1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
//! Non-empty iterators.

use crate::NEVec;
use std::cmp::Ordering;
use std::collections::HashSet;
use std::hash::Hash;
use std::iter::{Product, Sum};
use std::num::NonZeroUsize;
use std::result::Result;

// Iterator structs which _always_ have something if the source iterator is non-empty:
//
// - [x] Chain (if one, the other, or both are nonempty)
// - [x] Cloned
// - [x] Copied
// - [ ] Cycle
// - [x] Enumerate
// - [x] Map
// - [x] Once
// - [ ] Scan
// - [x] Take
// - [x] Zip (if both are nonempty)

/// Creates an iterator that yields an element exactly once.
///
/// See also [`std::iter::once`].
pub fn once<T>(value: T) -> Once<T> {
    Once::new(value)
}

/// An [`Iterator`] that is guaranteed to have at least one item.
pub trait NonEmptyIterator {
    /// The value produced by this iterator.
    type Item;

    /// Each `NonEmptyIterator` knows about a possibly-empty variant of itself,
    /// likely from `std`. Critically, they share an `Item`.
    type IntoIter: IntoIterator<Item = Self::Item>;

    /// A `NonEmptyIterator` can, by consuming itself, reliably produce its
    /// first element, alongside its possibly-empty variant.
    fn first(self) -> (Self::Item, Self::IntoIter);

    /// Advances the iterator and returns the next value.
    ///
    /// See also [`Iterator::next`].
    fn next(&mut self) -> Option<Self::Item>;

    /// Tests if every element of the iterator matches a predicate.
    ///
    /// See also [`Iterator::all`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let n = nev![2,2,2];
    /// assert!(n.iter().all(|n| n % 2 == 0));
    /// ```
    fn all<F>(&mut self, f: F) -> bool
    where
        Self: Sized,
        F: FnMut(Self::Item) -> bool,
    {
        let mut fun = f;

        loop {
            match self.next() {
                Some(i) => {
                    if !fun(i) {
                        return false;
                    }
                }
                None => {
                    return true;
                }
            }
        }
    }

    /// Tests if any element of the iterator matches a predicate.
    ///
    /// See also [`Iterator::any`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let n = nev![1,1,1,2,1,1];
    /// assert!(n.iter().any(|n| n % 2 == 0));
    /// assert!(!n.iter().any(|n| n % 3 == 0));
    /// ```
    fn any<F>(&mut self, f: F) -> bool
    where
        Self: Sized,
        F: FnMut(Self::Item) -> bool,
    {
        let mut fun = f;

        loop {
            match self.next() {
                None => {
                    return false;
                }
                Some(i) => {
                    if fun(i) {
                        return true;
                    }
                }
            }
        }
    }

    /// Takes two iterators and creates a new non-empty iterator over both in sequence.
    ///
    /// Note that the second iterator need not be empty.
    ///
    /// See also [`Iterator::chain`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let v = nev![1,2,3];
    /// let s = nes![4,5,6];
    /// let mut r: Vec<_> = v.into_nonempty_iter().chain(s).collect();
    /// r.sort();
    ///
    /// assert_eq!(vec![1,2,3,4,5,6], r);
    /// ```
    fn chain<U>(self, other: U) -> Chain<Self, U::IntoIter>
    where
        Self: Sized,
        U: IntoIterator<Item = Self::Item>,
    {
        Chain {
            a: self,
            b: other.into_iter(),
        }
    }

    /// Creates a non-empty iterator which clones all of its elements.
    ///
    /// This is useful when you have an iterator over `&T`, but you need an
    /// iterator over `T`.
    ///
    /// See also [`Iterator::cloned`].
    ///
    /// ```
    /// use nonempty_collections::*;
    /// use nonempty_collections::NEVec;
    ///
    /// #[derive(Debug, Clone, PartialEq, Eq)]
    /// enum Foo {
    ///     A,
    ///     B,
    ///     C,
    /// }
    ///
    /// let v0 = nev![Foo::A, Foo::B, Foo::C];
    /// let v1: NEVec<_> = v0.iter().collect();
    /// let v2: NEVec<_> = v0.iter().cloned().collect();
    ///
    /// assert_eq!(nev![&Foo::A, &Foo::B, &Foo::C], v1);
    /// assert_eq!(nev![Foo::A, Foo::B, Foo::C], v2);
    /// ```
    fn cloned<'a, T: 'a>(self) -> Cloned<Self>
    where
        Self: Sized + NonEmptyIterator<Item = &'a T>,
        T: Clone,
    {
        Cloned { iter: self }
    }

