1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
//! An parser for binary and ASCII STL files.
//!
//! ## Example
//! ```rust
//! use std::io::BufReader;
//! use std::fs::File;
//! let file = File::open("./fixtures/Root_Vase.stl").unwrap();
//! let mut root_vase = BufReader::new(&file);
//! let mesh: nom_stl::Mesh = nom_stl::parse_stl(&mut root_vase).unwrap();
//! assert_eq!(mesh.triangles().len(), 596_736);
//! ```

#![forbid(unsafe_code)]
#![deny(missing_docs)]

use nom::bytes::complete::{tag, take, take_while1};
use nom::character::complete::{line_ending, multispace0, multispace1};
use nom::combinator::{opt, rest};
use nom::multi::many1;
use nom::number::complete::{float, le_f32};
use nom::IResult;
use std::{
    collections::{HashMap, HashSet},
    convert::TryInto,
    io::{Read, Seek, SeekFrom},
};

type Result<T> = std::result::Result<T, Error>;
type Vertex = [f32; 3];

/// An error is either an IOError (wrapping std::io::Error),
/// or a parse error, indicating that the parser is unable to
/// make progress on an invalid input. This error is derived
/// from the underlying nom_stl error
#[derive(Debug)]
pub enum Error {
    /// A wrapper for a std::io::Error
    IOError(std::io::Error),
    /// Expressing the underlying nom_stl error
    ParseError(String),
}

impl std::fmt::Display for Error {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", self)
    }
}

impl std::error::Error for Error {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        let e = self;
        Some(e)
    }
}

impl From<std::io::Error> for Error {
    fn from(error: std::io::Error) -> Self {
        Error::IOError(error)
    }
}

impl<E: std::fmt::Debug> From<nom::Err<E>> for Error {
    fn from(error: nom::Err<E>) -> Self {
        Error::ParseError(format!("{}", error))
    }
}

/// A triangle type with an included normal vertex and vertices.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct Triangle {
    normal: Vertex,
    vertices: [Vertex; 3],
}

impl Triangle {
    /// Create a new triangle.
    pub fn new(normal: Vertex, vertices: [Vertex; 3]) -> Self {
        Triangle { normal, vertices }
    }

    /// Return the normal vertex of the triangle.
    /// This indicates the "front" of the triangle.
    pub fn normal(&self) -> Vertex {
        self.normal
    }

    /// Return an array of the triangle's corner vertices
    pub fn vertices(&self) -> [Vertex; 3] {
        self.vertices
    }

    /// The size of the `Triangle` struct at runtime.
    pub fn size_of(&self) -> usize {
        std::mem::size_of::<Self>()
    }
}

/// A triangle mesh represented as a vector of `Triangle`.
#[derive(Clone, Debug, PartialEq)]
pub struct Mesh {
    triangles: Vec<Triangle>,
}

impl Mesh {
    /// Create a triangle mesh from a `Vec` of `Triangle`.
    pub fn new(triangles: Vec<Triangle>) -> Self {
        Self { triangles }
    }

    /// Return a slice of the mesh's triangles
    pub fn triangles(&self) -> &[Triangle] {
        self.triangles.as_slice()
    }

    /// Returns the an iterator of vertices of all triangles.
    /// This function clones/copies every vertex, and does not deduplicate vertices.
    pub fn vertices(&self) -> impl Iterator<Item = Vertex> + '_ {
        self.vertices_ref().cloned()
    }

    /// Returns an iterator of vertex references for all triangles.
    /// Does not deduplicate any vertices.
    pub fn vertices_ref(&self) -> impl Iterator<Item = &Vertex> {
        self.triangles()
            .iter()
            .flat_map(|triangle| triangle.vertices.as_ref())
    }

    /// Returns an iterator of all unique vertices in the mesh.
    /// This function clones/copies every vertex.
    pub fn unique_vertices(&self) -> impl Iterator<Item = Vertex> {
        let set = self
            .vertices_ref()
            .map(|vertex| {
                [
                    vertex[0].to_bits(),
                    vertex[1].to_bits(),
                    vertex[2].to_bits(),
                ]
            })
            .collect::<HashSet<_>>();

        set.into_iter()
            .map(|[x, y, z]| [f32::from_bits(x), f32::from_bits(y), f32::from_bits(z)])
    }

