1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
use miette::SourceSpan;
use serde::{Deserialize, Serialize};
use std::ops::Deref;

/// A spanned area of interest, generic over what kind of thing is of interest
#[derive(Clone, Copy, Debug, Serialize, Deserialize, PartialEq, Eq)]
pub struct Spanned<T> {
    pub item: T,
    pub span: Span,
}

impl<T> Spanned<T> {
    /// Map to a spanned reference of the inner type, i.e. `Spanned<T> -> Spanned<&T>`.
    pub fn as_ref(&self) -> Spanned<&T> {
        Spanned {
            item: &self.item,
            span: self.span,
        }
    }

    /// Map to a mutable reference of the inner type, i.e. `Spanned<T> -> Spanned<&mut T>`.
    pub fn as_mut(&mut self) -> Spanned<&mut T> {
        Spanned {
            item: &mut self.item,
            span: self.span,
        }
    }

    /// Map to the result of [`.deref()`](std::ops::Deref::deref) on the inner type.
    ///
    /// This can be used for example to turn `Spanned<Vec<T>>` into `Spanned<&[T]>`.
    pub fn as_deref(&self) -> Spanned<&<T as Deref>::Target>
    where
        T: Deref,
    {
        Spanned {
            item: self.item.deref(),
            span: self.span,
        }
    }

    /// Map the spanned item with a function.
    pub fn map<U>(self, f: impl FnOnce(T) -> U) -> Spanned<U> {
        Spanned {
            item: f(self.item),
            span: self.span,
        }
    }
}

/// Helper trait to create [`Spanned`] more ergonomically.
pub trait IntoSpanned: Sized {
    /// Wrap items together with a span into [`Spanned`].
    ///
    /// # Example
    ///
    /// ```
    /// # use nu_protocol::{Span, IntoSpanned};
    /// # let span = Span::test_data();
    /// let spanned = "Hello, world!".into_spanned(span);
    /// assert_eq!("Hello, world!", spanned.item);
    /// assert_eq!(span, spanned.span);
    /// ```
    fn into_spanned(self, span: Span) -> Spanned<Self>;
}

impl<T> IntoSpanned for T {
    fn into_spanned(self, span: Span) -> Spanned<Self> {
        Spanned { item: self, span }
    }
}

/// Spans are a global offset across all seen files, which are cached in the engine's state. The start and
/// end offset together make the inclusive start/exclusive end pair for where to underline to highlight
/// a given point of interest.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct Span {
    pub start: usize,
    pub end: usize,
}

impl Span {
    pub fn new(start: usize, end: usize) -> Self {
        debug_assert!(
            end >= start,
            "Can't create a Span whose end < start, start={start}, end={end}"
        );

        Self { start, end }
    }

    pub const fn unknown() -> Self {
        Self { start: 0, end: 0 }
    }

    /// Note: Only use this for test data, *not* live data, as it will point into unknown source
    /// when used in errors.
    pub const fn test_data() -> Self {
        Self::unknown()
    }

    pub fn offset(&self, offset: usize) -> Self {
        Self::new(self.start - offset, self.end - offset)
    }

    pub fn contains(&self, pos: usize) -> bool {
        self.start <= pos && pos < self.end
    }

    pub fn contains_span(&self, span: Self) -> bool {
        self.start <= span.start && span.end <= self.end
    }

    /// Point to the space just past this span, useful for missing values
    pub fn past(&self) -> Self {
        Self {
            start: self.end,
            end: self.end,
        }
    }

    /// Returns the minimal [`Span`] that encompasses both of the given spans.
    ///
    /// The two `Spans` can overlap in the middle,
    /// but must otherwise be in order by satisfying:
    /// - `self.start <= after.start`
    /// - `self.end <= after.end`
    ///
    /// If this is not guaranteed to be the case, use [`Span::merge`] instead.
    pub fn append(self, after: Self) -> Self {
        debug_assert!(
            self.start <= after.start && self.end <= after.end,
            "Can't merge two Spans that are not in order"
        );
        Self {
            start: self.start,
            end: after.end,
        }
    }

    /// Returns the minimal [`Span`] that encompasses both of the given spans.
    ///
    /// The spans need not be in order or have any relationship.
    ///
    /// [`Span::append`] is slightly more efficient if the spans are known to be in order.
    pub fn merge(self, other: Self) -> Self {
        Self {
            start: usize::min(self.start, other.start),
            end: usize::max(self.end, other.end),
        }
    }

    /// Returns the minimal [`Span`] that encompasses all of the spans in the given slice.
    ///
    /// The spans are assumed to be in order, that is, all consecutive spans must satisfy:
    /// - `spans[i].start <= spans[i + 1].start`
    /// - `spans[i].end <= spans[i + 1].end`
    ///
    /// (Two consecutive spans can overlap as long as the above is true.)
    ///
    /// Use [`Span::merge_many`] if the spans are not known to be in order.
    pub fn concat(spans: &[Self]) -> Self {
        // TODO: enable assert below
        // debug_assert!(!spans.is_empty());
        debug_assert!(spans.windows(2).all(|spans| {
            let &[a, b] = spans else {
                return false;
            };
            a.start <= b.start && a.end <= b.end
        }));
        Self {
            start: spans.first().map(|s| s.start).unwrap_or(0),
            end: spans.last().map(|s| s.end).unwrap_or(0),
        }
    }

    /// Returns the minimal [`Span`] that encompasses all of the spans in the given iterator.
    ///
    /// The spans need not be in order or have any relationship.
    ///
    /// [`Span::concat`] is more efficient if the spans are known to be in order.
    pub fn merge_many(spans: impl IntoIterator<Item = Self>) -> Self {
        spans
            .into_iter()
            .reduce(Self::merge)
            .unwrap_or(Self::unknown())
    }
}

impl From<Span> for SourceSpan {
    fn from(s: Span) -> Self {
        Self::new(s.start.into(), s.end - s.start)
    }
}

/// An extension trait for `Result`, which adds a span to the error type.
pub trait ErrSpan {
    type Result;

    /// Add the given span to the error type `E`, turning it into a `Spanned<E>`.
    ///
    /// Some auto-conversion methods to `ShellError` from other error types are available on spanned
    /// errors, to give users better information about where an error came from. For example, it is
    /// preferred when working with `std::io::Error`:
    ///
    /// ```no_run
    /// use nu_protocol::{ErrSpan, ShellError, Span};
    /// use std::io::Read;
    ///
    /// fn read_from(mut reader: impl Read, span: Span) -> Result<Vec<u8>, ShellError> {
    ///     let mut vec = vec![];
    ///     reader.read_to_end(&mut vec).err_span(span)?;
    ///     Ok(vec)
    /// }
    /// ```
    fn err_span(self, span: Span) -> Self::Result;
}

impl<T, E> ErrSpan for Result<T, E> {
    type Result = Result<T, Spanned<E>>;

    fn err_span(self, span: Span) -> Self::Result {
        self.map_err(|err| err.into_spanned(span))
    }
}