    /// Transforms an iterator into a collection, or some other concrete value.
    ///
    /// See also [`Iterator::collect`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let n0 = nev![1,2,3,4];
    /// let n1 = n0.into_nonempty_iter().collect();
    /// assert_eq!(nev![1,2,3,4], n1);
    /// ```
    fn collect<B>(self) -> B
    where
        Self: Sized,
        B: FromNonEmptyIterator<Self::Item>,
    {
        FromNonEmptyIterator::from_nonempty_iter(self)
    }

    /// Creates a non-empty iterator which copies all of its elements.
    ///
    /// See also [`Iterator::copied`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let n0 = nev![1,2,3,4];
    /// let n1 = n0.iter().copied().collect();
    /// assert_eq!(n0, n1);
    /// ```
    fn copied<'a, T: 'a>(self) -> Copied<Self>
    where
        Self: Sized + NonEmptyIterator<Item = &'a T>,
        T: Copy,
    {
        Copied { iter: self }
    }

    /// Consumes the non-empty iterator, counting the number of iterations and
    /// returning it.
    ///
    /// See also [`Iterator::count`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let n = nev![1];
    /// assert_eq!(1, n.iter().count().get());
    ///
    /// let n = nev![1,2,3,4,5,6];
    /// assert_eq!(6, n.iter().count().get());
    /// ````
    fn count(self) -> NonZeroUsize
    where
        Self: Sized,
    {
        // Differs from the implementation of `Iterator::count` to absolutely
        // ensure that `count` returns at least 1.
        let (_, rest) = self.first();
        NonZeroUsize::MIN.saturating_add(rest.into_iter().count())
    }

    /// Creates a non-empty iterator which gives the current iteration count as
    /// well as the next value.
    ///
    /// See also [`Iterator::enumerate`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let s = nes!["Doriath", "Gondolin", "Nargothrond"];
    /// let total: usize = s.iter().enumerate().map(|(c, _)| c).sum();
    /// assert_eq!(3, total);
    /// ```
    fn enumerate(self) -> Enumerate<Self>
    where
        Self: Sized,
    {
        Enumerate {
            iter: self,
            count: 0,
        }
    }

    /// Creates an iterator which uses a closure to determine if an element
    /// should be yielded.
    ///
    /// **Note:** The iterator returned by this method is **not** a
    /// `NonEmptyIterator`, since there is never a guarantee that any element
    /// will pass the predicate.
    ///
    /// See also [`Iterator::filter`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let n = nev![1,2,3,4,5,6];
    /// let v: Vec<_> = n.iter().map(|x| x * 2).filter(|&x| x % 3 == 0).collect();
    /// assert_eq!(vec![6, 12], v);
    /// ```
    fn filter<P>(self, predicate: P) -> std::iter::Filter<<Self as IntoIterator>::IntoIter, P>
    where
        Self: Sized + IntoIterator<Item = <Self as NonEmptyIterator>::Item>,
        P: FnMut(&<Self as IntoIterator>::Item) -> bool,
    {
        self.into_iter().filter(predicate)
    }

    /// Creates an iterator that both filters and maps.
    ///
    /// **Note:** The iterator returned by this method is **not** a
    /// `NonEmptyIterator`, since there is never a guarantee that any element
    /// will yield `Some` from the given function.
    ///
    /// See also [`Iterator::filter_map`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let v = nev!["Frodo", "Sam", "", "Peregrin", "Meriadoc"];
    /// let firsts: Vec<char> = v.into_nonempty_iter().filter_map(|s| s.chars().next()).collect();
    /// assert_eq!(vec!['F', 'S', 'P', 'M'], firsts);
    /// ```
    fn filter_map<B, F>(self, f: F) -> std::iter::FilterMap<<Self as IntoIterator>::IntoIter, F>
    where
        Self: Sized + IntoIterator<Item = <Self as NonEmptyIterator>::Item>,
        F: FnMut(<Self as IntoIterator>::Item) -> Option<B>,
    {
        self.into_iter().filter_map(f)
    }

    /// Creates an iterator that works like `map`, but flattens nested,
    /// non-empty structure.
    ///
    /// See also [`Iterator::flat_map`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let v = nev![1, 2, 3];
    /// let r = v.into_nonempty_iter().flat_map(|n| nev![n]).collect();
    /// assert_eq!(nev![1, 2, 3], r);
    /// ```
    #[inline]
    fn flat_map<U, V, F>(self, f: F) -> FlatMap<Self, V, F>
    where
        Self: Sized,
        F: FnMut(Self::Item) -> U,
        U: IntoNonEmptyIterator<IntoIter = V, Item = V::Item>,
        V: NonEmptyIterator,
    {
        FlatMap {
            iter: self.into_nonempty_iter(),
            f,
            curr: None,
        }
    }