    /// The size of the `Mesh` struct at runtime.
    pub fn size_of(&self) -> usize {
        std::mem::size_of::<Self>()
    }
}

/// A triangle mesh represented as a vector of `IndexTriangle`
/// and a vector of `Vertex`.
pub struct IndexMesh {
    triangles: Vec<IndexTriangle>,
    vertices: Vec<Vertex>,
}

impl IndexMesh {
    /// Returns a slice of all `IndexTriangle` in the mesh.
    pub fn triangles(&self) -> &[IndexTriangle] {
        self.triangles.as_slice()
    }

    /// Returns a slice of all vertices in the mesh.
    pub fn vertices(&self) -> &[Vertex] {
        &self.vertices
    }

    /// The size of the `IndexMesh` struct at runtime.
    pub fn size_of(&self) -> usize {
        std::mem::size_of::<Self>()
    }
}

/// A triangle type which contains a normal vertex and index references
/// to vertices contained in a separate vertices container.
/// See `IndexMesh`.
pub struct IndexTriangle {
    normal: Vertex,
    vertices_indices: [usize; 3],
}

impl IndexTriangle {
    /// The normal vector.
    pub fn normal(&self) -> Vertex {
        self.normal
    }

    /// Returns the vertices for the `IndexTriangle` by looking them up
    /// in the given `vertices` slice.
    pub fn vertices(&self, vertices: &[Vertex]) -> [Vertex; 3] {
        [
            vertices[self.vertices_indices[0]],
            vertices[self.vertices_indices[1]],
            vertices[self.vertices_indices[2]],
        ]
    }

    /// Returns the positions of the triangle's 3 vertices
    /// in the separate vertices container.
    pub fn vertices_indices(&self) -> [usize; 3] {
        self.vertices_indices
    }

    /// The size of the `IndexTriangle` at runtime.
    pub fn size_of(&self) -> usize {
        std::mem::size_of::<Self>()
    }
}

impl From<Mesh> for IndexMesh {
    fn from(mesh: Mesh) -> Self {
        let mut vertices: Vec<[f32; 3]> = vec![];
        let mut vertices_bits_to_indices: HashMap<[u32; 3], usize> = HashMap::new();
        let mut vertices_indices: [usize; 3] = [0, 0, 0];

        let index_triangles = mesh
            .triangles
            .iter()
            .map(|triangle| {
                for (i, vertex) in triangle.vertices.iter().enumerate() {
                    let bits = [
                        vertex[0].to_bits(),
                        vertex[1].to_bits(),
                        vertex[2].to_bits(),
                    ];

                    if let Some(index) = vertices_bits_to_indices.get(&bits) {
                        vertices_indices[i] = *index;
                    } else {
                        let index = vertices.len();
                        vertices_bits_to_indices.insert(bits, index);
                        vertices_indices[i] = index;
                        vertices.push(*vertex);
                    }
                }

                IndexTriangle {
                    normal: triangle.normal,
                    vertices_indices,
                }
            })
            .collect();

        IndexMesh {
            triangles: index_triangles,
            vertices,
        }
    }
}

// BOTH GRAMMARS
/////////////////////////////////////////////////////////////////

/// Parse a binary or an ASCII stl.
/// Binary stls ar not supposed to begin with the bytes `solid`,
/// but unfortunately they sometimes do in the real world.
/// For this reason, we use a simple regex heuristic to determine
/// if the stl contains the bytes `facet normal`, which is a byte
/// sequence specifically used in ASCII stls.
/// If the file contains this sequence, we assume ASCII, otherwise
/// binary. While a binary stl can in theory contain this sequence,
/// the odds of this are low. This is a tradeoff to avoid something
/// both more complicated and less performant.
pub fn parse_stl<R: Read + Seek>(bytes: &mut R) -> Result<Mesh> {
    if contains_facet_normal_bytes(bytes.by_ref()) {
        bytes.seek(SeekFrom::Start(0))?;

        let mut buf = vec![];

        bytes.read_to_end(&mut buf)?;

