1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
use crate::NumOrd;
use core::convert::TryFrom;
use core::cmp::Ordering;

// Case0: swap operand, this introduces overhead so only used for non-primitive types
macro_rules! impl_by_swap {
    ($($t1:ty | $t2:ty;)*) => ($(
        impl NumOrd<$t2> for $t1 {
            #[inline]
            fn num_partial_cmp(&self, other: &$t2) -> Option<Ordering> {
                other.num_partial_cmp(self).map(|o| o.reverse())
            }
        }
    )*);
}

// Case1: forward to builtin operator for same types
macro_rules! impl_ord_equal_types {
    ($($t:ty)*) => ($(
        impl NumOrd<$t> for $t {
            #[inline]
            fn num_partial_cmp(&self, other: &$t) -> Option<Ordering> {
                self.partial_cmp(&other)
            }
        }
    )*);
}

impl_ord_equal_types! {
    u8 u16 u32 u64 u128 usize
    i8 i16 i32 i64 i128 isize
    f32 f64
}

// Case2: forward to same types by safe casting
macro_rules! impl_ord_with_casting {
    ($($small:ty => $big:ty;)*) => ($(
        impl NumOrd<$small> for $big {
            #[inline]
            fn num_partial_cmp(&self, other: &$small) -> Option<Ordering> {
                self.partial_cmp(&<$big>::from(*other))
            }
        }
        impl NumOrd<$big> for $small {
            #[inline]
            fn num_partial_cmp(&self, other: &$big) -> Option<Ordering> {
                <$big>::from(*self).partial_cmp(other)
            }
        }
    )*);
}

impl_ord_with_casting! {
    // uN, uM for N < M
    u8  => u128; u8  => u64; u8  => u32; u8 => u16;
    u16 => u128; u16 => u64; u16 => u32;
    u32 => u128; u32 => u64;
    u64 => u128;

    // iN, iM for N > M
    i8  => i128; i8  => i64; i8  => i32; i8 => i16;
    i16 => i128; i16 => i64; i16 => i32;
    i32 => i128; i32 => i64;
    i64 => i128;

    // iN, uM for N > M
    u8  => i128; u8  => i64; u8  => i32; u8 => i16;
    u16 => i128; u16 => i64; u16 => i32;
    u32 => i128; u32 => i64;
    u64 => i128;

    // fN, fM for N > M
    f32 => f64;

    // f32, uM for 24 >= M, since f32 can exactly represent all integers (-2^24,2^24)
    // f64, uM for 53 >= M, since f64 can exactly represent all integers (-2^53,2^53)
    u8 => f32; u16 => f32;
    u8 => f64; u16 => f64; u32 => f64;

    // f32, iM for 24 >= M
    // f64, iM for 53 >= M
    // since iM's range [-2^(M-1),2^(M-1)) includes -2^(M-1), bounds do not change
    i8 => f32; i16 => f32;
    i8 => f64; i16 => f64; i32 => f64;
}

// Case3: trivial logic for comparing signed and unsigned integers
macro_rules! impl_ord_between_diff_sign {
    ($($signed:ty => $unsigned:ty;)*) => ($(
        impl NumOrd<$signed> for $unsigned {
            #[inline]
            fn num_partial_cmp(&self, other: &$signed) -> Option<Ordering> {
                if other < &0 {
                    Some(Ordering::Greater)
                } else {
                    self.partial_cmp(&<$unsigned>::try_from(*other).unwrap())
                }
            }
        }
        impl NumOrd<$unsigned> for $signed {
            #[inline]
            fn num_partial_cmp(&self, other: &$unsigned) -> Option<Ordering> {
                if self < &0 {
                    Some(Ordering::Less)
                } else {
                    <$unsigned>::try_from(*self).unwrap().partial_cmp(other)
                }
            }
        }
    )*);
}

impl_ord_between_diff_sign! {
    i8   => u128; i8  => u64; i8  => u32 ; i8  => u16; i8 => u8;
    i16  => u128; i16 => u64; i16 => u32 ; i16 => u16;
    i32  => u128; i32 => u64; i32 => u32 ;
    i64  => u128; i64 => u64;
    i128 => u128; isize => usize;
}

// Case4: special handling for comparing float and integer types
// Note: if `a` is an integer, `a cmp b` equals to `(a, trunc(b)) cmp (trunc(b), b)` (lexicographically)
#[cfg(feature = "libm")]
trait Trunc {
    fn trunc(self) -> Self;
}
#[cfg(feature = "libm")]
impl Trunc for f32 {
    fn trunc(self) -> Self {
        libm::truncf(self)
    }
}
#[cfg(feature = "libm")]
impl Trunc for f64 {
    fn trunc(self) -> Self {
        libm::trunc(self)
    }
}

macro_rules! impl_ord_between_int_float {
    ($($float:ty | $int:ty;)*) => ($(
        impl NumOrd<$float> for $int {
            #[inline]
            fn num_partial_cmp(&self, other: &$float) -> Option<Ordering> {
                if other.is_nan() {
                    None
                } else if other < &(<$int>::MIN as $float) { // integer min is on binary boundary
                    Some(Ordering::Greater)
                } else if other >= &(<$int>::MAX as $float) { // integer max is not on binary boundary
                    Some(Ordering::Less)
                } else {
                    let trunc = other.trunc();
                    (self, &trunc).partial_cmp(&(&(trunc as $int), other))
                }
            }
        }
        impl NumOrd<$int> for $float {
            #[inline]
            fn num_partial_cmp(&self, other: &$int) -> Option<Ordering> {
                if self.is_nan() {
                    None
                } else if self < &(<$int>::MIN as $float) { // integer min is on binary boundary
                    Some(Ordering::Less)
                } else if self >= &(<$int>::MAX as $float) { // integer max is not on binary boundary
                    Some(Ordering::Greater)
                } else {
                    let trunc = self.trunc();
                    (&(trunc as $int), self).partial_cmp(&(other, &trunc))
                }
            }
        }
    )*);
}

impl_ord_between_int_float! {
    f32|u128; f32|i128; f32|u64; f32|i64; f32|u32; f32|i32;
    f64|u128; f64|i128; f64|u64; f64|i64;
}

