1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
use std::{fmt, marker::PhantomData, rc::Rc};

use crate::{IntoServiceFactory, Service, ServiceFactory};

/// Apply middleware to a service.
pub fn apply<T, S, R, C, U>(t: T, factory: U) -> ApplyMiddleware<T, S, C>
where
    S: ServiceFactory<R, C>,
    T: Middleware<S::Service>,
    U: IntoServiceFactory<S, R, C>,
{
    ApplyMiddleware::new(t, factory.into_factory())
}

/// The `Middleware` trait defines the interface of a service factory that wraps inner service
/// during construction.
///
/// Middleware wraps inner service and runs during
/// inbound and/or outbound processing in the request/response lifecycle.
/// It may modify request and/or response.
///
/// For example, timeout middleware:
///
/// ```rust,ignore
/// pub struct Timeout<S> {
///     service: S,
///     timeout: Duration,
/// }
///
/// impl<S, R> Service<R> for Timeout<S>
/// where
///     S: Service<R>,
/// {
///     type Response = S::Response;
///     type Error = TimeoutError<S::Error>;
///
///     fn poll_ready(&self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
///         self.service.poll_ready(cx).map_err(TimeoutError::Service)
///     }
///
///     async fn call(&self, req: S::Request) -> Result<Self::Response, Self::Error> {
///         match select(sleep(self.timeout), ctx.call(&self.service, req)).await {
///             Either::Left(_) => Err(TimeoutError::Timeout),
///             Either::Right(res) => res.map_err(TimeoutError::Service),
///         }
///     }
/// }
/// ```
///
/// Timeout service in above example is decoupled from underlying service implementation
/// and could be applied to any service.
///
/// The `Middleware` trait defines the interface of a middleware factory, defining how to
/// construct a middleware Service. A Service that is constructed by the factory takes
/// the Service that follows it during execution as a parameter, assuming
/// ownership of the next Service.
///
/// Factory for `Timeout` middleware from the above example could look like this:
///
/// ```rust,ignore
/// pub struct TimeoutMiddleware {
///     timeout: Duration,
/// }
///
/// impl<S> Middleware<S> for TimeoutMiddleware<E>
/// {
///     type Service = Timeout<S>;
///
///     fn create(&self, service: S) -> Self::Service {
///         ok(Timeout {
///             service,
///             timeout: self.timeout,
///         })
///     }
/// }
/// ```
pub trait Middleware<S> {
    /// The middleware `Service` value created by this factory
    type Service;

    /// Creates and returns a new middleware Service
    fn create(&self, service: S) -> Self::Service;
}

impl<T, S> Middleware<S> for Rc<T>
where
    T: Middleware<S>,
{
    type Service = T::Service;

    fn create(&self, service: S) -> T::Service {
        self.as_ref().create(service)
    }
}

/// `Apply` middleware to a service factory.
pub struct ApplyMiddleware<T, S, C>(Rc<(T, S)>, PhantomData<C>);

impl<T, S, C> ApplyMiddleware<T, S, C> {
    /// Create new `ApplyMiddleware` service factory instance
    pub(crate) fn new(mw: T, svc: S) -> Self {
        Self(Rc::new((mw, svc)), PhantomData)
    }
}

impl<T, S, C> Clone for ApplyMiddleware<T, S, C> {
    fn clone(&self) -> Self {
        Self(self.0.clone(), PhantomData)
    }
}

impl<T, S, C> fmt::Debug for ApplyMiddleware<T, S, C>
where
    T: fmt::Debug,
    S: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("ApplyMiddleware")
            .field("service", &self.0 .1)
            .field("middleware", &self.0 .0)
            .finish()
    }
}

impl<T, S, R, C> ServiceFactory<R, C> for ApplyMiddleware<T, S, C>
where
    S: ServiceFactory<R, C>,
    T: Middleware<S::Service>,
    T::Service: Service<R>,
{
    type Response = <T::Service as Service<R>>::Response;
    type Error = <T::Service as Service<R>>::Error;

    type Service = T::Service;
    type InitError = S::InitError;

