1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
// Copyright 2019-2021 Colin Finck <colin@reactos.org>
// SPDX-License-Identifier: GPL-2.0-or-later

use crate::error::{NtHiveError, Result};
use crate::helpers::byte_subrange;
use crate::key_node::KeyNode;
use ::byteorder::LittleEndian;
use core::convert::TryInto;
use core::ops::Range;
use core::{mem, u32};
use enumn::N;
use memoffset::offset_of;
use zerocopy::*;

#[derive(AsBytes, FromBytes, Unaligned)]
#[repr(packed)]
struct CellHeader {
    size: I32<LittleEndian>,
}

/// Known hive minor versions.
///
/// You can use [`HiveMinorVersion::n`] on the value returned by [`Hive::minor_version`]
/// to find out whether a hive has a known version.
#[derive(Clone, Copy, Debug, Eq, N, Ord, PartialEq, PartialOrd)]
#[repr(u32)]
pub enum HiveMinorVersion {
    WindowsNT3_1Beta = 0,
    WindowsNT3_1 = 1,
    WindowsNT3_5 = 2,
    WindowsNT4 = 3,
    WindowsXPBeta = 4,
    WindowsXP = 5,
    WindowsVista = 6,
}

#[allow(dead_code)]
#[repr(u32)]
enum HiveFileTypes {
    Primary = 0,
    Log = 1,
    External = 2,
}

#[repr(u32)]
enum HiveFileFormats {
    Memory = 1,
}

#[allow(dead_code)]
#[derive(AsBytes, FromBytes, Unaligned)]
#[repr(packed)]
struct HiveBaseBlock {
    signature: [u8; 4],
    primary_sequence_number: U32<LittleEndian>,
    secondary_sequence_number: U32<LittleEndian>,
    timestamp: U64<LittleEndian>,
    major_version: U32<LittleEndian>,
    minor_version: U32<LittleEndian>,
    file_type: U32<LittleEndian>,
    file_format: U32<LittleEndian>,
    root_cell_offset: U32<LittleEndian>,
    data_size: U32<LittleEndian>,
    clustering_factor: U32<LittleEndian>,
    file_name: [U16<LittleEndian>; 32],
    padding_1: [u8; 396],
    checksum: U32<LittleEndian>,
    padding_2: [u8; 3576],
    boot_type: U32<LittleEndian>,
    boot_recover: U32<LittleEndian>,
}

/// Root structure describing a registry hive.
pub struct Hive<B: ByteSlice> {
    base_block: LayoutVerified<B, HiveBaseBlock>,
    pub(crate) data: B,
}

impl<B> Hive<B>
where
    B: ByteSlice,
{
    /// Creates a new `Hive` from any byte slice.
    /// Performs basic validation and rejects any invalid hive.
    ///
    /// You may use [`Hive::without_validation`] if you want to accept hives that fail validation.
    pub fn new(bytes: B) -> Result<Self> {
        let hive = Self::without_validation(bytes)?;
        hive.validate()?;
        Ok(hive)
    }

    /// Creates a new `Hive` from any byte slice, without validating the header.
    ///
    /// You may later validate the header via [`Hive::validate`].
    /// This is a solution for accessing parts of hives that have not been fully flushed to disk
    /// (e.g. due to hibernation and mismatching sequence numbers).
    pub fn without_validation(bytes: B) -> Result<Self> {
        let length = bytes.len();
        let (base_block, data) = LayoutVerified::new_from_prefix(bytes).ok_or_else(|| {
            NtHiveError::InvalidHeaderSize {
                offset: 0,
                expected: mem::size_of::<HiveBaseBlock>(),
                actual: length,
            }
        })?;

        let hive = Self { base_block, data };
        Ok(hive)
    }

    pub(crate) fn cell_range_from_data_offset(&self, data_offset: u32) -> Result<Range<usize>> {
        // Only valid data offsets are accepted here.
        assert!(data_offset != u32::MAX);

        // Accept only u32 data offsets, but convert them into usize right away for
        // slice range operations and fearless calculations.
        let data_offset = data_offset as usize;

        // Get the cell header.
        let remaining_range = data_offset..self.data.len();
        let header_range = byte_subrange(&remaining_range, mem::size_of::<CellHeader>())
            .ok_or_else(|| NtHiveError::InvalidHeaderSize {
                offset: self.offset_of_data_offset(data_offset),
                expected: mem::size_of::<CellHeader>(),
                actual: remaining_range.len(),
            })?;
        let cell_data_offset = header_range.end;

