Tensor::range(self.size()).reshape_proper(&self.shape[..]);
        let sub = indices.index(selection);
        assert!(sub.shape() == other.shape());
        assert!(sub.size() == other.size());

        self.canonize_inplace();
        let mut data = self.slice_mut();
        for (i, v) in sub.iter().zip(other.iter()) {
            data[i] = v;
        }
    }

    pub fn bool_index(&self, indices: &Tensor<bool>) -> Tensor<T> {
        let mut s = 0;
        for v in indices.iter() {
            if v {
                s += 1;
            }
        }
        let mut t = Tensor::empty(&[s]);
        let mut j = 0;
        {
            let mut data = t.slice_mut();
            for (idx, v) in indices.iter().zip(self.iter()) {
                if idx {
                    data[j] = v;
                    j += 1;
                }
            }
        }
        t
    }

    pub fn bool_index_set(&mut self, indices: &Tensor<bool>, values: &Tensor<T>) {
        self.canonize_inplace();
        let mut s = 0;
        for v in indices.iter() {
            if v {
                s += 1;
            }
        }
        if values.is_scalar() {
            let v = values.scalar_value();
            let mut data = self.slice_mut();
            let mut j = 0;
            for idx in indices.iter() {
                if idx {
                    data[j] = v;
                    j += 1;
                }
            }
        } else {
            assert!(values.size() == s);
            let mut data = self.slice_mut();
            let mut value_iter = values.iter();
            for (i, idx) in indices.iter().enumerate() {
                if idx {
                    data[i] = value_iter.next().unwrap();
                }
            }
        }
    }

    /// Takes a flatten index (if in row-major order) and returns a vector of the per-axis indices.
    pub fn unravel_index(&self, index: usize) -> Vec<usize> {
        // Can only be used if tensor is canonical
        assert!(self.canonical);

        let mut ii: Vec<usize> = Vec::with_capacity(self.ndim());
        let mut c = index;
        for i in 0..self.ndim() {
            ii.push(c / self.strides[i] as usize);
            c %= self.strides[i] as usize;
        }
        ii
    }

    /// Takes an array of per-axis indices and returns a flattened index (in row-major order).
    pub fn ravel_index(&self, ii: &[usize]) -> usize {
        assert_eq!(ii.len(), self.ndim());
        let mut index = 0;
        for i in 0..self.ndim() {
            index += self.strides[i] * ii[i] as isize;
        }
        index as usize
    }

    // Converts a shape that allows -1 to one with actual sizes
    fn convert_shape(&self, shape: &[isize]) -> Vec<usize> {
        let mut missing_index: Option<usize> = None;
        let mut total = 1;
        let mut sh = Vec::with_capacity(shape.len());

        for i in 0..shape.len() {
            if shape[i] == -1 {
                assert!(missing_index == None, "Can only specify one axis as -1");
                missing_index = Some(i);
                sh.push(0);
            } else {
                let v = shape[i] as usize;
                total *= v;
                sh.push(v);
            }
        }

        if let Some(i) = missing_index {
            sh[i] = self.size() / total;
        }
        sh
    }

    fn reshape_proper(self, proper_shape: &[usize]) -> Tensor<T> {
        // TODO: Are there cases where we do not need to canonize?
        let t = self.canonize();
        let s = proper_shape.iter().fold(1, |acc, &item| acc * item);
        assert_eq!(t.size(), s, "Reshape must preserve size (source: {}, target: {})", t.size(), s);
        let strides = default_strides_old(&proper_shape);
        Tensor { data: t.data, shape: proper_shape.to_vec(),
               strides: strides, mem_offset: t.mem_offset, canonical: t.canonical}
    }

    /// Reshapes the data. This moves the data, so no memory is allocated.
    pub fn reshape(self, shape: &[isize]) -> Tensor<T> {
        let proper_shape = self.convert_shape(shape);
        self.reshape_proper(&proper_shape)
    }

    fn with_ndim(&self, ndim: usize) -> Tensor<T> {
        let mut shape = vec![1usize; ndim];
        let mut strides = vec![0isize; ndim];
        for i in 0..self.ndim() {
            shape[ndim + i - self.ndim()] = self.shape[i];
            strides[ndim + i - self.ndim()] = self.strides[i];
        }

        Tensor {
            data: self.data.clone(),
            shape: shape,
            strides: strides,
            mem_offset: self.mem_offset,
            canonical: self.canonical,
        }
    }

    #[inline]
    fn get2(&self, i: usize, j: usize) -> T {
        self.data[self.mem_offset + (i as isize * self.strides[0] +
                                     j as isize * self.strides[1]) as usize]
    }

