1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
// Copyright 2016-2021 Matthew D. Michelotti
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! This crate contains floating point types that panic if they are set
//! to an illegal value, such as NaN.
//!
//! The name "Noisy Float" comes from
//! the terms "quiet NaN" and "signaling NaN"; "signaling" was too long
//! to put in a struct/crate name, so "noisy" is used instead, being the opposite
//! of "quiet."
//!
//! The standard types defined in `noisy_float::types` follow the principle
//! demonstrated by Rust's handling of integer overflow:
//! a bad arithmetic operation is considered an error,
//! but it is too costly to check everywhere in optimized builds.
//! For each floating point number that is created, a `debug_assert!` invocation is used
//! to check if it is valid or not.
//! This way, there are guarantees when developing code that floating point
//! numbers have valid values,
//! but during a release run there is *no overhead* for using these floating
//! point types compared to using `f32` or `f64` directly.
//!
//! This crate makes use of the num, bounded, signed and floating point traits
//! in the popular `num_traits` crate.
//! This crate can be compiled with no_std.
//!
//! # Examples
//! An example using the `R64` type, which corresponds to *finite* `f64` values.
//!
//! ```
//! use noisy_float::prelude::*;
//!
//! fn geometric_mean(a: R64, b: R64) -> R64 {
//!     (a * b).sqrt() //used just like regular floating point numbers
//! }
//!
//! fn mean(a: R64, b: R64) -> R64 {
//!     (a + b) * 0.5 //the RHS of ops can be the underlying float type
//! }
//!
//! println!(
//!     "geometric_mean(10.0, 20.0) = {}",
//!     geometric_mean(r64(10.0), r64(20.0))
//! );
//! //prints 14.142...
//! assert!(mean(r64(10.0), r64(20.0)) == 15.0);
//! ```
//!
//! An example using the `N32` type, which corresponds to *non-NaN* `f32` values.
//! The float types in this crate are able to implement `Eq` and `Ord` properly,
//! since NaN is not allowed.
//!
//! ```
//! use noisy_float::prelude::*;
//!
//! let values = vec![n32(3.0), n32(-1.5), n32(71.3), N32::infinity()];
//! assert!(values.iter().cloned().min() == Some(n32(-1.5)));
//! assert!(values.iter().cloned().max() == Some(N32::infinity()));
//! ```
//!
//! An example converting from R64 to primitive types.
//!
//! ```
//! use noisy_float::prelude::*;
//! use num_traits::cast::ToPrimitive;
//!
//! let value_r64: R64 = r64(1.0);
//! let value_f64_a: f64 = value_r64.into();
//! let value_f64_b: f64 = value_r64.raw();
//! let value_u64: u64 = value_r64.to_u64().unwrap();
//!
//! assert!(value_f64_a == value_f64_b);
//! assert!(value_f64_a as u64 == value_u64);
//! ```
//!
//! # Features
//!
//! This crate has the following cargo features:
//!
//! - `serde`: Enable serialization for all `NoisyFloats` using serde 1.0 and
//!   will transparently serialize then as floats
//! - `approx`: Adds implementations to use `NoisyFloat` with the `approx`
//!   crate

#![no_std]

#[cfg(feature = "serde")]
use serde::{Deserialize, Deserializer, Serialize, Serializer, de::Error};

pub mod checkers;
mod float_impl;
pub mod types;

/// Prelude for the `noisy_float` crate.
///
/// This includes all of the types defined in the `noisy_float::types` module,
/// as well as a re-export of the `Float` trait from the `num_traits` crate.
/// It is important to have this re-export here, because it allows the user
/// to access common floating point methods like `abs()`, `sqrt()`, etc.
pub mod prelude {
    pub use crate::types::*;

    #[doc(no_inline)]
    pub use num_traits::Float;
}

use core::{fmt, marker::PhantomData};
use num_traits::Float;

/// Trait for checking whether a floating point number is *valid*.
///
/// The implementation defines its own criteria for what constitutes a *valid* value.
pub trait FloatChecker<F> {
    /// Returns `true` if (and only if) the given floating point number is *valid*
    /// according to this checker's criteria.
    ///
    /// The only hard requirement is that NaN *must* be considered *invalid*
    /// for all implementations of `FloatChecker`.
    fn check(value: F) -> bool;

    /// A function that may panic if the floating point number is *invalid*.
    ///
    /// Should either call `assert!(check(value), ...)` or `debug_assert!(check(value), ...)`.
    fn assert(value: F);
}

