1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
/*
 *
 * This file is a part of NovaEngine
 * https://gitlab.com/MindSpunk/NovaEngine
 *
 *
 * MIT License
 *
 * Copyright (c) 2018 Nathan Voglsam
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

use core::f64::consts::PI;
use core::fmt::{Debug, Display};
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};
use num_traits::Float;

pub enum FloatType {
    F32,
    F64,
}

///
/// This type represents a real number. A macro trait that makes using generic floats much easier
///
pub trait Real:
    Float
    + Add
    + AddAssign
    + Sub
    + SubAssign
    + Mul
    + MulAssign
    + Div
    + DivAssign
    + Copy
    + Clone
    + Pi
    + IntoDegrees
    + IntoRadians
    + PartialEq
    + PartialOrd
    + Debug
    + Display
{
    ///
    /// Is this type a single-precision floating point. Useful for identifying the underlying
    /// representation for SIMD purposes
    ///
    fn is_f32() -> bool;

    ///
    /// Is this type a double-precision floating point. Useful for identifying the underlying
    /// representation for SIMD purposes
    ///
    fn is_f64() -> bool;

    ///
    /// Return the floating point type as an enum. Mostly just a convinience instead of using
    /// `is_f32()` or `is_f64()`
    ///
    fn float_type() -> FloatType;

    ///
    /// Force get this value as single-precision
    ///
    fn as_f32(self) -> f32;

    ///
    /// Force get this value as double-precision
    ///
    fn as_f64(self) -> f64;
}

impl Real for f32 {
    #[inline]
    fn is_f32() -> bool {
        true
    }

    #[inline]
    fn is_f64() -> bool {
        false
    }

    #[inline]
    fn float_type() -> FloatType {
        FloatType::F32
    }

    #[inline]
    fn as_f32(self) -> f32 {
        self
    }

    #[inline]
    fn as_f64(self) -> f64 {
        f64::from(self)
    }
}

impl Real for f64 {
    #[inline]
    fn is_f32() -> bool {
        false
    }

    #[inline]
    fn is_f64() -> bool {
        true
    }

    #[inline]
    fn float_type() -> FloatType {
        FloatType::F64
    }

    #[inline]
    fn as_f32(self) -> f32 {
        self as f32
    }

    #[inline]
    fn as_f64(self) -> f64 {
        self
    }
}

///
/// This type can perform linear interpolate from a to b with factor
///
pub trait Lerp<F: Real> {
    ///
    /// Return the result of interpolating between self and b with factor `factor`
    ///
    fn lerp(&self, b: &Self, factor: F) -> Self;
}

impl Lerp<f32> for f32 {
    fn lerp(&self, b: &Self, factor: f32) -> Self {
        *self + ((*self - *b) * factor)
    }
}

impl Lerp<f64> for f64 {
    fn lerp(&self, b: &Self, factor: f64) -> Self {
        *self + ((*self - *b) * factor)
    }
}

///
/// This type has a constant PI
///
pub trait Pi {
    ///
    /// Get a value that represents Pi
    ///
    fn pi() -> Self;
}

impl<T: Real> Pi for T {
    fn pi() -> Self {
        T::from(PI).unwrap()
    }
}

///
/// This type can convert from degrees to radians
///
pub trait IntoRadians {
    ///
    /// Consume self and return it after converting the internal elements from degrees to radians
    ///
    fn into_radians(self) -> Self;
}

impl<T: Real + Pi> IntoRadians for T {
    fn into_radians(self) -> Self {
        crate::units::radians(self)
    }
}

///
/// This type can convert from radians to degrees
///
pub trait IntoDegrees {
    ///
    /// Consume self and return it after converting the internal elements from radians to degrees
    ///
    fn into_degrees(self) -> Self;
}

impl<T: Real + Pi> IntoDegrees for T {
    fn into_degrees(self) -> Self {
        crate::units::degrees(self)
    }
}

///
/// This type can be used to produce a dot product
///
pub trait DotProduct<T: Real> {
    ///
    /// Produce the dot product of self and rhs
    ///
    fn dot(&self, rhs: &Self) -> T;
}

///
/// This type can be used to produce a cross product
///
pub trait CrossProduct {
    ///
    /// Produce the cross product of self and rhs
    ///
    /// # Note
    ///
    /// This can only really be implemented for a 3 component vector but is a trait to allow for
    /// separating storage from implementation
    ///
    fn cross(&self, rhs: &Self) -> Self;
}