    #[inline]
    fn set2(&mut self, i: usize, j: usize, v: T) {
        self.canonize_inplace();
        let i = self.mem_offset + (i as isize * self.strides[0] +
                                   j as isize * self.strides[1]) as usize;
        let mut data = self.slice_mut();
        data[i] = v;
    }

    /// Sets all the values according to another tensor.
    pub fn set(&mut self, other: &Tensor<T>) -> () {
        let data_size = self.data_size();
        if data_size != other.size() {
            unsafe {
                Rc::make_mut(&mut self.data).set_len(other.size());
            }
        }

        let mut data = self.slice_mut();
        for (i, v) in other.iter().enumerate() {
            data[i] = v;
        }
    }

    /// Swaps two axes.
    pub fn swapaxes(&self, axis1: usize, axis2: usize) -> Tensor<T> {
        assert!(axis1 < self.ndim());
        assert!(axis2 < self.ndim());
        assert!(axis1 != axis2);

        let mut t = self.clone();
        let tmp = t.strides[axis1];
        t.strides[axis1] = t.strides[axis2];
        t.strides[axis2] = tmp;

        let tmp2 = t.shape[axis1];
        t.shape[axis1] = t.shape[axis2];
        t.shape[axis2] = tmp2;

        t.canonical = false;
        t
    }

    /// Transposes a matrix (for now, requires it to be 2D).
    pub fn transpose(&self) -> Tensor<T> {
        assert!(self.ndim() == 2, "Can only transpose a matrix (2D tensor)");
        self.swapaxes(0, 1)
    }
}

impl<T: Copy + Zero> Tensor<T> {
    /// Creates a zero-filled tensor of the specified shape.
    pub fn zeros(shape: &[usize]) -> Tensor<T> {
        Tensor::filled(shape, T::zero())
    }
}

impl<T: Copy + One> Tensor<T> {
    /// Creates a one-filled tensor of the specified shape.
    pub fn ones(shape: &[usize]) -> Tensor<T> {
        Tensor::filled(shape, T::one())
    }

}

impl<T: Copy + Zero + One> Tensor<T> {
    /// Creates an identity 2-D tensor (matrix). That is, all elements are zero except the diagonal
    /// which is filled with ones.
    pub fn eye(size: usize) -> Tensor<T> {
        let mut t = Tensor::zeros(&[size, size]);
        for k in 0..size {
            t.set2(k, k, T::one());
        }
        t
    }
}

impl<T: Copy + Add + Zero + One> Tensor<T> {
    /// Creates a new vector with integer values starting at 0 and counting up:
    /// 
    /// ```
    /// use numeric::DoubleTensor;
    ///
    /// let t = DoubleTensor::range(5); // [  0.00   1.00   2.00   3.00   4.00]
    /// ```
    pub fn range(size: usize) -> Tensor<T> {
        let mut data = Vec::with_capacity(size);
        let mut v = T::zero();
        for _ in 0..size {
            data.push(v);
            v = v + T::one();
        }
        Tensor {
            data: Rc::new(data),
            shape: vec![size],
            strides: vec![1],
            mem_offset: 0,
            canonical: true,
        }
    }
}

impl<T: TensorTrait + Num + NumCast> Tensor<T> {
    /// Creates a new vector between two values at constant increments. The number of elements is
    /// specified.
    pub fn linspace(start: T, stop: T, num: usize) -> Tensor<T> {
        let mut t = Tensor::empty(&[num]);
        let mut fi: T = T::zero();
        let d: T = (stop - start) / (cast::<usize, T>(num).unwrap() - T::one());
        {
            let mut data = t.slice_mut();
            for i in 0..num {
                data[i] = start + fi * d;
                fi = fi + T::one();
            }
        }
        t
    }
}

impl<T: NumericTrait> Tensor<T> {
    /// Creates a scalar specified as a `f64` and internally casted to `T`
    pub fn fscalar(value: f64) -> Tensor<T> {
        Tensor {
            data: Rc::new(vec![cast(value).unwrap()]),
            shape: vec![],
            strides: vec![],
            mem_offset: 0,
            canonical: true,
        }
    }
}

fn shape_product(shape: &[usize]) -> usize {
   shape.iter().fold(1, |acc, &v| acc * v)
}

impl<T: TensorTrait> Clone for Tensor<T> {
    fn clone(&self) -> Tensor<T> {
        Tensor {
            data: self.data.clone(),
            shape: self.shape.clone(),
            strides: self.strides.clone(),
            mem_offset: self.mem_offset,
            canonical: self.canonical,
        }
    }
}