    #[inline]
    async fn create(&self, cfg: C) -> Result<Self::Service, Self::InitError> {
        Ok(self.0 .0.create(self.0 .1.create(cfg).await?))
    }
}

/// Identity is a middleware.
///
/// It returns service without modifications.
#[derive(Debug, Clone, Copy)]
pub struct Identity;

impl<S> Middleware<S> for Identity {
    type Service = S;

    #[inline]
    fn create(&self, service: S) -> Self::Service {
        service
    }
}

/// Stack of middlewares.
#[derive(Debug, Clone)]
pub struct Stack<Inner, Outer> {
    inner: Inner,
    outer: Outer,
}

impl<Inner, Outer> Stack<Inner, Outer> {
    pub fn new(inner: Inner, outer: Outer) -> Self {
        Stack { inner, outer }
    }
}

impl<S, Inner, Outer> Middleware<S> for Stack<Inner, Outer>
where
    Inner: Middleware<S>,
    Outer: Middleware<Inner::Service>,
{
    type Service = Outer::Service;

    fn create(&self, service: S) -> Self::Service {
        self.outer.create(self.inner.create(service))
    }
}

#[cfg(test)]
#[allow(clippy::redundant_clone)]
mod tests {
    use ntex_util::future::{lazy, Ready};
    use std::task::{Context, Poll};

    use super::*;
    use crate::{fn_service, Pipeline, Service, ServiceCtx, ServiceFactory};

    #[derive(Debug, Clone)]
    struct Tr<R>(PhantomData<R>);

    impl<S, R> Middleware<S> for Tr<R> {
        type Service = Srv<S, R>;

        fn create(&self, service: S) -> Self::Service {
            Srv(service, PhantomData)
        }
    }

    #[derive(Debug, Clone)]
    struct Srv<S, R>(S, PhantomData<R>);

    impl<S: Service<R>, R> Service<R> for Srv<S, R> {
        type Response = S::Response;
        type Error = S::Error;

        fn poll_ready(&self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
            self.0.poll_ready(cx)
        }

        async fn call(
            &self,
            req: R,
            ctx: ServiceCtx<'_, Self>,
        ) -> Result<S::Response, S::Error> {
            ctx.call(&self.0, req).await
        }
    }

    #[ntex::test]
    async fn middleware() {
        let factory = apply(
            Rc::new(Tr(PhantomData).clone()),
            fn_service(|i: usize| Ready::<_, ()>::Ok(i * 2)),
        )
        .clone();

        let srv = Pipeline::new(factory.create(&()).await.unwrap().clone());
        let res = srv.call(10).await;
        assert!(res.is_ok());
        assert_eq!(res.unwrap(), 20);
        format!("{:?} {:?}", factory, srv);

        let res = lazy(|cx| srv.poll_ready(cx)).await;
        assert_eq!(res, Poll::Ready(Ok(())));

        let res = lazy(|cx| srv.poll_shutdown(cx)).await;
        assert_eq!(res, Poll::Ready(()));

        let factory =
            crate::chain_factory(fn_service(|i: usize| Ready::<_, ()>::Ok(i * 2)))
                .apply(Rc::new(Tr(PhantomData).clone()))
                .clone();

        let srv = Pipeline::new(factory.create(&()).await.unwrap().clone());
        let res = srv.call(10).await;
        assert!(res.is_ok());
        assert_eq!(res.unwrap(), 20);
        format!("{:?} {:?}", factory, srv);

        let res = lazy(|cx| srv.poll_ready(cx)).await;
        assert_eq!(res, Poll::Ready(Ok(())));

        let res = lazy(|cx| srv.poll_shutdown(cx)).await;
        assert_eq!(res, Poll::Ready(()));
    }
}