1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
//! A Non-empty growable vector.
//!
//! # Examples
//!
//! ```
//! use nonempty::NonEmpty;
//!
//! let mut l = NonEmpty { head: 42, tail: vec![36, 58] };
//!
//! assert_eq!(l.head, 42);
//!
//! l.push(9001);
//!
//! assert_eq!(l.last(), &9001);
//!
//! let v: Vec<i32> = l.into();
//! assert_eq!(v, vec![42, 36, 58, 9001]);
//! ```
#[cfg(feature = "serialize")]
use serde::{Deserialize, Serialize};
use std::cmp::Ordering;
use std::mem;
use std::{iter, vec};

#[cfg_attr(feature = "serialize", derive(Deserialize, Serialize))]
#[cfg_attr(
    feature = "serialize",
    serde(bound(serialize = "T: Clone + Serialize")),
    serde(into = "Vec<T>", try_from = "Vec<T>")
)]
#[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct NonEmpty<T> {
    pub head: T,
    pub tail: Vec<T>,
}

impl<T> NonEmpty<T> {
    /// Alias for [`NonEmpty::singleton`].
    pub const fn new(e: T) -> Self {
        Self::singleton(e)
    }

    /// Create a new non-empty list with an initial element.
    pub const fn singleton(head: T) -> Self {
        NonEmpty {
            head,
            tail: Vec::new(),
        }
    }

    /// Always returns false.
    pub const fn is_empty(&self) -> bool {
        false
    }

    /// Get the first element. Never fails.
    pub const fn first(&self) -> &T {
        &self.head
    }

    /// Get the mutable reference to the first element. Never fails.
    ///
    /// # Examples
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let mut non_empty = NonEmpty::new(42);
    /// let head = non_empty.first_mut();
    /// *head += 1;
    /// assert_eq!(non_empty.first(), &43);
    ///
    /// let mut non_empty = NonEmpty::from((1, vec![4, 2, 3]));
    /// let head = non_empty.first_mut();
    /// *head *= 42;
    /// assert_eq!(non_empty.first(), &42);
    /// ```
    pub fn first_mut(&mut self) -> &mut T {
        &mut self.head
    }

    /// Get the possibly-empty tail of the list.
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let non_empty = NonEmpty::new(42);
    /// assert_eq!(non_empty.tail(), &[]);
    ///
    /// let non_empty = NonEmpty::from((1, vec![4, 2, 3]));
    /// assert_eq!(non_empty.tail(), &[4, 2, 3]);
    /// ```
    pub fn tail(&self) -> &[T] {
        &self.tail
    }

    /// Push an element to the end of the list.
    pub fn push(&mut self, e: T) {
        self.tail.push(e)
    }

    /// Pop an element from the end of the list.
    pub fn pop(&mut self) -> Option<T> {
        self.tail.pop()
    }

    /// Inserts an element at position index within the vector, shifting all elements after it to the right.
    ///
    /// # Panics
    ///
    /// Panics if index > len.
    ///
    /// # Examples
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let mut non_empty = NonEmpty::from((1, vec![2, 3]));
    /// non_empty.insert(1, 4);
    /// assert_eq!(non_empty, NonEmpty::from((1, vec![4, 2, 3])));
    /// non_empty.insert(4, 5);
    /// assert_eq!(non_empty, NonEmpty::from((1, vec![4, 2, 3, 5])));
    /// non_empty.insert(0, 42);
    /// assert_eq!(non_empty, NonEmpty::from((42, vec![1, 4, 2, 3, 5])));
    /// ```
    pub fn insert(&mut self, index: usize, element: T) {
        let len = self.len();
        assert!(index <= len);

        if index == 0 {
            let head = mem::replace(&mut self.head, element);
            self.tail.insert(0, head);
        } else {
            self.tail.insert(index - 1, element);
        }
    }

    /// Get the length of the list.
    pub fn len(&self) -> usize {
        self.tail.len() + 1
    }

    /// Get the last element. Never fails.
    pub fn last(&self) -> &T {
        match self.tail.last() {
            None => &self.head,
            Some(e) => e,
        }
    }

    /// Get the last element mutably.
    pub fn last_mut(&mut self) -> &mut T {
        match self.tail.last_mut() {
            None => &mut self.head,
            Some(e) => e,
        }
    }

