1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
use std::borrow::Cow;
use std::io;

use futures::channel::mpsc::unbounded;
use futures::channel::oneshot::{channel, Receiver};
use futures::future::{lazy, Future, FutureExt};
use tokio::task::LocalSet;

use super::arbiter::{Arbiter, SystemArbiter};
use super::runtime::Runtime;
use super::system::System;

/// Builder struct for a ntex runtime.
///
/// Either use `Builder::build` to create a system and start actors.
/// Alternatively, use `Builder::run` to start the tokio runtime and
/// run a function in its context.
pub struct Builder {
    /// Name of the System. Defaults to "ntex" if unset.
    name: Cow<'static, str>,

    /// Whether the Arbiter will stop the whole System on uncaught panic. Defaults to false.
    stop_on_panic: bool,
}

impl Builder {
    pub(super) fn new() -> Self {
        Builder {
            name: Cow::Borrowed("ntex"),
            stop_on_panic: false,
        }
    }

    /// Sets the name of the System.
    pub fn name<T: Into<String>>(mut self, name: T) -> Self {
        self.name = Cow::Owned(name.into());
        self
    }

    /// Sets the option 'stop_on_panic' which controls whether the System is stopped when an
    /// uncaught panic is thrown from a worker thread.
    ///
    /// Defaults to false.
    pub fn stop_on_panic(mut self, stop_on_panic: bool) -> Self {
        self.stop_on_panic = stop_on_panic;
        self
    }

    /// Create new System.
    ///
    /// This method panics if it can not create tokio runtime
    pub fn finish(self) -> SystemRunner {
        self.create_runtime(|| {})
    }

    /// Create new System that can run asynchronously.
    /// This method could be used to run ntex system in existing tokio
    /// runtime.
    ///
    /// This method panics if it cannot start the system arbiter
    pub fn finish_with(self, local: &LocalSet) -> AsyncSystemRunner {
        self.create_async_runtime(local)
    }

    /// This function will start tokio runtime and will finish once the
    /// `System::stop()` message get called.
    /// Function `f` get called within tokio runtime context.
    pub fn run<F>(self, f: F) -> io::Result<()>
    where
        F: FnOnce() + 'static,
    {
        self.create_runtime(f).run()
    }

    fn create_async_runtime(self, local: &LocalSet) -> AsyncSystemRunner {
        let (stop_tx, stop) = channel();
        let (sys_sender, sys_receiver) = unbounded();

        let system = System::construct(
            sys_sender,
            Arbiter::new_system(local),
            self.stop_on_panic,
        );

        // system arbiter
        let arb = SystemArbiter::new(stop_tx, sys_receiver);

        // start the system arbiter
        let _ = local.spawn_local(arb);

        AsyncSystemRunner { stop, system }
    }

    fn create_runtime<F>(self, f: F) -> SystemRunner
    where
        F: FnOnce() + 'static,
    {
        let (stop_tx, stop) = channel();
        let (sys_sender, sys_receiver) = unbounded();

        let mut rt = Runtime::new().unwrap();

        // system arbiter
        let system = System::construct(
            sys_sender,
            Arbiter::new_system(rt.local()),
            self.stop_on_panic,
        );
        let arb = SystemArbiter::new(stop_tx, sys_receiver);
        rt.spawn(arb);

        // init system arbiter and run configuration method
        rt.block_on(lazy(move |_| f()));

        SystemRunner { rt, stop, system }
    }
}

#[derive(Debug)]
pub struct AsyncSystemRunner {
    stop: Receiver<i32>,
    system: System,
}

impl AsyncSystemRunner {
    /// This function will start event loop and returns a future that
    /// resolves once the `System::stop()` function is called.
    pub fn run(self) -> impl Future<Output = Result<(), io::Error>> + Send {
        let AsyncSystemRunner { stop, .. } = self;

        // run loop
        lazy(|_| async {
            let res = match stop.await {
                Ok(code) => {
                    if code != 0 {
                        Err(io::Error::new(
                            io::ErrorKind::Other,
                            format!("Non-zero exit code: {}", code),
                        ))
                    } else {
                        Ok(())
                    }
                }
                Err(e) => Err(io::Error::new(io::ErrorKind::Other, e)),
            };
            return res;
        })
        .flatten()
    }
}

/// Helper object that runs System's event loop
#[must_use = "SystemRunner must be run"]
#[derive(Debug)]
pub struct SystemRunner {
    rt: Runtime,
    stop: Receiver<i32>,
    system: System,
}

impl SystemRunner {
    /// This function will start event loop and will finish once the
    /// `System::stop()` function is called.
    pub fn run(self) -> io::Result<()> {
        let SystemRunner { mut rt, stop, .. } = self;

        // run loop
        match rt.block_on(stop) {
            Ok(code) => {
                if code != 0 {
                    Err(io::Error::new(
                        io::ErrorKind::Other,
                        format!("Non-zero exit code: {}", code),
                    ))
                } else {
                    Ok(())
                }
            }
            Err(e) => Err(io::Error::new(io::ErrorKind::Other, e)),
        }
    }

    /// Execute a future and wait for result.
    #[inline]
    pub fn block_on<F, O>(&mut self, fut: F) -> O
    where
        F: Future<Output = O>,
    {
        self.rt.block_on(fut)
    }

    /// Execute a function with enabled executor.
    #[inline]
    pub fn exec<F, R>(&mut self, f: F) -> R
    where
        F: FnOnce() -> R,
    {
        self.rt.block_on(lazy(|_| f()))
    }
}

#[cfg(test)]
mod tests {
    use std::sync::mpsc;
    use std::thread;

    use super::*;

    #[test]
    fn test_async() {
        let (tx, rx) = mpsc::channel();

        thread::spawn(move || {
            let mut rt = tokio::runtime::Runtime::new().unwrap();
            let local = tokio::task::LocalSet::new();

            let runner = crate::System::build()
                .stop_on_panic(true)
                .finish_with(&local);

            tx.send(System::current()).unwrap();
            let _ = rt.block_on(local.run_until(runner.run()));
        });
        let mut s = System::new("test");

        let sys = rx.recv().unwrap();
        let id = sys.id();
        let (tx, rx) = mpsc::channel();
        sys.arbiter().exec_fn(move || {
            let _ = tx.send(System::current().id());
        });
        let id2 = rx.recv().unwrap();
        assert_eq!(id, id2);

        let id2 = s
            .block_on(sys.arbiter().exec(|| System::current().id()))
            .unwrap();
        assert_eq!(id, id2);

        let (tx, rx) = mpsc::channel();
        sys.arbiter().send(Box::pin(async move {
            let _ = tx.send(System::current().id());
        }));
        let id2 = rx.recv().unwrap();
        assert_eq!(id, id2);
    }
}