        mesh_ascii(&buf)
    } else {
        bytes.seek(SeekFrom::Start(0))?;
        mesh_binary(bytes.by_ref())
    }
}

fn contains_facet_normal_bytes<R: Read>(bytes: &mut R) -> bool {
    let identifier_search_bytes_length = match std::env::var("NOM_IDENTIFIER_SEARCH_BYTES_LENGTH") {
        Ok(length) => length.parse().unwrap_or_else(|_| 1024),
        Err(_e) => 1024,
    };

    let mut search_space = vec![0u8; identifier_search_bytes_length];

    bytes.read_to_end(&mut search_space).unwrap();

    search_bytes(&search_space, b"facet normal").is_some()
}

fn search_bytes(bytes: &[u8], target: &[u8]) -> Option<usize> {
    bytes
        .windows(target.len())
        .position(|window| window == target)
}

// BINARY GRAMMAR
/////////////////////////////////////////////////////////////////
//
// Format of a binary STL:
//
// UINT8[80] – Header
// UINT32 – Number of triangles
//
// foreach triangle
// REAL32[3] – Normal vector
// REAL32[3] – Vertex 1
// REAL32[3] – Vertex 2
// REAL32[3] – Vertex 3
// UINT16 – Attribute byte count
// end
//
// Therefor we see that the size of an STL is:
// 80 byte header
// + 4 byte triangle size
// + (n * (12 + 12 + 12 + 12 + 2))

const HEADER_SIZE_BYTES: usize = 84; // 80 + 4
const TRIANGLE_SIZE_BYTES: usize = 50; // 12 + 12 + 12 + 12 + 2

fn mesh_binary<R: Read>(mut s: R) -> Result<Mesh> {
    let mut header_and_triangles_count = [0u8; HEADER_SIZE_BYTES];

    s.read_exact(&mut header_and_triangles_count)?;

    let reported_triangle_count = u32::from_le_bytes(
        header_and_triangles_count[80..84]
            .try_into()
            .expect("Could not get four bytes to create u32"),
    );

    // previously we optimized this with `Vec::with_capacity`, but
    // fuzzing with afl++ uncovered that it is possible to crash the process
    // by passing a specially crafted stl with a triangle count value larger
    // than the system memory
    let mut all_triangles: Vec<Triangle> = Vec::new();

    let triangles_reader: TrianglesIter<R> =
        TrianglesIter::new(s, reported_triangle_count as usize);

    for triangle in triangles_reader {
        all_triangles.push(triangle?);
    }

    let mesh = Mesh::new(all_triangles);

    Ok(mesh)
}
#[derive(Debug)]
struct TrianglesIter<R: Read> {
    reader: R,
    buf: Vec<u8>,
    triangles_to_read: usize,
    triangles_read: usize,
}

impl<R: Read> TrianglesIter<R> {
    fn new(reader: R, triangles_to_read: usize) -> Self {
        TrianglesIter {
            reader,
            buf: vec![0u8; TRIANGLE_SIZE_BYTES],
            triangles_to_read,
            triangles_read: 0,
        }
    }
}

impl<R: Read> Iterator for TrianglesIter<R> {
    type Item = Result<Triangle>;

    fn next(&mut self) -> Option<Result<Triangle>> {
        if self.triangles_read >= self.triangles_to_read {
            None
        } else {
            match self.reader.read_exact(&mut self.buf) {
                Ok(()) => match triangle_binary(&self.buf) {
                    Ok((_r, t)) => {
                        self.triangles_read += 1;
                        Some(Ok(t))
                    }
                    Err(err) => {
                        self.triangles_read += 1;
                        Some(Err(Error::from(err)))
                    }
                },
                Err(e) => Some(Err(Error::from(e))),
            }
        }
    }
}

fn three_f32s(s: &[u8]) -> IResult<&[u8], Vertex> {
    assert!(s.len() >= 12);
    let (s, f1) = le_f32(s)?;
    let (s, f2) = le_f32(s)?;
    let (s, f3) = le_f32(s)?;

    Ok((s, [f1, f2, f3]))
}

fn triangle_binary(s: &[u8]) -> IResult<&[u8], Triangle> {
    let (s, normal) = three_f32s(s)?;
    let (s, v1) = three_f32s(s)?;
    let (s, v2) = three_f32s(s)?;
    let (s, v3) = three_f32s(s)?;
    let (s, _attribute_byte_count) = take(2usize)(s)?;