    /// Check whether an element is contained in the list.
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let mut l = NonEmpty::from((42, vec![36, 58]));
    ///
    /// assert!(l.contains(&42));
    /// assert!(!l.contains(&101));
    /// ```
    pub fn contains(&self, x: &T) -> bool
    where
        T: PartialEq,
    {
        self.iter().any(|e| e == x)
    }

    /// Get an element by index.
    pub fn get(&self, index: usize) -> Option<&T> {
        if index == 0 {
            Some(&self.head)
        } else {
            self.tail.get(index - 1)
        }
    }

    /// Get an element by index, mutably.
    pub fn get_mut(&mut self, index: usize) -> Option<&mut T> {
        if index == 0 {
            Some(&mut self.head)
        } else {
            self.tail.get_mut(index - 1)
        }
    }

    /// Truncate the list to a certain size. Must be greater than `0`.
    pub fn truncate(&mut self, len: usize) {
        assert!(len >= 1);
        self.tail.truncate(len - 1);
    }

    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let mut l = NonEmpty::from((42, vec![36, 58]));
    ///
    /// let mut l_iter = l.iter();
    ///
    /// assert_eq!(l_iter.next(), Some(&42));
    /// assert_eq!(l_iter.next(), Some(&36));
    /// assert_eq!(l_iter.next(), Some(&58));
    /// assert_eq!(l_iter.next(), None);
    /// ```
    pub fn iter<'a>(&'a self) -> impl Iterator<Item = &T> + 'a {
        iter::once(&self.head).chain(self.tail.iter())
    }

    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let mut l = NonEmpty::new(42);
    /// l.push(36);
    /// l.push(58);
    ///
    /// for i in l.iter_mut() {
    ///     *i *= 10;
    /// }
    ///
    /// let mut l_iter = l.iter();
    ///
    /// assert_eq!(l_iter.next(), Some(&420));
    /// assert_eq!(l_iter.next(), Some(&360));
    /// assert_eq!(l_iter.next(), Some(&580));
    /// assert_eq!(l_iter.next(), None);
    /// ```
    pub fn iter_mut<'a>(&'a mut self) -> impl Iterator<Item = &mut T> + 'a {
        iter::once(&mut self.head).chain(self.tail.iter_mut())
    }

    /// Often we have a `Vec` (or slice `&[T]`) but want to ensure that it is `NonEmpty` before
    /// proceeding with a computation. Using `from_slice` will give us a proof
    /// that we have a `NonEmpty` in the `Some` branch, otherwise it allows
    /// the caller to handle the `None` case.
    ///
    /// # Example Use
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let non_empty_vec = NonEmpty::from_slice(&[1, 2, 3, 4, 5]);
    /// assert_eq!(non_empty_vec, Some(NonEmpty::from((1, vec![2, 3, 4, 5]))));
    ///
    /// let empty_vec: Option<NonEmpty<&u32>> = NonEmpty::from_slice(&[]);
    /// assert!(empty_vec.is_none());
    /// ```
    pub fn from_slice(slice: &[T]) -> Option<NonEmpty<T>>
    where
        T: Clone,
    {
        slice.split_first().map(|(h, t)| NonEmpty {
            head: h.clone(),
            tail: t.into(),
        })
    }

    /// Often we have a `Vec` (or slice `&[T]`) but want to ensure that it is `NonEmpty` before
    /// proceeding with a computation. Using `from_vec` will give us a proof
    /// that we have a `NonEmpty` in the `Some` branch, otherwise it allows
    /// the caller to handle the `None` case.
    ///
    /// This version will consume the `Vec` you pass in. If you would rather pass the data as a
    /// slice then use `NonEmpty::from_slice`.
    ///
    /// # Example Use
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let non_empty_vec = NonEmpty::from_vec(vec![1, 2, 3, 4, 5]);
    /// assert_eq!(non_empty_vec, Some(NonEmpty::from((1, vec![2, 3, 4, 5]))));
    ///
    /// let empty_vec: Option<NonEmpty<&u32>> = NonEmpty::from_vec(vec![]);
    /// assert!(empty_vec.is_none());
    /// ```
    pub fn from_vec(mut vec: Vec<T>) -> Option<NonEmpty<T>> {
        if vec.is_empty() {
            None
        } else {
            let head = vec.remove(0);
            Some(NonEmpty { head, tail: vec })
        }
    }

