1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
use crate::{DualNum, DualNumFloat, StaticMat, StaticVec};
use num_traits::{Float, FloatConst, FromPrimitive, Inv, Num, One, Signed, Zero};
use std::fmt;
use std::iter::{Product, Sum};
use std::marker::PhantomData;
use std::ops::{
    Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign,
};

/// A hyper dual number for the calculation of second partial derivatives.
#[derive(PartialEq, Copy, Clone, Debug)]
pub struct HyperDualVec<T, F, const M: usize, const N: usize> {
    /// Real part of the hyper dual number
    pub re: T,
    /// Partial derivative part of the hyper dual number
    pub eps1: StaticVec<T, M>,
    /// Partial derivative part of the hyper dual number
    pub eps2: StaticVec<T, N>,
    /// Second partial derivative part of the hyper dual number
    pub eps1eps2: StaticMat<T, M, N>,
    f: PhantomData<F>,
}

pub type HyperDualVec32<const M: usize, const N: usize> = HyperDualVec<f32, f32, M, N>;
pub type HyperDualVec64<const M: usize, const N: usize> = HyperDualVec<f64, f64, M, N>;
pub type HyperDual<T, F> = HyperDualVec<T, F, 1, 1>;
pub type HyperDual32 = HyperDual<f32, f32>;
pub type HyperDual64 = HyperDual<f64, f64>;

impl<T, F, const M: usize, const N: usize> HyperDualVec<T, F, M, N> {
    /// Create a new hyper dual number from its fields.
    #[inline]
    pub fn new(
        re: T,
        eps1: StaticVec<T, M>,
        eps2: StaticVec<T, N>,
        eps1eps2: StaticMat<T, M, N>,
    ) -> Self {
        Self {
            re,
            eps1,
            eps2,
            eps1eps2,
            f: PhantomData,
        }
    }
}

impl<T, F> HyperDual<T, F> {
    /// Create a new scalar hyper dual number from its fields.
    #[inline]
    pub fn new_scalar(re: T, eps1: T, eps2: T, eps1eps2: T) -> Self {
        Self::new(
            re,
            StaticVec::new_vec([eps1]),
            StaticVec::new_vec([eps2]),
            StaticMat::new([[eps1eps2]]),
        )
    }
}

impl<T: Copy + Zero + AddAssign, F, const M: usize, const N: usize> HyperDualVec<T, F, M, N> {
    /// Create a new hyper dual number from the real part.
    #[inline]
    pub fn from_re(re: T) -> Self {
        HyperDualVec::new(re, StaticVec::zero(), StaticVec::zero(), StaticMat::zero())
    }
}

impl<T: One, F, const N: usize> HyperDualVec<T, F, 1, N> {
    /// Derive a hyper dual number w.r.t. the first variable.
    #[inline]
    pub fn derive1(mut self) -> Self {
        self.eps1[0] = T::one();
        self
    }
}

impl<T: One, F, const M: usize> HyperDualVec<T, F, M, 1> {
    /// Derive a hyper dual number w.r.t. the 2nd variable.
    #[inline]
    pub fn derive2(mut self) -> Self {
        self.eps2[0] = T::one();
        self
    }
}

impl<T: One, F, const M: usize, const N: usize> StaticVec<HyperDualVec<T, F, M, N>, M> {
    /// Derive a vector of hyper dual numbers w.r.t. to the first set of variables.
    #[inline]
    pub fn derive1(mut self) -> Self {
        for i in 0..M {
            self[i].eps1[i] = T::one();
        }
        self
    }
}

impl<T: One, F, const M: usize, const N: usize> StaticVec<HyperDualVec<T, F, M, N>, N> {
    /// Derive a vector of hyper dual numbers w.r.t. to the second set of variables.
    /// ```
    /// # use approx::assert_relative_eq;
    /// # use num_dual::{HyperDualVec64, DualNum, StaticVec};
    /// let x = HyperDualVec64::<1, 2>::from_re(2.0).derive1();
    /// let v = StaticVec::new_vec([2.0, 3.0]).map(HyperDualVec64::<1, 2>::from_re).derive2();
    /// let n = (x.powi(2)*v[0].powi(2) + v[1].powi(2)).sqrt();
    /// assert_eq!(n.re, 5.0);
    /// assert_relative_eq!(n.eps1[0], 1.6);
    /// assert_relative_eq!(n.eps2[0], 1.6);
    /// assert_relative_eq!(n.eps2[1], 0.6);
    /// assert_relative_eq!(n.eps1eps2[(0,0)], 1.088);
    /// assert_relative_eq!(n.eps1eps2[(0,1)], -0.192);
    /// ```
    #[inline]
    pub fn derive2(mut self) -> Self {
        for i in 0..N {
            self[i].eps2[i] = T::one();
        }
        self
    }
}

/* chain rule */
impl<T: DualNum<F>, F: Float, const M: usize, const N: usize> HyperDualVec<T, F, M, N> {
    #[inline]
    fn chain_rule(&self, f0: T, f1: T, f2: T) -> Self {
        Self::new(
            f0,
            self.eps1 * f1,
            self.eps2 * f1,
            self.eps1eps2 * f1 + self.eps1.transpose_matmul(&self.eps2) * f2,
        )
    }
}

/* product rule */
impl<'a, 'b, T: DualNum<F>, F: Float, const M: usize, const N: usize>
    Mul<&'a HyperDualVec<T, F, M, N>> for &'b HyperDualVec<T, F, M, N>
{
    type Output = HyperDualVec<T, F, M, N>;
    #[inline]
    fn mul(self, other: &HyperDualVec<T, F, M, N>) -> HyperDualVec<T, F, M, N> {
        HyperDualVec::new(
            self.re * other.re,
            other.eps1 * self.re + self.eps1 * other.re,
            other.eps2 * self.re + self.eps2 * other.re,
            other.eps1eps2 * self.re
                + self.eps1.transpose_matmul(&other.eps2)
                + other.eps1.transpose_matmul(&self.eps2)
                + self.eps1eps2 * other.re,
        )
    }
}

/* quotient rule */
impl<'a, 'b, T: DualNum<F>, F: Float, const M: usize, const N: usize>
    Div<&'a HyperDualVec<T, F, M, N>> for &'b HyperDualVec<T, F, M, N>
{
    type Output = HyperDualVec<T, F, M, N>;
    #[inline]
    fn div(self, other: &HyperDualVec<T, F, M, N>) -> HyperDualVec<T, F, M, N> {
        let inv = other.re.recip();
        let inv2 = inv * inv;
        HyperDualVec::new(
            self.re * inv,
            (self.eps1 * other.re - other.eps1 * self.re) * inv2,
            (self.eps2 * other.re - other.eps2 * self.re) * inv2,
            self.eps1eps2 * inv
                - (other.eps1eps2 * self.re
                    + self.eps1.transpose_matmul(&other.eps2)
                    + other.eps1.transpose_matmul(&self.eps2))
                    * inv2
                + other.eps1.transpose_matmul(&other.eps2)
                    * ((T::one() + T::one()) * self.re * inv2 * inv),
        )
    }
}

/* string conversions */
impl<T: fmt::Display, F: fmt::Display, const M: usize, const N: usize> fmt::Display
    for HyperDualVec<T, F, M, N>
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "{} + {}ε1 + {}ε2 + {}ε1ε2",
            self.re, self.eps1, self.eps2, self.eps1eps2
        )
    }
}

impl_second_derivatives!(HyperDualVec, [M, N], [eps1, eps2, eps1eps2]);
impl_dual!(HyperDualVec, [M, N], [eps1, eps2, eps1eps2]);