    Ok((
        s,
        Triangle {
            normal,
            vertices: [v1, v2, v3],
        },
    ))
}

// ASCII GRAMMAR
/////////////////////////////////////////////////////////////////

fn not_line_ending(c: u8) -> bool {
    c != b'\r' && c != b'\n'
}

fn mesh_ascii(s: &[u8]) -> Result<Mesh> {
    let (s, _) = tag("solid")(s).map_err(to_crate_err)?;
    let (s, _) = opt(take_while1(not_line_ending))(s).map_err(to_crate_err)?;
    let (s, _) = line_ending(s).map_err(to_crate_err)?;
    let (s, triangles) = many1(triangle_ascii)(s)?;
    let (s, _) = multispace1(s).map_err(to_crate_err)?;
    let (s, _) = tag("endsolid")(s).map_err(to_crate_err)?;
    let (_s, _) = opt(rest)(s).map_err(to_crate_err)?;
    let mesh = Mesh::new(triangles);

    Ok(mesh)
}

#[inline(always)]
fn to_crate_err(e: nom::Err<(&[u8], nom::error::ErrorKind)>) -> Error {
    e.into()
}

fn three_floats(s: &[u8]) -> IResult<&[u8], Vertex> {
    let (s, f1) = float(s)?;
    let (s, _) = multispace1(s)?;
    let (s, f2) = float(s)?;
    let (s, _) = multispace1(s)?;
    let (s, f3) = float(s)?;

    Ok((s, [f1, f2, f3]))
}

fn triangle_ascii(s: &[u8]) -> IResult<&[u8], Triangle> {
    let (s, _) = multispace0(s)?;
    let (s, _) = tag("facet normal")(s)?;
    let (s, _) = multispace1(s)?;

    let (s, normal) = three_floats(s)?;
    let (s, _) = multispace1(s)?;

    let (s, _) = tag("outer loop")(s)?;
    let (s, _) = multispace1(s)?;

    let (s, v1) = vertex(s)?;
    let (s, v2) = vertex(s)?;
    let (s, v3) = vertex(s)?;

    let (s, _) = tag("endloop")(s)?;
    let (s, _) = multispace1(s)?;

    let (s, _) = tag("endfacet")(s)?;

    Ok((
        s,
        Triangle {
            normal,
            vertices: [v1, v2, v3],
        },
    ))
}

fn vertex(s: &[u8]) -> IResult<&[u8], Vertex> {
    let (s, _) = recognize_vertex(s)?;
    let (s, _) = multispace1(s)?;
    let (s, v) = three_floats(s)?;
    let (s, _) = multispace1(s)?;
    Ok((s, v))
}

fn recognize_vertex(s: &[u8]) -> IResult<&[u8], ()> {
    let (s, _) = tag("vertex")(s)?;
    Ok((s, ()))
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::io::BufReader;

    fn to_bytes(vec: [f32; 3]) -> [u8; 12] {
        [
            vec[0].to_le_bytes()[0],
            vec[0].to_le_bytes()[1],
            vec[0].to_le_bytes()[2],
            vec[0].to_le_bytes()[3],
            vec[1].to_le_bytes()[0],
            vec[1].to_le_bytes()[1],
            vec[1].to_le_bytes()[2],
            vec[1].to_le_bytes()[3],
            vec[2].to_le_bytes()[0],
            vec[2].to_le_bytes()[1],
            vec[2].to_le_bytes()[2],
            vec[2].to_le_bytes()[3],
        ]
    }

    #[test]
    fn parses_both_ascii_and_binary() {
        // derived from: https://www.thingiverse.com/thing:1187833
        let moon_file = std::fs::File::open("./fixtures/MOON_PRISM_POWER.stl").unwrap();
        let mut moon = BufReader::new(&moon_file);
        let ascii_mesh: Mesh = parse_stl(&mut moon).unwrap();

        assert_eq!(3698, ascii_mesh.triangles.len());

