1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
//! Synchronous implementation for [`Node`].

use crate::Node;

impl<T> Node<T> {
    /// Calls the given closure for each node in the tree rooted by self following then pre-order traversal.
    pub fn preorder<F>(&self, mut f: F)
    where
        F: FnMut(&Self),
    {
        pub fn immersion<T, F>(root: &Node<T>, f: &mut F)
        where
            F: FnMut(&Node<T>),
        {
            f(root);
            root.children().iter().for_each(|child| immersion(child, f));
        }

        immersion(self, &mut f)
    }

    /// Calls the given closure for each node in the tree rooted by self following then pre-order traversal.
    pub fn preorder_mut<F>(&mut self, mut f: F)
    where
        F: FnMut(&mut Self),
    {
        pub fn immersion_mut<T, F>(root: &mut Node<T>, f: &mut F)
        where
            F: FnMut(&mut Node<T>),
        {
            f(root);
            root.children_mut()
                .iter_mut()
                .for_each(|child| immersion_mut(child, f));
        }

        immersion_mut(self, &mut f)
    }

    /// Calls the given closure for each node in the tree rooted by self following the post-order traversal.
    pub fn postorder<F>(&self, mut f: F)
    where
        F: FnMut(&Self),
    {
        pub fn immersion<T, F>(root: &Node<T>, f: &mut F)
        where
            F: FnMut(&Node<T>),
        {
            root.children().iter().for_each(|child| immersion(child, f));
            f(root);
        }

        immersion(self, &mut f)
    }

    /// Calls the given closure for each node in the tree rooted by self following the post-order traversal.
    pub fn postorder_mut<F>(&mut self, mut f: F)
    where
        F: FnMut(&mut Self),
    {
        pub fn immersion_mut<T, F>(root: &mut Node<T>, f: &mut F)
        where
            F: FnMut(&mut Node<T>),
        {
            root.children_mut()
                .iter_mut()
                .for_each(|child| immersion_mut(child, f));
            f(root);
        }

        immersion_mut(self, &mut f)
    }

    /// Calls the given closure recursivelly along the tree rooted by self.
    /// This method traverses the tree in post-order, and so the second parameter of f is a vector
    /// containing the returned value of f for each child in that node given as the first parameter.
    pub fn reduce<F, R>(&self, mut f: F) -> R
    where
        F: FnMut(&Self, Vec<R>) -> R,
        R: Sized,
    {
        fn immersion<T, F, R>(root: &Node<T>, f: &mut F) -> R
        where
            F: FnMut(&Node<T>, Vec<R>) -> R,
        {
            let results = root
                .children()
                .iter()
                .map(|child| immersion(child, f))
                .collect();

            f(root, results)
        }

        immersion(self, &mut f)
    }

    /// Calls the given closure recursivelly along the tree rooted by self.
    /// This method traverses the tree in post-order, and so the second parameter of f is a vector
    /// containing the returned value of f for each child in that node given as the first parameter.
    pub fn reduce_mut<F, R>(&mut self, mut f: F) -> R
    where
        F: FnMut(&mut Self, Vec<R>) -> R,
        R: Sized,
    {
        pub fn immersion_mut<T, F, R>(root: &mut Node<T>, f: &mut F) -> R
        where
            F: FnMut(&mut Node<T>, Vec<R>) -> R,
        {
            let results = root
                .children_mut()
                .iter_mut()
                .map(|child| immersion_mut(child, f))
                .collect();

            f(root, results)
        }

        immersion_mut(self, &mut f)
    }

    /// Calls the given closure recursivelly along the tree rooted by self.
    /// This method traverses the tree in pre-order, and so the second parameter of f is the returned
    /// value of calling f on the parent of that node given as the first parameter.
    pub fn cascade<F, R>(&self, base: R, mut f: F)
    where
        F: FnMut(&Self, &R) -> R,
        R: Sized,
    {
        pub fn immersion<T, F, R>(root: &Node<T>, base: &R, f: &mut F)
        where
            F: FnMut(&Node<T>, &R) -> R,
        {
            let base = f(root, base);
            root.children()
                .iter()
                .for_each(|child| immersion(child, &base, f));
        }