        // After the check above, the following operation must succeed, so we can just `unwrap`.
        let header = LayoutVerified::<&[u8], CellHeader>::new(&self.data[header_range]).unwrap();
        let cell_size = header.size.get();

        // A cell with size > 0 is unallocated and shouldn't be processed any further by us.
        if cell_size > 0 {
            return Err(NtHiveError::UnallocatedCell {
                offset: self.offset_of_data_offset(data_offset),
                size: cell_size,
            });
        }
        let cell_size = cell_size.abs() as usize;

        // The cell size must be a multiple of 8 bytes
        let expected_alignment = 8;
        if cell_size % expected_alignment != 0 {
            return Err(NtHiveError::InvalidSizeFieldAlignment {
                offset: self.offset_of_field(&header.size),
                size: cell_size,
                expected_alignment,
            });
        }

        // Get the actual data range and verify that it's inside our hive data.
        let remaining_range = cell_data_offset..self.data.len();
        let cell_data_range = byte_subrange(&remaining_range, cell_size).ok_or_else(|| {
            NtHiveError::InvalidSizeField {
                offset: self.offset_of_field(&header.size),
                expected: cell_size,
                actual: remaining_range.len(),
            }
        })?;

        Ok(cell_data_range)
    }

    /// Calculate a field's offset from the very beginning of the hive bytes.
    ///
    /// Note that this function primarily exists to provide absolute hive file offsets when reporting errors.
    /// It cannot be used to index into the hive bytes, because they are initially split into `base_block`
    /// and `data`.
    pub(crate) fn offset_of_field<T>(&self, field: &T) -> usize {
        let field_address = field as *const T as usize;
        let base_address = self.base_block.bytes().as_ptr() as usize;

        assert!(field_address > base_address);
        field_address - base_address
    }

    /// Calculate a data offset's offset from the very beginning of the hive bytes.
    pub(crate) fn offset_of_data_offset(&self, data_offset: usize) -> usize {
        data_offset + mem::size_of::<HiveBaseBlock>()
    }

    /// Returns the major version of this hive.
    ///
    /// The only known value is `1`.
    pub fn major_version(&self) -> u32 {
        self.base_block.major_version.get()
    }

    /// Returns the minor version of this hive.
    ///
    /// You can feed this value to [`HiveMinorVersion::n`] to find out whether this is a known version.
    pub fn minor_version(&self) -> u32 {
        self.base_block.minor_version.get()
    }

    /// Returns the root [`KeyNode`] of this hive.
    pub fn root_key_node(&self) -> Result<KeyNode<&Self, B>> {
        let root_cell_offset = self.base_block.root_cell_offset.get();
        let cell_range = self.cell_range_from_data_offset(root_cell_offset)?;
        KeyNode::from_cell_range(self, cell_range)
    }

    /// Performs basic validations on the header of this hive.
    ///
    /// If you read the hive via [`Hive::new`], these validations have already been performed.
    /// This function is only relevant for hives opened via [`Hive::without_validation`].
    pub fn validate(&self) -> Result<()> {
        self.validate_signature()?;
        self.validate_sequence_numbers()?;
        self.validate_version()?;
        self.validate_file_type()?;
        self.validate_file_format()?;
        self.validate_data_size()?;
        self.validate_clustering_factor()?;
        self.validate_checksum()?;
        Ok(())
    }

    fn validate_checksum(&self) -> Result<()> {
        let checksum_offset = offset_of!(HiveBaseBlock, checksum);

        // Calculate the XOR-32 checksum of all bytes preceding the checksum field.
        let mut calculated_checksum = 0;
        for dword_bytes in self.base_block.bytes()[..checksum_offset].chunks(mem::size_of::<u32>())
        {
            let dword = u32::from_le_bytes(dword_bytes.try_into().unwrap());
            calculated_checksum ^= dword;
        }

        if calculated_checksum == 0 {
            calculated_checksum += 1;
        } else if calculated_checksum == u32::MAX {
            calculated_checksum -= 1;
        }