        // credit: https://www.thingiverse.com/thing:26227
        let vase_file = std::fs::File::open("./fixtures/Root_Vase.stl").unwrap();
        let mut root_vase = BufReader::new(&vase_file);
        let binary_mesh: Mesh = parse_stl(&mut root_vase).unwrap();

        assert_eq!(596_736, binary_mesh.triangles.len());
    }

    #[test]
    fn parses_ascii_triangles() {
        let triangle_string = "facet normal 0.642777 -2.54044e-006 0.766053
               outer loop
                 vertex 8.08661 0.373289 54.1924
                 vertex 8.02181 0.689748 54.2468
                 vertex 8.10936 0 54.1733
               endloop
             endfacet";

        let triangle = triangle_ascii(triangle_string.as_bytes());

        let test_triangle = Triangle {
            normal: [0.642777, -0.00000254044, 0.766053],
            vertices: [
                [8.08661, 0.373289, 54.1924],
                [8.02181, 0.689748, 54.2468],
                [8.10936, 0.0, 54.1733],
            ],
        };

        assert_eq!(triangle, Ok((vec!().as_slice(), test_triangle)))
    }

    #[test]
    fn parses_ascii_mesh() {
        let mesh_string = "solid OpenSCAD_Model
               facet normal 0.642777 -2.54044e-006 0.766053
                 outer loop
                   vertex 8.08661 0.373289 54.1924
                   vertex 8.02181 0.689748 54.2468
                   vertex 8.10936 0 54.1733
                 endloop
               endfacet
               facet normal -0.281083 -0.678599 -0.678599
                 outer loop
                   vertex -0.196076 7.34845 8.72767
                   vertex 0 8.11983 7.87508
                   vertex 0 7.342 8.6529
                 endloop
               endfacet
             endsolid OpenSCAD_Model";

        let mesh = parse_stl(&mut std::io::Cursor::new(mesh_string.as_bytes().to_owned()));

        let v1 = [
            [8.08661, 0.373289, 54.1924],
            [8.02181, 0.689748, 54.2468],
            [8.10936, 0.0, 54.1733],
        ];

        let v2 = [
            [-0.196076, 7.34845, 8.72767],
            [0.0, 8.11983, 7.87508],
            [0.0, 7.342, 8.6529],
        ];

        let test_mesh = Mesh::new(vec![
            Triangle::new([0.642777, -0.00000254044, 0.766053], v1),
            Triangle::new([-0.281083, -0.678599, -0.678599], v2),
        ]);

        assert_eq!(mesh.unwrap(), test_mesh);
    }

    #[test]
    fn does_ascii_from_file() {
        // derived from: https://www.thingiverse.com/thing:1187833
        let moon_file = std::fs::File::open("./fixtures/MOON_PRISM_POWER.stl").unwrap();
        let mut moon = BufReader::new(&moon_file);
        let mesh: Mesh = parse_stl(&mut moon).unwrap();

        assert_eq!(3698, mesh.triangles.len());
    }

    #[test]
    fn parses_triangles() {
        let normal = [1.0f32, 7.0f32, 3.0f32];
        let v1 = [0f32, 22.100001f32, 4.1f32];
        let v2 = [1.1f32, 9.10f32, 3.9f32];
        let v3 = [2.0f32, 1.01f32, -5.2f32];

        let normal_bytes = to_bytes(normal);
        let v1_bytes: [u8; 12] = to_bytes(v1);
        let v2_bytes: [u8; 12] = to_bytes(v2);
        let v3_bytes: [u8; 12] = to_bytes(v3);

        // a 2-byte short that's ignored
        let attribute_byte_count_bytes: &[u8] = &[0, 0];

        let triangle_bytes = &[
            &normal_bytes,
            &v1_bytes,
            &v2_bytes,
            &v3_bytes,
            attribute_byte_count_bytes,
        ]
        .concat();

        let test_triangle = Triangle {
            normal,
            vertices: [v1, v2, v3],
        };

        assert_eq!(
            triangle_binary(triangle_bytes),
            Ok((vec!().as_slice(), test_triangle))
        );
    }

