var searchIndex = {}; searchIndex["numeric"] = {"doc":"Numeric Rust provides a foundation for doing scientific computing with Rust. It aims to be for\nRust what Numpy is for Python.","items":[[0,"tensor","numeric","The tensor module defines a N-dimensional matrix for used in scientific computing.",null,null],[3,"Tensor","numeric::tensor","An implementation of an N-dimensional matrix.\nA quick example:",null,null],[4,"AxisIndex","","Used for advanced slicing of a `Tensor`.",null,null],[13,"Full","","Indexes from start to end for this axis.",0,null],[13,"Ellipsis","","Indexes from start to end for all axes in the middle. A maximum of one can be used.",0,null],[13,"NewAxis","","Creates a new axis of length 1 at this location.",0,null],[13,"Index","","Picks one elements of an axis. This will remove that axis from the tensor.",0,null],[13,"Slice","","Specifies a half-open range. Slice(2, 5) will pick out indices 2, 3 and 4.",0,null],[13,"SliceFrom","","Specifies the start (inclusive) and to the end.",0,null],[13,"SliceTo","","Specifies the end (exclusive) from the start.",0,null],[11,"dot","","Takes the product of two tensors. If the tensors are both matrices (2D), then a matrix\nmultiplication is taken. If the tensors are both vectors (1D), the scalar product is taken.",1,{"inputs":[{"name":"tensor"},{"name":"tensor"}],"output":{"name":"tensor"}}],[11,"dot","","Takes the product of two tensors. If the tensors are both matrices (2D), then a matrix\nmultiplication is taken. If the tensors are both vectors (1D), the scalar product is taken.",1,{"inputs":[{"name":"tensor"},{"name":"tensor"}],"output":{"name":"tensor"}}],[11,"fmt","","",1,null],[11,"fmt","","",1,null],[11,"fmt","","",1,null],[11,"fmt","","",1,null],[11,"fmt","","",1,null],[11,"fmt","","",1,null],[11,"fmt","","",1,null],[11,"fmt","","",1,null],[11,"fmt","","",1,null],[11,"fmt","","",1,null],[11,"fmt","","",1,null],[11,"fmt","","",1,null],[11,"fmt","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"add","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"sub","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"mul","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"div","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"rem","","",1,null],[11,"max","","",1,null],[11,"min","","",1,null],[11,"eq","","",1,null],[11,"index","","",1,null],[11,"index_mut","","",1,null],[11,"index","","",1,null],[11,"index_mut","","",1,null],[11,"index","","",1,null],[11,"index_mut","","",1,null],[11,"index","","",1,null],[11,"index_mut","","",1,null],[11,"index","","",1,null],[11,"index_mut","","",1,null],[11,"index","","",1,null],[11,"index_mut","","",1,null],[11,"concat","","",1,{"inputs":[{"name":"tensor"},{"name":"tensor"},{"name":"usize"}],"output":{"name":"tensor"}}],[11,"convert","","Returns a new tensor with the elements converted to the selected type.",1,null],[11,"to_f32","","Short-hand for `convert::<f32>()`.",1,null],[11,"to_f65","","Short-hand for `convert::<f64>()`.",1,null],[6,"DoubleTensor","","Type alias for `Tensor<f64>`",null,null],[6,"SingleTensor","","Type alias for `Tensor<f32>`",null,null],[11,"clone","","",0,null],[11,"new","","Creates a new tensor from a `Vec` object. It will take ownership of the vector.",1,{"inputs":[{"name":"vec"}],"output":{"name":"tensor"}}],[11,"empty","","Creates a zero-filled tensor of the specified shape.",1,null],[11,"scalar","","",1,{"inputs":[{"name":"t"}],"output":{"name":"tensor"}}],[11,"is_scalar","","",1,null],[11,"unwrap","","",1,null],[11,"value","","",1,null],[11,"filled","","Creates a new tensor of a given shape filled with the specified value.",1,null],[11,"shape","","Returns the shape of the tensor.",1,null],[11,"data","","Returns a reference of the underlying data vector.",1,null],[11,"flatten","","Flattens the tensor to one-dimensional. Takes ownership and returns a new tensor.",1,null],[11,"strides","","Returns the strides of tensor for