    // fn flatten<F, V>(self) -> FlatMap<Self, V, F>
    // where
    //     Self: Sized,
    //     Self::Item: IntoNonEmptyIterator<IntoIter = V, Item = V::Item>,
    //     V: NonEmptyIterator,
    // {
    //     self.flat_map(|ne| ne)
    // }

    /// Folds every element into an accumulator by applying an operation,
    /// returning the final result.
    ///
    /// See also [`Iterator::fold`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let n = nev![1,2,3,4];
    /// let r = n.into_nonempty_iter().fold(0, |acc, x| acc + x);
    /// assert_eq!(10, r);
    /// ```
    fn fold<B, F>(mut self, init: B, mut f: F) -> B
    where
        Self: Sized,
        F: FnMut(B, Self::Item) -> B,
    {
        let mut accum = init;
        while let Some(x) = self.next() {
            accum = f(accum, x);
        }
        accum
    }

    /// Takes a closure and creates a non-empty iterator which calls that
    /// closure on each element.
    ///
    /// If `self` is a `NonEmptyIterator`, then so is [`Map`].
    ///
    /// See also [`Iterator::map`].
    ///
    /// ```
    /// use nonempty_collections::*;
    /// use nonempty_collections::NEVec;
    ///
    /// let s = nes![1,2,3];
    /// let mut v: NEVec<_> = s.iter().map(|n| n * 2).collect();
    /// v.sort();
    /// assert_eq!(nev![2,4,6], v);
    /// ```
    #[inline]
    fn map<U, F>(self, f: F) -> Map<Self, F>
    where
        Self: Sized,
        F: FnMut(Self::Item) -> U,
    {
        Map { iter: self, f }
    }

    /// Returns the maximum element of a non-empty iterator.
    ///
    /// Unlike [`Iterator::max`], this always yields a value.
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let v = nev![1, 1000, 2, 3];
    /// assert_eq!(1000, v.into_nonempty_iter().max());
    /// ```
    fn max(self) -> Self::Item
    where
        Self: Sized,
        Self::Item: Ord,
    {
        self.max_by(Ord::cmp)
    }

    /// Returns the element that gives the maximum value with respect to the
    /// given comparison function.
    ///
    /// Unlike [`Iterator::max_by`], this always yields a value.
    fn max_by<F>(self, compare: F) -> Self::Item
    where
        Self: Sized,
        F: Fn(&Self::Item, &Self::Item) -> Ordering,
    {
        let (first, iter) = self.first();

        iter.into_iter()
            .fold(first, |acc, item| match compare(&acc, &item) {
                Ordering::Less => item,
                _ => acc,
            })
    }

    /// Returns the element that gives the maximum value from the
    /// specified function.
    ///
    /// There are two differences with [`Iterator::max_by_key`]:
    /// - this function always yields a value while [`Iterator::max_by_key`]
    ///   yields an `Option`.
    /// - if several elements are equally maximum, the *first* element is
    ///   returned (unlike [`Iterator::max_by_key`] which returns the last
    ///   element).
    ///
    /// # Examples
    ///
    /// ```
    /// use nonempty_collections::*;
    /// let max = nev!["hi", "hey", "rust", "yolo"].into_nonempty_iter().max_by_key(|item| item.len());
    /// assert_eq!("rust", max);
    /// ```
    fn max_by_key<B, F>(self, mut key: F) -> Self::Item
    where
        Self: Sized,
        B: Ord,
        F: FnMut(&Self::Item) -> B,
    {
        self.map(|item| (key(&item), item))
            .max_by(|(left_key, _), (right_key, _)| left_key.cmp(right_key))
            .1
    }

    /// Returns the minimum element of a non-empty iterator.
    ///
    /// Unlike [`Iterator::min`], this always yields a value.
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let v = nev![1000, 1, 2000, 3000];
    /// assert_eq!(1, v.into_nonempty_iter().min());
    /// ```
    fn min(self) -> Self::Item
    where
        Self: Sized,
        Self::Item: Ord,
    {
        self.min_by(Ord::cmp)
    }

    /// Returns the element that gives the minimum value with respect to the
    /// given comparison function.
    ///
    /// Unlike [`Iterator::min_by`], this always yields a value.
    fn min_by<F>(self, compare: F) -> Self::Item
    where
        Self: Sized,
        F: Fn(&Self::Item, &Self::Item) -> Ordering,
    {
        let (first, iter) = self.first();

        iter.into_iter()
            .fold(first, |acc, item| match compare(&acc, &item) {
                Ordering::Greater => item,
                _ => acc,
            })
    }