    #[test]
    fn parses_mesh() {
        let header = vec![0; 80];
        let count = 2u32.to_le_bytes().to_vec();
        let body = vec![
            // triangle 1
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // normal
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // v1
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // v2
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // v3
            0, 0, // uint16
            // triangle 2
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // normal
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // v1
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // v2
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // v3
            0, 0, // uint16
        ];

        let mut all = std::io::Cursor::new(vec![header, count, body].concat());

        let test_mesh = parse_stl(&mut all).unwrap();

        assert_eq!(
            test_mesh,
            Mesh::new(vec![
                Triangle {
                    normal: [0.0, 0.0, 0.0],
                    vertices: [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]
                },
                Triangle {
                    normal: [0.0, 0.0, 0.0],
                    vertices: [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]
                },
            ],)
        );
    }

    #[test]
    fn does_binary_from_file() {
        // credit: https://www.thingiverse.com/thing:26227
        let file = std::fs::File::open("./fixtures/Root_Vase.stl").unwrap();
        let mut root_vase = BufReader::new(&file);
        let start = std::time::Instant::now();
        let mesh: Mesh = parse_stl(&mut root_vase).unwrap();
        let end = std::time::Instant::now();
        println!("root_vase time: {:?}", end - start);

        assert_eq!(mesh.triangles.len(), 596_736);
    }

    #[test]
    fn does_binary_from_file_starting_with_solid() {
        // credit: https://www.thingiverse.com/thing:26227
        let file = std::fs::File::open("./fixtures/Root_Vase_solid_start.stl").unwrap();
        let mut root_vase = BufReader::new(&file);
        let mesh: Mesh = parse_stl(&mut root_vase).unwrap();

        assert_eq!(mesh.triangles.len(), 596_736);
    }

    #[test]
    fn does_ascii_file_without_a_closing_solid_name() {
        // derived from: https://www.thingiverse.com/thing:1187833
        let moon_file =
            std::fs::File::open("./fixtures/MOON_PRISM_POWER_no_closing_name.stl").unwrap();
        let mut moon = BufReader::new(&moon_file);
        let result: Mesh = parse_stl(&mut moon).unwrap();
        assert_eq!(result.triangles.len(), 3698);
    }

    #[test]
    fn parses_stl_with_dos_line_endings_crlf() {
        // derived from: https://www.thingiverse.com/thing:1187833

        let moon_file = std::fs::File::open("./fixtures/MOON_PRISM_POWER_dos.stl").unwrap();
        let mut moon = BufReader::new(&moon_file);
        let result: Mesh = parse_stl(&mut moon).unwrap();
        assert_eq!(result.triangles.len(), 3698);
    }

    #[test]
    fn all_vertices() {
        let mesh_string = "solid OpenSCAD_Model
               facet normal 0.642777 -2.54044e-006 0.766053
                 outer loop
                   vertex 8.08661 0.373289 54.1924
                   vertex 8.02181 0.689748 54.2468
                   vertex 8.10936 0 54.1733
                 endloop
               endfacet
               facet normal -0.281083 -0.678599 -0.678599
                 outer loop
                   vertex -0.196076 7.34845 8.72767
                   vertex 0 8.11983 7.87508
                   vertex 0 7.342 8.6529
                 endloop
               endfacet
               facet normal -0.281083 -0.678599 -0.678599
                 outer loop
                   vertex 8.08661 0.373289 54.1924
                   vertex 8.02181 0.689748 54.2468
                   vertex 0 7.342 8.6529
                 endloop
               endfacet
             endsolid OpenSCAD_Model";

        let mesh = parse_stl(&mut std::io::Cursor::new(mesh_string.as_bytes().to_owned())).unwrap();

        assert_eq!(
            mesh.vertices_ref().collect::<Vec<&Vertex>>().len(),
            mesh.triangles().len() * 3
        );

        assert_eq!(
            mesh.vertices().collect::<Vec<Vertex>>().len(),
            mesh.triangles().len() * 3
        );
    }