        immersion(self, &base, &mut f);
    }

    /// Calls the given closure recursivelly along the tree rooted by self.
    /// This method traverses the tree in pre-order, and so the second parameter of f is the returned
    /// value of calling f on the parent of that node given as the first parameter.
    pub fn cascade_mut<F, R>(&mut self, base: R, mut f: F)
    where
        F: FnMut(&mut Self, &R) -> R,
        R: Sized,
    {
        fn immersion_mut<T, F, R>(root: &mut Node<T>, base: &R, f: &mut F)
        where
            F: FnMut(&mut Node<T>, &R) -> R,
        {
            let base = f(root, base);
            root.children_mut()
                .iter_mut()
                .for_each(|child| immersion_mut(child, &base, f));
        }

        immersion_mut(self, &base, &mut f);
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::node;

    #[test]
    fn test_node_preorder() {
        let root = node!(10, node!(20, node!(40)), node!(30, node!(50)));

        let mut result = Vec::new();
        root.preorder(|n| result.push(*n.value()));

        assert_eq!(result, vec![10, 20, 40, 30, 50]);
    }

    #[test]
    fn test_node_preorder_mut() {
        let mut root = node!(10_i32, node!(20, node!(40)), node!(30, node!(50)));

        let mut result = Vec::new();
        root.preorder_mut(|n| {
            n.set_value(n.value().saturating_add(1));
            result.push(*n.value())
        });

        assert_eq!(result, vec![11, 21, 41, 31, 51]);
    }

    #[test]
    fn test_node_postorder() {
        let root = node!(10, node!(20, node!(40)), node!(30, node!(50)));

        let mut result = Vec::new();
        root.postorder(|n| result.push(*n.value()));
        assert_eq!(result, vec![40, 20, 50, 30, 10]);
    }

    #[test]
    fn test_node_postorder_mut() {
        let mut root = node!(10_i32, node!(20, node!(40)), node!(30, node!(50)));

        let mut result = Vec::new();
        root.postorder_mut(|n| {
            n.set_value(n.value().saturating_add(1));
            result.push(*n.value())
        });

        assert_eq!(result, vec![41, 21, 51, 31, 11]);
    }

    #[test]
    fn test_node_reduce() {
        let root = node!(10, node!(20, node!(40)), node!(30, node!(50)));

        let sum = root.reduce(|n, results| n.value() + results.iter().sum::<i32>());
        assert_eq!(sum, 150);
    }

    #[test]
    fn test_node_reduce_mut() {
        let mut root = node!(10_i32, node!(20, node!(40)), node!(30, node!(50)));

        let sum = root.reduce_mut(|n, results| {
            n.set_value(n.value().saturating_add(1));
            n.value() + results.iter().sum::<i32>()
        });

        assert_eq!(sum, 155);
    }

    #[test]
    fn test_node_cascade() {
        let root = node!(10, node!(20, node!(40)), node!(30, node!(50)));

        let mut result = Vec::new();
        root.cascade(0, |n, parent_value| {
            result.push(n.value() + parent_value);
            n.value() + parent_value
        });

        assert_eq!(result, vec![10, 30, 70, 40, 90]);
    }

    #[test]
    fn test_node_cascade_mut() {
        let mut root = node!(10, node!(20, node!(40)), node!(30, node!(50)));

        root.cascade_mut(0, |n, parent_value| {
            let next = n.value() + parent_value;
            n.set_value(*parent_value);
            next
        });

        assert_eq!(root.value, 0);
        assert_eq!(root.children[0].value, 10);
        assert_eq!(root.children[1].value, 10);
        assert_eq!(root.children[0].children[0].value, 30);
        assert_eq!(root.children[1].children[0].value, 40);
    }
}