    /// Returns the element that gives the minimum value from the
    /// specified function.
    ///
    /// There are two differences with [`Iterator::min_by_key`]:
    /// - this function always yields a value while [`Iterator::min_by_key`]
    ///   yields an `Option`.
    /// - if several elements are equally minimum, the *first* element is
    ///   returned (unlike [`Iterator::min_by_key`] which returns the last
    ///   element).
    ///
    /// # Examples
    ///
    /// ```
    /// use nonempty_collections::*;
    /// let min = nev!["hi", "hello", "greetings", "hy"].into_nonempty_iter().min_by_key(|item| item.len());
    /// assert_eq!("hi", min);
    /// ```
    fn min_by_key<B, F>(self, mut key: F) -> Self::Item
    where
        Self: Sized,
        B: Ord,
        F: FnMut(&Self::Item) -> B,
    {
        self.map(|item| (key(&item), item))
            .min_by(|(left_key, _), (right_key, _)| left_key.cmp(right_key))
            .1
    }

    /// Returns the `n`th element of the iterator.
    ///
    /// See also [`Iterator::nth`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let n = nev![0,1,2,3,4,5,6];
    /// assert_eq!(Some(&0), n.iter().nth(0));
    ///
    /// let n = nev![0,1,2,3,4,5,6];
    /// assert_eq!(Some(&6), n.iter().nth(6));
    ///
    /// let n = nev![0,1,2,3,4,5,6];
    /// assert_eq!(None, n.iter().nth(100));
    /// ```
    fn nth(&mut self, n: usize) -> Option<Self::Item> {
        for _ in 0..n {
            self.next()?;
        }
        self.next()
    }

    /// Skip the first `n` elements.
    ///
    /// Note that the result will not be non-empty.
    ///
    /// See also [`Iterator::skip`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let v = nev![1, 2, 3];
    /// assert_eq!(Some(&3), v.iter().skip(2).next());
    /// ```
    fn skip(self, n: usize) -> std::iter::Skip<<Self as IntoIterator>::IntoIter>
    where
        Self: Sized + IntoIterator<Item = <Self as NonEmptyIterator>::Item>,
    {
        self.into_iter().skip(n)
    }

    /// Skips over all initial elements that pass a given predicate.
    ///
    /// **Note**: This does not yield a non-empty iterator, since there is no
    /// guarantee that anything will fail the predicate.
    ///
    /// See also [`Iterator::skip_while`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let v = nev![2, 4, 6, 7, 8];
    /// let r: Vec<_> = v.into_nonempty_iter().skip_while(|n| n % 2 == 0).collect();
    /// assert_eq!(vec![7, 8], r);
    /// ```
    fn skip_while<P>(self, pred: P) -> std::iter::SkipWhile<<Self as IntoIterator>::IntoIter, P>
    where
        Self: Sized + IntoIterator<Item = <Self as NonEmptyIterator>::Item>,
        P: FnMut(&<Self as IntoIterator>::Item) -> bool,
    {
        self.into_iter().skip_while(pred)
    }

    /// Sums the elements of a non-empty iterator.
    ///
    /// See also [`Iterator::sum`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let sum: u32 = nev![1,2,3,4].iter().sum();
    /// assert_eq!(10, sum);
    /// ```
    fn sum<S>(self) -> S
    where
        Self: Sized + IntoIterator,
        S: Sum<<Self as IntoIterator>::Item>,
    {
        Sum::sum(self.into_iter())
    }

    /// Iterates over the first `n` elements, or fewer if the underlying iterator ends sooner.
    ///
    /// See also [`Iterator::take`].
    ///
    /// # Panics
    ///
    /// Panics if `n == 0`.
    ///
    /// # Examples
    ///
    /// ```
    /// use nonempty_collections::*;
    /// use nonempty_collections::NEVec;
    ///
    /// let n: NEVec<_> = nev![1,2,3].iter().map(|n| n * 2).take(2).collect();
    /// assert_eq!(nev![2,4], n);
    /// ```
    fn take(self, n: usize) -> Take<Self>
    where
        Self: Sized,
    {
        if n == 0 {
            panic!("Cannot take 0 elements from a non-empty iterator!");
        }

        Take { iter: self, n }
    }

    /// Iterates over all initial elements that pass a given predicate.
    ///
    /// **Note**: This does not yield a non-empty iterator, since there is no
    /// guarantee that anything will pass the predicate.
    ///
    /// See also [`Iterator::take_while`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let v = nev![2, 4, 6, 7, 8];
    /// let r: Vec<_> = v.into_nonempty_iter().take_while(|n| n % 2 == 0).collect();
    /// assert_eq!(vec![2, 4, 6], r);
    /// ```
    fn take_while<P>(self, pred: P) -> std::iter::TakeWhile<<Self as IntoIterator>::IntoIter, P>
    where
        Self: Sized + IntoIterator<Item = <Self as NonEmptyIterator>::Item>,
        P: FnMut(&<Self as IntoIterator>::Item) -> bool,
    {
        self.into_iter().take_while(pred)
    }