    #[test]
    fn makes_unique_vertices() {
        let mesh_string = "solid OpenSCAD_Model
               facet normal 0.642777 -2.54044e-006 0.766053
                 outer loop
                   vertex 8.08661 0.373289 54.1924
                   vertex 8.02181 0.689748 54.2468
                   vertex 8.10936 0 54.1733
                 endloop
               endfacet
               facet normal -0.281083 -0.678599 -0.678599
                 outer loop
                   vertex -0.196076 7.34845 8.72767
                   vertex 0 8.11983 7.87508
                   vertex 0 7.342 8.6529
                 endloop
               endfacet
               facet normal -0.281083 -0.678599 -0.678599
                 outer loop
                   vertex 8.08661 0.373289 54.1924
                   vertex 8.02181 0.689748 54.2468
                   vertex 0 7.342 8.6529
                 endloop
               endfacet
             endsolid OpenSCAD_Model";

        let mesh = parse_stl(&mut std::io::Cursor::new(mesh_string.as_bytes().to_owned())).unwrap();

        assert_eq!(mesh.unique_vertices().collect::<Vec<_>>().len(), 6);
    }

    #[test]
    fn creates_an_index_mesh() {
        let mesh_string = "solid OpenSCAD_Model
               facet normal 0.642777 -2.54044e-006 0.766053
                 outer loop
                   vertex 8.08661 0.373289 54.1924
                   vertex 8.02181 0.689748 54.2468
                   vertex 8.10936 0 54.1733
                 endloop
               endfacet
               facet normal -0.281083 -0.678599 -0.678599
                 outer loop
                   vertex 8.08661 0.373289 54.1924
                   vertex 8.02181 0.689748 54.2468
                   vertex 0 7.342 8.6529
                 endloop
               endfacet
               facet normal -0.281083 -0.678599 -0.678599
                 outer loop
                   vertex 8.08661 0.373289 54.1924
                   vertex 8.02181 0.689748 54.2468
                   vertex 4.0 4.0 4.0
                 endloop
               endfacet
             endsolid OpenSCAD_Model";

        let mesh = parse_stl(&mut std::io::Cursor::new(mesh_string.as_bytes().to_owned())).unwrap();

        let index_mesh: IndexMesh = mesh.into();

        assert_eq!(index_mesh.triangles().len(), 3);
        assert_eq!(index_mesh.vertices().len(), 5);
    }

    #[test]
    fn ascii_without_an_opening_file_name() {
        let mesh_string = "solid
               facet normal 0.642777 -2.54044e-006 0.766053
                 outer loop
                   vertex 8.08661 0.373289 54.1924
                   vertex 8.02181 0.689748 54.2468
                   vertex 8.10936 0 54.1733
                 endloop
               endfacet
               facet normal -0.281083 -0.678599 -0.678599
                 outer loop
                   vertex 8.08661 0.373289 54.1924
                   vertex 8.02181 0.689748 54.2468
                   vertex 0 7.342 8.6529
                 endloop
               endfacet
               facet normal -0.281083 -0.678599 -0.678599
                 outer loop
                   vertex 8.08661 0.373289 54.1924
                   vertex 8.02181 0.689748 54.2468
                   vertex 4.0 4.0 4.0
                 endloop
               endfacet
             endsolid OpenSCAD_Model";

        let mesh = parse_stl(&mut std::io::Cursor::new(mesh_string.as_bytes().to_owned())).unwrap();

        let index_mesh: IndexMesh = mesh.into();

        assert_eq!(index_mesh.triangles().len(), 3);
        assert_eq!(index_mesh.vertices().len(), 5);
    }
}

#[cfg(test)]
mod properties {
    use super::*;
    use quickcheck::*;
    use quickcheck_macros::quickcheck;

    #[quickcheck]
    fn prop_parses_binary_stl_with_at_least_one_triangle() {
        fn parses_binary_stl_with_at_least_one_triangle(xs: Vec<u8>) -> TestResult {
            // 150 is the length of the 80 byte header plus 50 bytes for a single triangle
            // this may result in partial parses,
            // but this is a first pass at property testing.
            // please remove this comment when this is a bit more robust.
            if xs.len() < 150 {
                return TestResult::discard();
            }

            TestResult::from_bool(
                parse_stl::<std::io::Cursor<Vec<u8>>>(&mut std::io::Cursor::new(xs)).is_ok(),
            )
        }

        let mut qc = QuickCheck::new();
        qc.quickcheck(parses_binary_stl_with_at_least_one_triangle as fn(Vec<u8>) -> TestResult);
        qc.min_tests_passed(200);
    }
}