    /// Deconstruct a `NonEmpty` into its head and tail.
    /// This operation never fails since we are guranteed
    /// to have a head element.
    ///
    /// # Example Use
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let mut non_empty = NonEmpty::from((1, vec![2, 3, 4, 5]));
    ///
    /// // Guaranteed to have the head and we also get the tail.
    /// assert_eq!(non_empty.split_first(), (&1, &[2, 3, 4, 5][..]));
    ///
    /// let non_empty = NonEmpty::new(1);
    ///
    /// // Guaranteed to have the head element.
    /// assert_eq!(non_empty.split_first(), (&1, &[][..]));
    /// ```
    pub fn split_first(&self) -> (&T, &[T]) {
        (&self.head, &self.tail)
    }

    /// Deconstruct a `NonEmpty` into its first, last, and
    /// middle elements, in that order.
    ///
    /// If there is only one element then first == last.
    ///
    /// # Example Use
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let mut non_empty = NonEmpty::from((1, vec![2, 3, 4, 5]));
    ///
    /// // Guaranteed to have the last element and the elements
    /// // preceding it.
    /// assert_eq!(non_empty.split(), (&1, &[2, 3, 4][..], &5));
    ///
    /// let non_empty = NonEmpty::new(1);
    ///
    /// // Guaranteed to have the last element.
    /// assert_eq!(non_empty.split(), (&1, &[][..], &1));
    /// ```
    pub fn split(&self) -> (&T, &[T], &T) {
        match self.tail.split_last() {
            None => (&self.head, &[], &self.head),
            Some((last, middle)) => (&self.head, middle, last),
        }
    }

    /// Append a `Vec` to the tail of the `NonEmpty`.
    ///
    /// # Example Use
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let mut non_empty = NonEmpty::new(1);
    /// let mut vec = vec![2, 3, 4, 5];
    /// non_empty.append(&mut vec);
    ///
    /// let mut expected = NonEmpty::from((1, vec![2, 3, 4, 5]));
    ///
    /// assert_eq!(non_empty, expected);
    /// ```
    pub fn append(&mut self, other: &mut Vec<T>) {
        self.tail.append(other)
    }

    /// A structure preserving `map`. This is useful for when
    /// we wish to keep the `NonEmpty` structure guaranteeing
    /// that there is at least one element. Otherwise, we can
    /// use `nonempty.iter().map(f)`.
    ///
    /// # Examples
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let non_empty = NonEmpty::from((1, vec![2, 3, 4, 5]));
    ///
    /// let squares = non_empty.map(|i| i * i);
    ///
    /// let expected = NonEmpty::from((1, vec![4, 9, 16, 25]));
    ///
    /// assert_eq!(squares, expected);
    /// ```
    pub fn map<U, F>(self, mut f: F) -> NonEmpty<U>
    where
        F: FnMut(T) -> U,
    {
        NonEmpty {
            head: f(self.head),
            tail: self.tail.into_iter().map(f).collect(),
        }
    }

    /// When we have a function that goes from some `T` to a `NonEmpty<U>`,
    /// we may want to apply it to a `NonEmpty<T>` but keep the structure flat.
    /// This is where `flat_map` shines.
    ///
    /// # Examples
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let non_empty = NonEmpty::from((1, vec![2, 3, 4, 5]));
    ///
    /// let windows = non_empty.flat_map(|i| {
    ///     let mut next = NonEmpty::new(i + 5);
    ///     next.push(i + 6);
    ///     next
    /// });
    ///
    /// let expected = NonEmpty::from((6, vec![7, 7, 8, 8, 9, 9, 10, 10, 11]));
    ///
    /// assert_eq!(windows, expected);
    /// ```
    pub fn flat_map<U, F>(self, mut f: F) -> NonEmpty<U>
    where
        F: FnMut(T) -> NonEmpty<U>,
    {
        let mut heads = f(self.head);
        let mut tails = self
            .tail
            .into_iter()
            .flat_map(|t| f(t).into_iter())
            .collect();
        heads.append(&mut tails);
        heads
    }

    /// Flatten nested `NonEmpty`s into a single one.
    ///
    /// # Examples
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let non_empty = NonEmpty::from((
    ///     NonEmpty::from((1, vec![2, 3])),
    ///     vec![NonEmpty::from((4, vec![5]))],
    /// ));
    ///
    /// let expected = NonEmpty::from((1, vec![2, 3, 4, 5]));
    ///
    /// assert_eq!(NonEmpty::flatten(non_empty), expected);
    /// ```
    pub fn flatten(full: NonEmpty<NonEmpty<T>>) -> Self {
        full.flat_map(|n| n)
    }