    /// Iterates over the entire non-empty iterator, multiplying all the
    /// elements.
    ///
    /// See also [`Iterator::product`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let prod: u32 = nev![1,2,3,4].iter().product();
    /// assert_eq!(24, prod);
    /// ```
    fn product<P>(self) -> P
    where
        Self: Sized + IntoIterator,
        P: Product<<Self as IntoIterator>::Item>,
    {
        Product::product(self.into_iter())
    }

    /// "Zips up" two non-empty iterators into a single one, while preserving
    /// non-emptiness.
    ///
    /// See also [`Iterator::zip`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let a = nev![1, 2, 3];
    /// let b = nev![4, 5, 6, 7];
    /// let r = a.into_nonempty_iter().zip(b).map(|(av, bv)| av + bv).collect();
    /// assert_eq!(nev![5, 7, 9], r);
    /// ```
    fn zip<U>(self, other: U) -> Zip<Self, U::IntoIter>
    where
        Self: Sized,
        U: IntoNonEmptyIterator,
    {
        Zip {
            a: self,
            b: other.into_nonempty_iter(),
        }
    }

    /// Reduces the elements to a single one, by repeatedly applying a reducing
    /// operation.
    ///
    /// See also [`Iterator::reduce`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let a = nev![1, 2, 3, 4];
    /// let b = a.clone();
    ///
    /// let x = a.into_nonempty_iter().reduce(|acc, v| acc + v);
    /// assert_eq!(x, 10);
    ///
    /// let y = b.into_nonempty_iter().reduce(|acc, v| acc * v);
    /// assert_eq!(y, 24);
    /// ```
    fn reduce<F>(self, f: F) -> Self::Item
    where
        Self: Sized,
        F: FnMut(Self::Item, Self::Item) -> Self::Item,
    {
        let (head, rest) = self.first();
        rest.into_iter().fold(head, f)
    }
}

/// Conversion from a [`NonEmptyIterator`].
pub trait FromNonEmptyIterator<T>: Sized {
    /// Creates a value from a [`NonEmptyIterator`].
    fn from_nonempty_iter<I>(iter: I) -> Self
    where
        I: IntoNonEmptyIterator<Item = T>;
}

impl<T> FromNonEmptyIterator<T> for Vec<T> {
    fn from_nonempty_iter<I>(iter: I) -> Self
    where
        I: IntoNonEmptyIterator<Item = T>,
    {
        let (head, rest) = iter.into_nonempty_iter().first();

        let mut v = vec![head];
        v.extend(rest);
        v
    }
}

impl<T: Eq + Hash> FromNonEmptyIterator<T> for HashSet<T> {
    fn from_nonempty_iter<I>(iter: I) -> Self
    where
        I: IntoNonEmptyIterator<Item = T>,
    {
        let (head, rest) = iter.into_nonempty_iter().first();

        let mut s = HashSet::new();
        s.insert(head);
        s.extend(rest);
        s
    }
}

impl<A, E, V> FromNonEmptyIterator<Result<A, E>> for Result<V, E>
where
    V: FromNonEmptyIterator<A>,
{
    fn from_nonempty_iter<I>(iter: I) -> Result<V, E>
    where
        I: IntoNonEmptyIterator<Item = Result<A, E>>,
    {
        let (head, rest) = iter.into_nonempty_iter().first();
        let head: A = head?;

        let mut buf = NEVec::new(head);

        for item in rest.into_iter() {
            let item: A = item?;
            buf.push(item);
        }
        let new_iter = buf.into_nonempty_iter();
        let output: V = FromNonEmptyIterator::from_nonempty_iter(new_iter);
        Ok(output)
    }
}

impl<I: NonEmptyIterator> IntoNonEmptyIterator for I {
    type Item = I::Item;

    type IntoIter = I;

    fn into_nonempty_iter(self) -> Self::IntoIter {
        self
    }
}

/// Conversion into a [`NonEmptyIterator`].
pub trait IntoNonEmptyIterator {
    /// The type of the elements being iterated over.
    type Item;

    /// Which kind of [`NonEmptyIterator`] are we turning this into?
    type IntoIter: NonEmptyIterator<Item = Self::Item>;

    /// Creates a [`NonEmptyIterator`] from a value.
    fn into_nonempty_iter(self) -> Self::IntoIter;
}

/// Similar to [`std::iter::Map`], but with additional non-emptiness guarantees.
pub struct Map<I, F> {
    iter: I,
    f: F,
}

impl<U, I, F> NonEmptyIterator for Map<I, F>
where
    I: NonEmptyIterator,
    F: FnMut(I::Item) -> U,
{
    type Item = U;

    type IntoIter = std::iter::Map<<I::IntoIter as IntoIterator>::IntoIter, F>;

    fn first(self) -> (Self::Item, Self::IntoIter) {
        let (i, iter) = self.iter.first();
        let mut fun = self.f;