///
/// This types supports performing a matrix transpose
///
/// # Info
///
/// Similar to the `Add` or `Mul` traits in that it takes ownership and passes the underlying object
/// through the function.
///
pub trait Transpose {
    fn transpose(self) -> Self;
}

///
/// This type supports performing a matrix transpose
///
/// # Info
///
/// Similar to the `AddAssign` or `MulAssign` traits in that it takes a mutable reference to the
/// underlying object and performs the transpose in place.
///
pub trait TransposeAssign {
    fn transpose_assign(&mut self);
}

// TODO: Document me

pub trait Inverse {
    fn inverse(self) -> Self;
}

pub trait InverseAssign {
    fn inverse_assign(&mut self);
}

///
/// Packing the underlying data of a vector or matrix
///
pub trait Pack {
    type GLSLOutput;
    type HLSLOutput;
    type GLSLOutputArray;
    type HLSLOutputArray;
    type CPUOutput;

    ///
    /// Convert the struct into packed data ready to be uploaded and consumed with hlsl standard
    /// conventions.
    ///
    /// This will often round vectors up to alignment multiple sizes with padding bytes and is
    /// important for matrices as hlsl shaders are expecting the matrices to be row major.
    ///
    /// # Warning
    ///
    /// If the matrix this is implemented on is row major it will have to perform an implict
    /// transpose and so CAN CHANGE the underlying data beyond adding GPU required padding.
    ///
    fn into_packed_glsl(self) -> Self::GLSLOutput;

    ///
    /// Convert the struct into packed data ready to be uploaded and consumed with hlsl standard
    /// conventions.
    ///
    /// This will often round vectors up to alignment multiple sizes with padding bytes and is
    /// important for matrices as hlsl shaders are expecting the matrices to be row major.
    ///
    /// # Warning
    ///
    /// If the matrix this is implemented on is column major it will have to perform an implict
    /// transpose and so CAN CHANGE the underlying data beyond adding GPU required padding
    ///
    fn into_packed_hlsl(self) -> Self::HLSLOutput;

    ///
    /// Convert the struct into packed data ready to be uploaded and consumed with hlsl standard
    /// conventions.
    ///
    /// This function produces a semantically similar result to `into_packed_hlsl` but differs in
    /// that for some GPU packing conventions (read: std430) the padding for an item, like a vec3,
    /// differs whether it is on it's own or if it is an array element.
    ///
    /// This will often round vectors up to alignment multiple sizes with padding bytes and is
    /// important for matrices as hlsl shaders are expecting the matrices to be row major.
    ///
    /// # Warning
    ///
    /// If the matrix this is implemented on is row major it will have to perform an implict
    /// transpose and so CAN CHANGE the underlying data beyond adding GPU required padding.
    ///
    fn into_packed_glsl_array(self) -> Self::GLSLOutputArray;

    ///
    /// Convert the struct into packed data ready to be uploaded and consumed with hlsl standard
    /// conventions.
    ///
    /// This function produces a semantically similar result to `into_packed_hlsl` but differs in
    /// that for some GPU packing conventions (read: std430) the padding for an item, like a vec3,
    /// differs whether it is on it's own or if it is an array element.
    ///
    /// This will often round vectors up to alignment multiple sizes with padding bytes and is
    /// important for matrices as hlsl shaders are expecting the matrices to be row major.
    ///
    /// # Warning
    ///
    /// If the matrix this is implemented on is column major it will have to perform an implict
    /// transpose and so CAN CHANGE the underlying data beyond adding GPU required padding.
    ///
    fn into_packed_hlsl_array(self) -> Self::HLSLOutputArray;

    ///
    /// Convert the struct into packed data for general purpose use on the CPU. This would be
    /// ideal for things like serialization where you don't need to conform to special GPU alignment
    /// and padding rules.
    ///
    /// This should, by general convention, just produce a flat array of the individual components
    /// and should match the underlying number of components (3 for a Vec3, etc).
    ///
    /// # Warning
    ///
    /// There should be no padding in the results of this function.
    ///
    fn into_packed_cpu(self) -> Self::CPUOutput;
}

///
/// Trait that marks a type as able to be packable into a std140 compatible form
///
pub trait IntoSTD140 {
    type Output: Pack;

    fn into_std140(self) -> Self::Output;
}

///
/// This type abstracts a matrix where you can get a copy of a column
///
pub trait Column {
    type Output;