        // Compare the calculated checksum with the stored one.
        let checksum = self.base_block.checksum.get();
        if checksum == calculated_checksum {
            Ok(())
        } else {
            Err(NtHiveError::InvalidChecksum {
                expected: checksum,
                actual: calculated_checksum,
            })
        }
    }

    fn validate_clustering_factor(&self) -> Result<()> {
        let clustering_factor = self.base_block.clustering_factor.get();
        let expected_clustering_factor = 1;

        if clustering_factor == expected_clustering_factor {
            Ok(())
        } else {
            Err(NtHiveError::UnsupportedClusteringFactor {
                expected: expected_clustering_factor,
                actual: clustering_factor,
            })
        }
    }

    fn validate_data_size(&self) -> Result<()> {
        let data_size = self.base_block.data_size.get() as usize;
        let expected_alignment = 4096;

        // The data size must be a multiple of 4096 bytes
        if data_size % expected_alignment != 0 {
            return Err(NtHiveError::InvalidSizeFieldAlignment {
                offset: self.offset_of_field(&self.base_block.data_size),
                size: data_size,
                expected_alignment,
            });
        }

        // Does the size go beyond our hive data?
        if data_size > self.data.len() {
            return Err(NtHiveError::InvalidSizeField {
                offset: self.offset_of_field(&self.base_block.data_size),
                expected: data_size,
                actual: self.data.len(),
            });
        }

        Ok(())
    }

    fn validate_file_format(&self) -> Result<()> {
        let file_format = self.base_block.file_format.get();
        let expected_file_format = HiveFileFormats::Memory as u32;

        if file_format == expected_file_format {
            Ok(())
        } else {
            Err(NtHiveError::UnsupportedFileFormat {
                expected: expected_file_format,
                actual: file_format,
            })
        }
    }

    fn validate_file_type(&self) -> Result<()> {
        let file_type = self.base_block.file_type.get();
        let expected_file_type = HiveFileTypes::Primary as u32;

        if file_type == expected_file_type {
            Ok(())
        } else {
            Err(NtHiveError::UnsupportedFileType {
                expected: expected_file_type,
                actual: file_type,
            })
        }
    }

    fn validate_sequence_numbers(&self) -> Result<()> {
        let primary_sequence_number = self.base_block.primary_sequence_number.get();
        let secondary_sequence_number = self.base_block.secondary_sequence_number.get();

        if primary_sequence_number == secondary_sequence_number {
            Ok(())
        } else {
            Err(NtHiveError::SequenceNumberMismatch {
                primary: primary_sequence_number,
                secondary: secondary_sequence_number,
            })
        }
    }

    fn validate_signature(&self) -> Result<()> {
        let signature = &self.base_block.signature;
        let expected_signature = b"regf";

        if signature == expected_signature {
            Ok(())
        } else {
            Err(NtHiveError::InvalidFourByteSignature {
                offset: self.offset_of_field(signature),
                expected: expected_signature,
                actual: *signature,
            })
        }
    }

    fn validate_version(&self) -> Result<()> {
        let major = self.major_version();
        let minor = self.minor_version();

        if major == 1 && minor >= HiveMinorVersion::WindowsNT4 as u32 {
            Ok(())
        } else {
            Err(NtHiveError::UnsupportedVersion { major, minor })
        }
    }
}

impl<B> Hive<B>
where
    B: ByteSliceMut,
{
    /// Clears the `volatile_subkey_count` field of all key nodes recursively.
    ///
    /// This needs to be done before passing the hive to an NT kernel during boot.
    /// See <https://github.com/reactos/reactos/pull/1883> for more information.
    pub fn clear_volatile_subkeys(&mut self) -> Result<()> {
        let mut root_key_node = self.root_key_node_mut()?;
        root_key_node.clear_volatile_subkeys()
    }

    pub(crate) fn root_key_node_mut(&mut self) -> Result<KeyNode<&mut Self, B>> {
        let root_cell_offset = self.base_block.root_cell_offset.get();
        let cell_range = self.cell_range_from_data_offset(root_cell_offset)?;
        KeyNode::from_cell_range(self, cell_range)
    }
}

#[cfg(test)]
mod tests {
    use crate::*;

    #[test]
    fn test_clear_volatile_subkeys() {
        // clear_volatile_subkeys traverses all subkeys, so this test just checks
        // that it doesn't crash during that process.
        let mut testhive = crate::helpers::tests::testhive_vec();
        let mut hive = Hive::new(testhive.as_mut()).unwrap();
        assert!(hive.clear_volatile_subkeys().is_ok());
    }
}