        // Reconstruct the `Map` we broke open.
        (fun(i), iter.into_iter().map(fun))
    }

    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next().map(&mut self.f)
    }
}

/// ```
/// use nonempty_collections::*;
///
/// let v: Vec<_> = nev![1,2,3].iter().map(|n| n * 2).collect();
/// ```
impl<U, I, F> IntoIterator for Map<I, F>
where
    I: IntoIterator,
    F: FnMut(I::Item) -> U,
{
    type Item = U;

    type IntoIter = std::iter::Map<I::IntoIter, F>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter.into_iter().map(self.f)
    }
}

/// An iterator that clones the elements of an underlying iterator.
///
/// See also [`std::iter::Cloned`].
pub struct Cloned<I> {
    iter: I,
}

impl<'a, I, T: 'a> NonEmptyIterator for Cloned<I>
where
    I: NonEmptyIterator<Item = &'a T>,
    T: Clone,
{
    type Item = T;

    type IntoIter = std::iter::Cloned<<I::IntoIter as IntoIterator>::IntoIter>;

    fn first(self) -> (Self::Item, Self::IntoIter) {
        let (i, iter) = self.iter.first();

        (i.clone(), iter.into_iter().cloned())
    }

    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next().cloned()
    }
}

impl<'a, I, T: 'a> IntoIterator for Cloned<I>
where
    I: IntoIterator<Item = &'a T>,
    T: Clone,
{
    type Item = T;

    type IntoIter = std::iter::Cloned<I::IntoIter>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter.into_iter().cloned()
    }
}

/// An iterator that yields the current count and the element during iteration.
///
/// See also [`std::iter::Enumerate`].
pub struct Enumerate<I> {
    iter: I,
    count: usize,
}

impl<I> NonEmptyIterator for Enumerate<I>
where
    I: NonEmptyIterator,
{
    type Item = (usize, I::Item);

    type IntoIter = std::iter::Enumerate<<I::IntoIter as IntoIterator>::IntoIter>;

    fn first(self) -> (Self::Item, Self::IntoIter) {
        let (head, rest) = self.iter.first();

        ((0, head), rest.into_iter().enumerate())
    }

    fn next(&mut self) -> Option<Self::Item> {
        let a = self.iter.next()?;
        let i = self.count;
        self.count += 1;
        Some((i, a))
    }
}

impl<I> IntoIterator for Enumerate<I>
where
    I: IntoIterator,
{
    type Item = (usize, I::Item);

    type IntoIter = std::iter::Enumerate<I::IntoIter>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter.into_iter().enumerate()
    }
}

/// A non-empty iterator that only iterates over the first `n` iterations.
///
/// See also [`Iterator::take`].
pub struct Take<I> {
    iter: I,
    n: usize,
}

impl<I> NonEmptyIterator for Take<I>
where
    I: NonEmptyIterator,
{
    type Item = I::Item;

    type IntoIter = std::iter::Take<<I::IntoIter as IntoIterator>::IntoIter>;

    fn first(self) -> (Self::Item, Self::IntoIter) {
        let (head, rest) = self.iter.first();

        if self.n < 2 {
            (head, rest.into_iter().take(0))
        } else {
            (head, rest.into_iter().take(self.n - 1))
        }
    }

    fn next(&mut self) -> Option<Self::Item> {
        if self.n != 0 {
            self.n -= 1;
            self.iter.next()
        } else {
            None
        }
    }
}

/// ```
/// use nonempty_collections::*;
///
/// let v = nev![1,2,3];
/// let r = v.iter().take(1).into_iter().count();
/// assert_eq!(1, r);
/// ```
impl<I> IntoIterator for Take<I>
where
    I: IntoIterator,
{
    type Item = I::Item;

    type IntoIter = std::iter::Take<I::IntoIter>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter.into_iter().take(self.n)
    }
}

/// A non-empty iterator that links two iterators together, in a chain.
pub struct Chain<A, B> {
    a: A,
    b: B,
}

impl<A, B> NonEmptyIterator for Chain<A, B>
where
    A: NonEmptyIterator,
    B: Iterator<Item = A::Item>,
{
    type Item = A::Item;

    type IntoIter = std::iter::Chain<<A::IntoIter as IntoIterator>::IntoIter, B>;

    fn first(self) -> (Self::Item, Self::IntoIter) {
        let (head, a_rest) = self.a.first();