// Case5: forward size integers to corresponding concrete types
macro_rules! impl_ord_with_size_types {
    ($($t:ty)*) => ($(
        impl NumOrd<$t> for usize {
            #[inline]
            fn num_partial_cmp(&self, other: &$t) -> Option<Ordering> {
                #[cfg(target_pointer_width = "32")]
                { (*self as u32).num_partial_cmp(other) }
                #[cfg(target_pointer_width = "64")]
                { (*self as u64).num_partial_cmp(other) }
            }
        }
        impl NumOrd<usize> for $t {
            #[inline]
            fn num_partial_cmp(&self, other: &usize) -> Option<Ordering> {
                #[cfg(target_pointer_width = "32")]
                { self.num_partial_cmp(&(*other as u32)) }
                #[cfg(target_pointer_width = "64")]
                { self.num_partial_cmp(&(*other as u64)) }
            }
        }
        impl NumOrd<$t> for isize {
            #[inline]
            fn num_partial_cmp(&self, other: &$t) -> Option<Ordering> {
                #[cfg(target_pointer_width = "32")]
                { (*self as i32).num_partial_cmp(other) }
                #[cfg(target_pointer_width = "64")]
                { (*self as i64).num_partial_cmp(other) }
            }
        }
        impl NumOrd<isize> for $t {
            #[inline]
            fn num_partial_cmp(&self, other: &isize) -> Option<Ordering> {
                #[cfg(target_pointer_width = "32")]
                { self.num_partial_cmp(&(*other as i32)) }
                #[cfg(target_pointer_width = "64")]
                { self.num_partial_cmp(&(*other as i64)) }
            }
        }
    )*);
}

#[cfg(target_pointer_width = "64")]
impl_ord_with_size_types!(u8 u16 u32 u64 u128 i8 i16 i32 i64 i128 f32 f64);

#[cfg(feature = "num-bigint")]
mod _num_bigint {
    use super::*;
    use num_bigint::{BigInt, BigUint};
    use num_traits::{FromPrimitive, Signed};

    impl_ord_equal_types!(BigInt BigUint);
    impl_ord_with_casting! {
        u8 => BigUint; u16 => BigUint; u32 => BigUint; u64 => BigUint; u128 => BigUint;
        i8 => BigInt; i16 => BigInt; i32 => BigInt; i64 => BigInt; i128 => BigInt;
        u8 => BigInt; u16 => BigInt; u32 => BigInt; u64 => BigInt; u128 => BigInt;
    }
    impl_ord_between_diff_sign! {
        i8 => BigUint; i16 => BigUint; i32 => BigUint; i64 => BigUint; i128 => BigUint;
    }
    impl_ord_with_size_types!(BigInt BigUint);

    // specialized implementations
    impl NumOrd<f32> for BigUint {
        #[inline]
        fn num_partial_cmp(&self, other: &f32) -> Option<Ordering> {
            if other.is_nan() {
                None
            } else if other < &0. {
                Some(Ordering::Greater)
            } else if other.is_infinite() && other.is_sign_positive() {
                Some(Ordering::Less)
            } else {
                let trunc = other.trunc();
                (self, &trunc).partial_cmp(&(&BigUint::from_f32(trunc).unwrap(), other))
            }
        }
    }
    impl NumOrd<f64> for BigUint {
        #[inline]
        fn num_partial_cmp(&self, other: &f64) -> Option<Ordering> {
            if other.is_nan() {
                None
            } else if other < &0. {
                Some(Ordering::Greater)
            } else if other.is_infinite() && other.is_sign_positive() {
                Some(Ordering::Less)
            } else {
                let trunc = other.trunc();
                (self, &trunc).partial_cmp(&(&BigUint::from_f64(trunc).unwrap(), other))
            }
        }
    }
    impl NumOrd<f32> for BigInt {
        #[inline]
        fn num_partial_cmp(&self, other: &f32) -> Option<Ordering> {
            if other.is_nan() {
                None
            } else if other.is_infinite() {
                if other.is_sign_positive() {
                    Some(Ordering::Less)
                } else {
                    Some(Ordering::Greater)
                }
            } else {
                let trunc = other.trunc();
                (self, &trunc).partial_cmp(&(&BigInt::from_f32(trunc).unwrap(), other))
            }
        }
    }
    impl NumOrd<f64> for BigInt {
        #[inline]
        fn num_partial_cmp(&self, other: &f64) -> Option<Ordering> {
            if other.is_nan() {
                None
            } else if other.is_infinite() {
                if other.is_sign_positive() {
                    Some(Ordering::Less)
                } else {
                    Some(Ordering::Greater)
                }
            } else {
                let trunc = other.trunc();
                (self, &trunc).partial_cmp(&(&BigInt::from_f64(trunc).unwrap(), other))
            }
        }
    }
    impl NumOrd<BigInt> for BigUint {
        #[inline]
        fn num_partial_cmp(&self, other: &BigInt) -> Option<Ordering> {
            if other.is_negative() {
                Some(Ordering::Greater)
            } else {
                self.partial_cmp(other.magnitude())
            }
        }
    }
    impl_by_swap!{ f32|BigInt; f32|BigUint; f64|BigInt; f64|BigUint; BigInt|BigUint; }
}