each axis.",1,null],[11,"size","","Returns number of elements in the tensor.",1,null],[11,"ndim","","Returns the number of axes. This is the same as the length of the shape array.",1,null],[11,"slice","","Takes slices (subsets) of tensors and returns a tensor as a new object. Uses the\n`AxisIndex` enum to specify indexing for each axis.",1,null],[11,"unravel_index","","Takes a flatten index (in row-major order) and returns a vector of the per-axis indices.",1,null],[11,"ravel_index","","Takes an array of per-axis indices and returns a flattened index (in row-major order).",1,null],[11,"reshaped","","",1,null],[11,"zeros","","Creates a zero-filled tensor of the specified shape.",1,null],[11,"ones","","Creates a one-filled tensor of the specified shape.",1,null],[11,"eye","","Creates an identify 2-D tensor (matrix). That is, all elements are zero except the diagonal\nwhich is filled with ones.",1,{"inputs":[{"name":"usize"}],"output":{"name":"tensor"}}],[11,"swapaxes","","Swaps two axes. This returns a new Tensor, since the memory needs to be re-arranged.",1,null],[11,"transpose","","Transposes a matrix (for now, requires it to be 2D).",1,null],[11,"range","","Creates a new vector with integer values starting at 0 and counting up:",1,{"inputs":[{"name":"usize"}],"output":{"name":"tensor"}}],[11,"linspace","","Creates a new vector between two values at constant increments. The number of elements is\nspecified.",1,{"inputs":[{"name":"t"},{"name":"t"},{"name":"usize"}],"output":{"name":"tensor"}}],[11,"clone","","",1,null],[0,"math","numeric","Contains mathematical functions that operate on tensors. These functions are largely modelled\nafter what is available natively in Rust.",null,null],[5,"ln","numeric::math","",null,{"inputs":[{"name":"tensor"}],"output":{"name":"tensor"}}],[5,"log10","","",null,{"inputs":[{"name":"tensor"}],"output":{"name":"tensor"}}],[5,"log2","","",null,{"inputs":[{"name":"tensor"}],"output":{"name":"tensor"}}],[5,"sin","","",null,{"inputs":[{"name":"tensor"}],"output":{"name":"tensor"}}],[5,"cos","","",null,{"inputs":[{"name":"tensor"}],"output":{"name":"tensor"}}],[5,"tan","","",null,{"inputs":[{"name":"tensor"}],"output":{"name":"tensor"}}],[5,"asin","","",null,{"inputs":[{"name":"tensor"}],"output":{"name":"tensor"}}],[5,"acos","","",null,{"inputs":[{"name":"tensor"}],"output":{"name":"tensor"}}],[5,"atan","","",null,{"inputs":[{"name":"tensor"}],"output":{"name":"tensor"}}],[5,"exp_m1","","",null,{"inputs":[{"name":"tensor"}],"output":{"name":"tensor"}}],[5,"ln_1p","","",null,{"inputs":[{"name":"tensor"}],"output":{"name":"tensor"}}],[5,"sinh","","",null,{"inputs":[{"name":"tensor"}],"output":{"name":"tensor"}}],[5,"cosh","","",null,{"inputs":[{"name":"tensor"}],"output":{"name":"tensor"}}],[5,"tanh","","",null,{"inputs":[{"name":"tensor"}],"output":{"name":"tensor"}}],[5,"asinh","","",null,{"inputs":[{"name":"tensor"}],"output":{"name":"tensor"}}],[5,"acosh","","",null,{"inputs":[{"name":"tensor"}],"output":{"name":"tensor"}}],[5,"atanh","","",null,{"inputs":[{"name":"tensor"}],"output":{"name":"tensor"}}],[5,"log","","",null,{"inputs":[{"name":"tensor"},{"name":"t"}],"output":{"name":"tensor"}}],[5,"gt","","",null,{"inputs":[{"name":"tensor"},{"name":"tensor"}],"output":{"name":"tensor"}}],[0,"random","numeric","The random module provides methods of randomizing tensors.",null,null],[3,"RandomState","numeric::random","",null,null],[11,"new","","",2,{"inputs":[{"name":"usize"}],"output":{"name":"randomstate"}}],[11,"uniform","","Generates a tensor by independently drawing samples from a uniform in the range [`low`,\n`high`). This is appropriate for integer types as well.",2,null],[8,"TensorType","numeric","Numeric is a short-hand for all traits that need to be implemented for `T` in the `Tensor<T>`\nstruct.",null,null],[8,"Numeric","","",null,null]],"paths":[[4,"AxisIndex"],[3,"Tensor"],[3,"RandomState"]]}; initSearch(searchIndex);