        (head, a_rest.into_iter().chain(self.b))
    }

    fn next(&mut self) -> Option<Self::Item> {
        self.a.next().or_else(|| self.b.next())
    }
}

impl<A, B> IntoIterator for Chain<A, B>
where
    A: IntoIterator,
    B: IntoIterator<Item = A::Item>,
{
    type Item = A::Item;

    type IntoIter = std::iter::Chain<A::IntoIter, B::IntoIter>;

    fn into_iter(self) -> Self::IntoIter {
        self.a.into_iter().chain(self.b)
    }
}

/// A non-empty iterator that yields an element exactly once.
pub struct Once<T> {
    once: Vec<T>,
}

impl<T> Once<T> {
    pub(crate) fn new(once: T) -> Once<T> {
        Once { once: vec![once] }
    }
}

impl<T> NonEmptyIterator for Once<T> {
    type Item = T;

    type IntoIter = std::option::IntoIter<T>;

    fn first(mut self) -> (Self::Item, Self::IntoIter) {
        (self.once.remove(0), None.into_iter())
    }

    fn next(&mut self) -> Option<Self::Item> {
        if self.once.is_empty() {
            None
        } else {
            Some(self.once.remove(0))
        }
    }
}

impl<T> IntoIterator for Once<T> {
    type Item = T;

    type IntoIter = std::option::IntoIter<T>;

    fn into_iter(mut self) -> Self::IntoIter {
        Some(self.once.remove(0)).into_iter()
    }
}

/// A non-empty iterator that copies the elements of an underlying non-empty
/// iterator.
///
/// See also [`std::iter::Copied`].
pub struct Copied<I> {
    iter: I,
}

impl<'a, I, T: 'a> NonEmptyIterator for Copied<I>
where
    I: NonEmptyIterator<Item = &'a T>,
    T: Copy,
{
    type Item = T;

    type IntoIter = std::iter::Copied<<I::IntoIter as IntoIterator>::IntoIter>;

    fn first(self) -> (Self::Item, Self::IntoIter) {
        let (head, rest) = self.iter.first();

        (*head, rest.into_iter().copied())
    }

    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next().copied()
    }
}

impl<'a, I, T: 'a> IntoIterator for Copied<I>
where
    I: IntoIterator<Item = &'a T>,
    T: Copy,
{
    type Item = T;

    type IntoIter = std::iter::Copied<I::IntoIter>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter.into_iter().copied()
    }
}

/// A non-empty iterator that "zips up" its sources.
///
/// See also [`std::iter::Zip`].
pub struct Zip<A, B> {
    a: A,
    b: B,
}

impl<A, B> NonEmptyIterator for Zip<A, B>
where
    A: NonEmptyIterator,
    B: NonEmptyIterator,
{
    type Item = (<A as NonEmptyIterator>::Item, <B as NonEmptyIterator>::Item);

    type IntoIter = std::iter::Zip<
        <A::IntoIter as IntoIterator>::IntoIter,
        <B::IntoIter as IntoIterator>::IntoIter,
    >;

    fn first(self) -> (Self::Item, Self::IntoIter) {
        let (a_first, a_iter) = self.a.first();
        let (b_first, b_iter) = self.b.first();

        ((a_first, b_first), a_iter.into_iter().zip(b_iter))
    }

    fn next(&mut self) -> Option<Self::Item> {
        match (self.a.next(), self.b.next()) {
            (Some(av), Some(bv)) => Some((av, bv)),
            _ => None,
        }
    }
}

impl<A, B> IntoIterator for Zip<A, B>
where
    A: IntoIterator,
    B: IntoIterator,
{
    type Item = (<A as IntoIterator>::Item, <B as IntoIterator>::Item);

    type IntoIter = std::iter::Zip<<A as IntoIterator>::IntoIter, <B as IntoIterator>::IntoIter>;

    fn into_iter(self) -> Self::IntoIter {
        self.a.into_iter().zip(self.b)
    }
}

/// Flatten nested, non-empty structures.
///
/// See also [`std::iter::FlatMap`].
pub struct FlatMap<I, U, F> {
    iter: I,
    f: F,
    curr: Option<U>,
}

impl<I, U, V, F> NonEmptyIterator for FlatMap<I, U, F>
where
    I: NonEmptyIterator,
    F: FnMut(I::Item) -> V,
    U: NonEmptyIterator,
    V: IntoNonEmptyIterator<IntoIter = U, Item = U::Item> + IntoIterator<Item = U::Item>,
{
    type Item = <V as IntoNonEmptyIterator>::Item;

    type IntoIter = std::iter::Chain<
        <U::IntoIter as IntoIterator>::IntoIter,
        std::iter::FlatMap<<I::IntoIter as IntoIterator>::IntoIter, V, F>,
    >;

    fn first(self) -> (Self::Item, Self::IntoIter) {
        let (i, iter) = self.iter.first();
        let mut fun = self.f;
        let (j, oter) = fun(i).into_nonempty_iter().first();