    /// Binary searches this sorted non-empty vector for a given element.
    ///
    /// If the value is found then Result::Ok is returned, containing the index of the matching element.
    /// If there are multiple matches, then any one of the matches could be returned.
    ///
    /// If the value is not found then Result::Err is returned, containing the index where a
    /// matching element could be inserted while maintaining sorted order.
    ///
    /// # Examples
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let non_empty = NonEmpty::from((0, vec![1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]));
    /// assert_eq!(non_empty.binary_search(&0),   Ok(0));
    /// assert_eq!(non_empty.binary_search(&13),  Ok(9));
    /// assert_eq!(non_empty.binary_search(&4),   Err(7));
    /// assert_eq!(non_empty.binary_search(&100), Err(13));
    /// let r = non_empty.binary_search(&1);
    /// assert!(match r { Ok(1..=4) => true, _ => false, });
    /// ```
    ///
    /// If you want to insert an item to a sorted non-empty vector, while maintaining sort order:
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let mut non_empty = NonEmpty::from((0, vec![1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]));
    /// let num = 42;
    /// let idx = non_empty.binary_search(&num).unwrap_or_else(|x| x);
    /// non_empty.insert(idx, num);
    /// assert_eq!(non_empty, NonEmpty::from((0, vec![1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55])));
    /// ```
    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
    where
        T: Ord,
    {
        self.binary_search_by(|p| p.cmp(x))
    }

    /// Binary searches this sorted non-empty with a comparator function.
    ///
    /// The comparator function should implement an order consistent with the sort order of the underlying slice,
    /// returning an order code that indicates whether its argument is Less, Equal or Greater the desired target.
    ///
    /// If the value is found then Result::Ok is returned, containing the index of the matching element.
    /// If there are multiple matches, then any one of the matches could be returned.
    /// If the value is not found then Result::Err is returned, containing the index where a matching element could be
    /// inserted while maintaining sorted order.
    ///
    /// # Examples
    ///
    /// Looks up a series of four elements. The first is found, with a uniquely determined
    /// position; the second and third are not found; the fourth could match any position in [1,4].
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let non_empty = NonEmpty::from((0, vec![1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]));
    /// let seek = 0;
    /// assert_eq!(non_empty.binary_search_by(|probe| probe.cmp(&seek)), Ok(0));
    /// let seek = 13;
    /// assert_eq!(non_empty.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
    /// let seek = 4;
    /// assert_eq!(non_empty.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
    /// let seek = 100;
    /// assert_eq!(non_empty.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
    /// let seek = 1;
    /// let r = non_empty.binary_search_by(|probe| probe.cmp(&seek));
    /// assert!(match r { Ok(1..=4) => true, _ => false, });
    /// ```
    pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
    where
        F: FnMut(&'a T) -> Ordering,
    {
        match f(&self.head) {
            Ordering::Equal => Ok(0),
            Ordering::Greater => Err(0),
            Ordering::Less => self
                .tail
                .binary_search_by(f)
                .map(|index| index + 1)
                .map_err(|index| index + 1),
        }
    }

    /// Binary searches this sorted non-empty vector with a key extraction function.
    ///
    /// Assumes that the vector is sorted by the key.
    ///
    /// If the value is found then Result::Ok is returned, containing the index of the matching element. If there are multiple matches,
    /// then any one of the matches could be returned. If the value is not found then Result::Err is returned,
    /// containing the index where a matching element could be inserted while maintaining sorted order.
    ///
    /// # Examples
    ///
    /// Looks up a series of four elements in a non-empty vector of pairs sorted by their second elements.
    /// The first is found, with a uniquely determined position; the second and third are not found;
    /// the fourth could match any position in [1, 4].
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let non_empty = NonEmpty::from((
    ///     (0, 0),
    ///     vec![(2, 1), (4, 1), (5, 1), (3, 1),
    ///          (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
    ///          (1, 21), (2, 34), (4, 55)]
    /// ));
    ///
    /// assert_eq!(non_empty.binary_search_by_key(&0, |&(a,b)| b),  Ok(0));
    /// assert_eq!(non_empty.binary_search_by_key(&13, |&(a,b)| b),  Ok(9));
    /// assert_eq!(non_empty.binary_search_by_key(&4, |&(a,b)| b),   Err(7));
    /// assert_eq!(non_empty.binary_search_by_key(&100, |&(a,b)| b), Err(13));
    /// let r = non_empty.binary_search_by_key(&1, |&(a,b)| b);
    /// assert!(match r { Ok(1..=4) => true, _ => false, });
    /// ```
    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
    where
        B: Ord,
        F: FnMut(&'a T) -> B,
    {
        self.binary_search_by(|k| f(k).cmp(b))
    }

