1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
use std::{
    fmt,
    ops::{Add, Sub},
};

use crate::block::base::{
    color::{ColorId, ColorPalette},
    Block, Color,
};

#[derive(Debug, PartialEq, Eq, Hash, Copy, Clone)]
pub enum BinaryColor {
    Undefined,
    White,
    Black,
    // special value for DynamicSolver
    BlackOrWhite,
}

impl Default for BinaryColor {
    fn default() -> Self {
        Self::Undefined
    }
}

impl Color for BinaryColor {
    fn blank() -> Self {
        Self::White
    }

    fn is_solved(self) -> bool {
        self == Self::Black || self == Self::White
    }

    fn solution_rate(self, _all_colors: &[ColorId]) -> f64 {
        if self.is_solved() {
            1.0
        } else {
            0.0
        }
    }

    fn variants(self) -> Vec<Self> {
        if self.is_solved() {
            vec![self]
        } else {
            vec![Self::White, Self::Black]
        }
    }

    fn as_color_id(self) -> Option<ColorId> {
        None
    }

    fn from_color_ids(ids: &[ColorId]) -> Self {
        if ids == [ColorPalette::WHITE_ID] {
            Self::Undefined
        } else {
            Self::Black
        }
    }
}

impl Add for BinaryColor {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        rhs
    }
}

impl Sub for BinaryColor {
    type Output = Result<Self, String>;

    fn sub(self, rhs: Self) -> Self::Output {
        if self.is_solved() {
            return Err(format!("Cannot unset already set cell {:?}", self));
        }

        Ok(match rhs {
            Self::Black => Self::White,
            Self::White => Self::Black,
            _ => self,
        })
    }
}

#[derive(Debug, PartialEq, Eq, Hash, Default, Clone, Copy)]
pub struct BinaryBlock(pub usize);

impl Block for BinaryBlock {
    type Color = BinaryColor;

    fn from_size_and_color(size: usize, _color: Option<ColorId>) -> Self {
        Self(size)
    }

    fn partial_sums(desc: &[Self]) -> Vec<usize> {
        desc.iter()
            .scan(None, |acc_sum, block| {
                // 1 cell is for a minimal gap between the previous run of blocks
                // and the current block
                let prev_sum = acc_sum.map_or(0, |prev_sum| prev_sum + 1);
                *acc_sum = Some(prev_sum + block.0);
                *acc_sum
            })
            .collect()
    }

    fn size(self) -> usize {
        self.0
    }

    fn color(self) -> Self::Color {
        BinaryColor::Black
    }
}

impl fmt::Display for BinaryBlock {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.0)
    }
}

#[cfg(test)]
mod tests {
    use crate::block::{Block, Description};

    use super::BinaryBlock;

    #[test]
    fn partial_sums_empty() {
        let d = Description::new(vec![]);
        assert_eq!(BinaryBlock::partial_sums(&d.vec), Vec::<usize>::new());
    }

    #[test]
    fn partial_sums_single() {
        let d = Description::new(vec![BinaryBlock(5)]);
        assert_eq!(BinaryBlock::partial_sums(&d.vec), vec![5]);
    }

    #[test]
    fn check_partial_sums() {
        let d = Description::new(vec![BinaryBlock(1), BinaryBlock(2), BinaryBlock(3)]);
        assert_eq!(BinaryBlock::partial_sums(&d.vec), vec![1, 4, 8]);
    }
}