        (j, oter.into_iter().chain(iter.into_iter().flat_map(fun)))
    }

    fn next(&mut self) -> Option<Self::Item> {
        match &mut self.curr {
            None => match self.iter.next() {
                None => None,
                Some(new) => {
                    let fun = &mut self.f;
                    let res = fun(new).into_nonempty_iter();
                    self.curr = Some(res);
                    self.next()
                }
            },
            Some(u) => match u.next() {
                Some(x) => Some(x),
                None => {
                    self.curr = None;
                    self.next()
                }
            },
        }
    }
}

/// ```
/// use nonempty_collections::*;
///
/// let v = nev![1, 2, 3];
/// let r: Vec<_> = v.into_nonempty_iter().flat_map(|n| nev![n]).into_iter().collect();
/// assert_eq!(vec![1, 2, 3], r);
/// ```
impl<I, U, V, F> IntoIterator for FlatMap<I, U, F>
where
    I: IntoIterator,
    F: FnMut(I::Item) -> V,
    U: IntoIterator,
    V: IntoIterator<Item = U::Item>,
{
    // type Item = <U as IntoIterator>::Item;
    type Item = U::Item;

    // type IntoIter = std::iter::FlatMap<<I as IntoIterator>::IntoIter, U, F>;
    type IntoIter = std::iter::FlatMap<I::IntoIter, V, F>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter.into_iter().flat_map(self.f)
    }
}

/// Convenience trait extending [`Iterator`].
pub trait IteratorExt {
    /// The type of the elements being iterated over.
    type Item;

    /// Which kind of [`NonEmptyIterator`] are we turning this into?
    type IntoIter: NonEmptyIterator<Item = Self::Item>;

    /// Tries to convert `self` into a [`NonEmptyIterator`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let a = vec![1];
    /// let x = a.into_iter().to_nonempty_iter();
    /// assert!(x.is_some());
    ///
    /// let y = x.unwrap().collect::<NEVec<_>>();
    /// assert_eq!(y.len().get(), 1);
    /// ```
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let b: Vec::<u8> = vec![];
    /// let x = b.into_iter().to_nonempty_iter();
    ///
    /// assert!(x.is_none());
    /// ```
    ///
    /// To construct non-empty collections directly, consider macros like [`crate::nev!`].
    fn to_nonempty_iter(self) -> Option<Self::IntoIter>;
}

impl<I, T> IteratorExt for I
where
    I: Iterator<Item = T>,
{
    type Item = T;
    type IntoIter = Chain<Once<Self::Item>, Self>;

    /// Tries to convert `self` into [`NonEmptyIterator`]. Calls `self.next()`
    /// once. If `self` doesn't return `Some` upon the first call to `next()`,
    /// returns `None`.
    fn to_nonempty_iter(mut self) -> Option<Self::IntoIter> {
        self.next().map(|head| once(head).chain(self))
    }
}

/// Convenience trait extending [`IntoIterator`].
pub trait IntoIteratorExt {
    /// The type of the elements being iterated over.
    type Item;
    /// Which kind of [`NonEmptyIterator`] are we turning this into?
    type IntoIter: NonEmptyIterator<Item = Self::Item>;

    /// Tries to convert `self` into a [`NonEmptyIterator`].
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let a = vec![1];
    /// let x = a.try_into_nonempty_iter();
    /// assert!(x.is_some());
    ///
    /// let y = x.unwrap().collect::<NEVec<_>>();
    /// assert_eq!(y.len().get(), 1);
    /// ```
    ///
    /// ```
    /// use nonempty_collections::*;
    ///
    /// let b: Vec::<u8> = vec![];
    /// let x = b.try_into_nonempty_iter();
    ///
    /// assert!(x.is_none());
    /// ```
    ///
    /// To construct non-empty collections directly, consider macros like [`crate::nev!`].
    fn try_into_nonempty_iter(self) -> Option<Self::IntoIter>;
}

impl<T> IntoIteratorExt for T
where
    T: IntoIterator,
{
    type Item = T::Item;

    type IntoIter = Chain<Once<Self::Item>, T::IntoIter>;

    /// Tries to convert `self` into [`NonEmptyIterator`]. Calls `self.next()`
    /// once. If `self` doesn't return `Some` upon the first call to `next()`,
    /// returns `None`.
    fn try_into_nonempty_iter(self) -> Option<Self::IntoIter> {
        self.into_iter().to_nonempty_iter()
    }
}

/// A wrapper type for easy derivation of [`IntoIterator`] for anything
/// that's already [`NonEmptyIterator`].
pub struct IntoIteratorProxy<T> {
    pub(crate) iter: T,
}

impl<T> Iterator for IntoIteratorProxy<T>
where
    T: NonEmptyIterator,
{
    type Item = T::Item;

    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next()
    }
}