    /// Returns the maximum element in the non-empty vector.
    ///
    /// This will return the first item in the vector if the tail is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let non_empty = NonEmpty::new(42);
    /// assert_eq!(non_empty.maximum(), &42);
    ///
    /// let non_empty = NonEmpty::from((1, vec![-34, 42, 76, 4, 5]));
    /// assert_eq!(non_empty.maximum(), &76);
    /// ```
    pub fn maximum(&self) -> &T
    where
        T: Ord,
    {
        self.maximum_by(|i, j| i.cmp(j))
    }

    /// Returns the minimum element in the non-empty vector.
    ///
    /// This will return the first item in the vector if the tail is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let non_empty = NonEmpty::new(42);
    /// assert_eq!(non_empty.minimum(), &42);
    ///
    /// let non_empty = NonEmpty::from((1, vec![-34, 42, 76, 4, 5]));
    /// assert_eq!(non_empty.minimum(), &-34);
    /// ```
    pub fn minimum(&self) -> &T
    where
        T: Ord,
    {
        self.minimum_by(|i, j| i.cmp(j))
    }

    /// Returns the element that gives the maximum value with respect to the specified comparison function.
    ///
    /// This will return the first item in the vector if the tail is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let non_empty = NonEmpty::new((0, 42));
    /// assert_eq!(non_empty.maximum_by(|(k, _), (l, _)| k.cmp(l)), &(0, 42));
    ///
    /// let non_empty = NonEmpty::from(((2, 1), vec![(2, -34), (4, 42), (0, 76), (1, 4), (3, 5)]));
    /// assert_eq!(non_empty.maximum_by(|(k, _), (l, _)| k.cmp(l)), &(4, 42));
    /// ```
    pub fn maximum_by<F>(&self, compare: F) -> &T
    where
        F: Fn(&T, &T) -> Ordering,
    {
        let mut max = &self.head;
        for i in self.tail.iter() {
            max = match compare(&max, &i) {
                Ordering::Equal => max,
                Ordering::Less => &i,
                Ordering::Greater => max,
            };
        }
        max
    }

    /// Returns the element that gives the minimum value with respect to the specified comparison function.
    ///
    /// This will return the first item in the vector if the tail is empty.
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let non_empty = NonEmpty::new((0, 42));
    /// assert_eq!(non_empty.minimum_by(|(k, _), (l, _)| k.cmp(l)), &(0, 42));
    ///
    /// let non_empty = NonEmpty::from(((2, 1), vec![(2, -34), (4, 42), (0, 76), (1, 4), (3, 5)]));
    /// assert_eq!(non_empty.minimum_by(|(k, _), (l, _)| k.cmp(l)), &(0, 76));
    /// ```
    pub fn minimum_by<F>(&self, compare: F) -> &T
    where
        F: Fn(&T, &T) -> Ordering,
    {
        self.maximum_by(|a, b| compare(a, b).reverse())
    }

    /// Returns the element that gives the maximum value with respect to the specified function.
    ///
    /// This will return the first item in the vector if the tail is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let non_empty = NonEmpty::new((0, 42));
    /// assert_eq!(non_empty.maximum_by_key(|(k, _)| k), &(0, 42));
    ///
    /// let non_empty = NonEmpty::from(((2, 1), vec![(2, -34), (4, 42), (0, 76), (1, 4), (3, 5)]));
    /// assert_eq!(non_empty.maximum_by_key(|(k, _)| k), &(4, 42));
    /// ```
    pub fn maximum_by_key<U, F>(&self, f: F) -> &T
    where
        U: Ord,
        F: Fn(&T) -> &U,
    {
        self.maximum_by(|i, j| f(i).cmp(f(j)))
    }