    ///
    /// Get a copy of a given column of a matrix
    ///
    fn get_column(&self, col: usize) -> Self::Output;
}

///
/// This type abstracts a matrix where you can get a reference of a column
///
pub trait ColumnRef: Column {
    ///
    /// Get a reference to a given column of a matrix
    ///
    fn get_column_ref(&self, col: usize) -> &Self::Output;
}

///
/// This type abstracts a matrix where you can get a mutable reference of a column
///
pub trait ColumnRefMut: Column {
    ///
    /// Get a mutable reference to a given column of a matrix
    ///
    fn get_column_ref_mut(&mut self, col: usize) -> &mut Self::Output;
}

///
/// This type abstracts a matrix where you can get a copy of a row
///
pub trait Row {
    type Output;

    ///
    /// Get a copy of a given row of a matrix
    ///
    fn get_row(&self, row: usize) -> Self::Output;
}

///
/// This type abstracts a matrix where you can get a reference of a row
///
pub trait RowRef: Row {
    ///
    /// Get a reference to a given row of a matrix
    ///
    fn get_row_ref(&self, row: usize) -> &Self::Output;
}

///
/// This type abstracts a matrix where you can get a mutable reference of a row
///
pub trait RowRefMut: Row {
    ///
    /// Get a mutable reference to a given row of a matrix
    ///
    fn get_row_ref_mut(&mut self, row: usize) -> &mut Self::Output;
}

///
/// This type abstracts a vector or other object that can represents a length
///
pub trait Length {
    type Output;

    fn length(&self) -> Self::Output;
}

///
/// This type abstracts a vector or other object that can represents a length. Get's the square of
/// the length as this can often skip an expensive square root calculation.
///
pub trait LengthSquared {
    type Output;

    fn length_squared(&self) -> Self::Output;
}

///
/// This type abstracts a vector or other object that can be normalized to represent the same
/// direction while having a length of 1
///
pub trait Normalize {
    fn normalize(self) -> Self;
}

///
/// This type abstracts a vector or other object that can be normalized to represent the same
/// direction while having a length of 1
///
pub trait NormalizeAssign {
    fn normalize_assign(&mut self);
}

pub mod std140 {
    use crate::traits::{IntoSTD140, Pack};

    ///
    /// A wrapper struct that is used to implement std140 packing for the underlying type
    ///
    #[repr(transparent)]
    #[derive(Copy, Clone, Debug)]
    pub struct F32Pack(f32);

    impl IntoSTD140 for f32 {
        type Output = F32Pack;

        fn into_std140(self) -> Self::Output {
            F32Pack(self)
        }
    }

    impl Pack for F32Pack {
        type GLSLOutput = f32;
        type HLSLOutput = f32;
        type GLSLOutputArray = f32;
        type HLSLOutputArray = f32;
        type CPUOutput = f32;

        fn into_packed_glsl(self) -> Self::GLSLOutput {
            self.0
        }

        fn into_packed_hlsl(self) -> Self::HLSLOutput {
            self.0
        }

        fn into_packed_glsl_array(self) -> Self::GLSLOutputArray {
            self.0
        }

        fn into_packed_hlsl_array(self) -> Self::HLSLOutputArray {
            self.0
        }

        fn into_packed_cpu(self) -> Self::CPUOutput {
            self.0
        }
    }

    ///
    /// A wrapper struct that is used to implement std140 packing for the underlying type
    ///
    #[repr(transparent)]
    #[derive(Copy, Clone, Debug)]
    pub struct F64Pack(f64);

    impl IntoSTD140 for f64 {
        type Output = F64Pack;

        fn into_std140(self) -> Self::Output {
            F64Pack(self)
        }
    }

    impl Pack for F64Pack {
        type GLSLOutput = f64;
        type HLSLOutput = f64;
        type GLSLOutputArray = f64;
        type HLSLOutputArray = f64;
        type CPUOutput = f64;

        fn into_packed_glsl(self) -> Self::GLSLOutput {
            self.0
        }

        fn into_packed_hlsl(self) -> Self::HLSLOutput {
            self.0
        }

        fn into_packed_glsl_array(self) -> Self::GLSLOutputArray {
            self.0
        }

        fn into_packed_hlsl_array(self) -> Self::HLSLOutputArray {
            self.0
        }

        fn into_packed_cpu(self) -> Self::CPUOutput {
            self.0
        }
    }
}