    /// Returns the element that gives the minimum value with respect to the specified function.
    ///
    /// This will return the first item in the vector if the tail is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use nonempty::NonEmpty;
    ///
    /// let non_empty = NonEmpty::new((0, 42));
    /// assert_eq!(non_empty.minimum_by_key(|(k, _)| k), &(0, 42));
    ///
    /// let non_empty = NonEmpty::from(((2, 1), vec![(2, -34), (4, 42), (0, 76), (1, 4), (3, 5)]));
    /// assert_eq!(non_empty.minimum_by_key(|(k, _)| k), &(0, 76));
    /// ```
    pub fn minimum_by_key<U, F>(&self, f: F) -> &T
    where
        U: Ord,
        F: Fn(&T) -> &U,
    {
        self.minimum_by(|i, j| f(i).cmp(f(j)))
    }
}

impl<T> From<NonEmpty<T>> for Vec<T> {
    /// Turns a non-empty list into a Vec.
    fn from(nonempty: NonEmpty<T>) -> Vec<T> {
        iter::once(nonempty.head).chain(nonempty.tail).collect()
    }
}

impl<T> From<NonEmpty<T>> for (T, Vec<T>) {
    /// Turns a non-empty list into a Vec.
    fn from(nonempty: NonEmpty<T>) -> (T, Vec<T>) {
        (nonempty.head, nonempty.tail)
    }
}

impl<T> From<(T, Vec<T>)> for NonEmpty<T> {
    /// Turns a pair of an element and a Vec into
    /// a NonEmpty.
    fn from((head, tail): (T, Vec<T>)) -> Self {
        NonEmpty { head, tail }
    }
}

impl<T> IntoIterator for NonEmpty<T> {
    type Item = T;
    type IntoIter = iter::Chain<iter::Once<T>, vec::IntoIter<Self::Item>>;

    fn into_iter(self) -> Self::IntoIter {
        iter::once(self.head).chain(self.tail)
    }
}

#[cfg(feature = "serialize")]
pub mod serialize {
    use std::{convert::TryFrom, fmt};

    use super::NonEmpty;

    #[derive(Debug)]
    pub enum Error {
        Empty,
    }

    impl fmt::Display for Error {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            match self {
                Self::Empty => f.write_str(
                    "the vector provided was empty, NonEmpty needs at least one element",
                ),
            }
        }
    }

    impl<T> TryFrom<Vec<T>> for NonEmpty<T> {
        type Error = Error;

        fn try_from(vec: Vec<T>) -> Result<Self, Self::Error> {
            NonEmpty::from_vec(vec).ok_or(Error::Empty)
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::NonEmpty;

    #[test]
    fn test_from_conversion() {
        let result = NonEmpty::from((1, vec![2, 3, 4, 5]));
        let expected = NonEmpty {
            head: 1,
            tail: vec![2, 3, 4, 5],
        };
        assert_eq!(result, expected);
    }

    #[test]
    fn test_into_iter() {
        let nonempty = NonEmpty::from((0, vec![1, 2, 3]));
        for (i, n) in nonempty.into_iter().enumerate() {
            assert_eq!(i as i32, n);
        }
    }

    #[test]
    fn test_mutate_head() {
        let mut non_empty = NonEmpty::new(42);
        non_empty.head += 1;
        assert_eq!(non_empty.head, 43);

        let mut non_empty = NonEmpty::from((1, vec![4, 2, 3]));
        non_empty.head *= 42;
        assert_eq!(non_empty.head, 42);
    }

    #[cfg(feature = "serialize")]
    mod serialize {
        use crate::NonEmpty;
        use serde::{Deserialize, Serialize};

        #[derive(Clone, Debug, Deserialize, Eq, PartialEq, Serialize)]
        pub struct SimpleSerializable(pub i32);

        #[test]
        fn test_simple_round_trip() -> Result<(), Box<dyn std::error::Error>> {
            // Given
            let mut non_empty = NonEmpty::new(SimpleSerializable(42));
            non_empty.push(SimpleSerializable(777));
            let expected_value = non_empty.clone();

            // When
            let res = serde_json::from_str::<'_, NonEmpty<SimpleSerializable>>(
                &serde_json::to_string(&non_empty)?,
            )?;

            // Then
            assert_eq!(res, expected_value);

            Ok(())
        }
    }
}