/// A floating point number with a restricted set of legal values.
///
/// Typical users will not need to access this struct directly, but
/// can instead use the type aliases found in the module `noisy_float::types`.
/// However, this struct together with a `FloatChecker` implementation can be used
/// to define custom behavior.
///
/// The underlying float type is `F`, usually `f32` or `f64`.
/// Valid values for the float are determined by the float checker `C`.
/// If an invalid value would ever be returned from a method on this type,
/// the method will panic instead, using either `assert!` or `debug_assert!`
/// as defined by the float checker.
/// The exception to this rule is for methods that return an `Option` containing
/// a `NoisyFloat`, in which case the result would be `None` if the value is invalid.
#[repr(transparent)]
pub struct NoisyFloat<F: Float, C: FloatChecker<F>> {
    value: F,
    checker: PhantomData<C>,
}

impl<F: Float, C: FloatChecker<F>> NoisyFloat<F, C> {
    /// Constructs a `NoisyFloat` with the given value.
    ///
    /// Uses the `FloatChecker` to assert that the value is valid.
    #[inline]
    pub fn new(value: F) -> Self {
        C::assert(value);
        Self::unchecked_new_generic(value)
    }

    #[inline]
    fn unchecked_new_generic(value: F) -> Self {
        NoisyFloat {
            value,
            checker: PhantomData,
        }
    }

    /// Tries to construct a `NoisyFloat` with the given value.
    ///
    /// Returns `None` if the value is invalid.
    #[inline]
    pub fn try_new(value: F) -> Option<Self> {
        if C::check(value) {
            Some(NoisyFloat {
                value,
                checker: PhantomData,
            })
        } else {
            None
        }
    }

    /// Converts the value in-place to a reference to a `NoisyFloat`.
    ///
    /// Uses the `FloatChecker` to assert that the value is valid.
    #[inline]
    pub fn borrowed(value: &F) -> &Self {
        C::assert(*value);
        Self::unchecked_borrowed(value)
    }

    #[inline]
    fn unchecked_borrowed(value: &F) -> &Self {
        // This is safe because `NoisyFloat` is a thin wrapper around the
        // floating-point type.
        unsafe { &*(value as *const F as *const Self) }
    }

    /// Tries to convert the value in-place to a reference to a `NoisyFloat`.
    ///
    /// Returns `None` if the value is invalid.
    #[inline]
    pub fn try_borrowed(value: &F) -> Option<&Self> {
        if C::check(*value) {
            Some(Self::unchecked_borrowed(value))
        } else {
            None
        }
    }

    /// Converts the value in-place to a mutable reference to a `NoisyFloat`.
    ///
    /// Uses the `FloatChecker` to assert that the value is valid.
    #[inline]
    pub fn borrowed_mut(value: &mut F) -> &mut Self {
        C::assert(*value);
        Self::unchecked_borrowed_mut(value)
    }

    #[inline]
    fn unchecked_borrowed_mut(value: &mut F) -> &mut Self {
        // This is safe because `NoisyFloat` is a thin wrapper around the
        // floating-point type.
        unsafe { &mut *(value as *mut F as *mut Self) }
    }

    /// Tries to convert the value in-place to a mutable reference to a `NoisyFloat`.
    ///
    /// Returns `None` if the value is invalid.
    #[inline]
    pub fn try_borrowed_mut(value: &mut F) -> Option<&mut Self> {
        if C::check(*value) {
            Some(Self::unchecked_borrowed_mut(value))
        } else {
            None
        }
    }

    /// Constructs a `NoisyFloat` with the given `f32` value.
    ///
    /// May panic not only by the `FloatChecker` but also
    /// by unwrapping the result of a `NumCast` invocation for type `F`,
    /// although the later should not occur in normal situations.
    #[inline]
    pub fn from_f32(value: f32) -> Self {
        Self::new(F::from(value).unwrap())
    }

    /// Constructs a `NoisyFloat` with the given `f64` value.
    ///
    /// May panic not only by the `FloatChecker` but also
    /// by unwrapping the result of a `NumCast` invocation for type `F`,
    /// although the later should not occur in normal situations.
    #[inline]
    pub fn from_f64(value: f64) -> Self {
        Self::new(F::from(value).unwrap())
    }

    /// Returns the underlying float value.
    #[inline]
    pub fn raw(self) -> F {
        self.value
    }

    /// Compares and returns the minimum of two values.
    ///
    /// This method exists to disambiguate between `num_traits::Float.min` and `std::cmp::Ord.min`.
    #[inline]
    pub fn min(self, other: Self) -> Self {
        Ord::min(self, other)
    }

    /// Compares and returns the maximum of two values.
    ///
    /// This method exists to disambiguate between `num_traits::Float.max` and `std::cmp::Ord.max`.
    #[inline]
    pub fn max(self, other: Self) -> Self {
        Ord::max(self, other)
    }
}

impl<F: Float + Default, C: FloatChecker<F>> Default for NoisyFloat<F, C> {
    #[inline]
    fn default() -> Self {
        Self::new(F::default())
    }
}

impl<F: Float + fmt::Debug, C: FloatChecker<F>> fmt::Debug for NoisyFloat<F, C> {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        fmt::Debug::fmt(&self.value, f)
    }
}

impl<F: Float + fmt::Display, C: FloatChecker<F>> fmt::Display for NoisyFloat<F, C> {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        fmt::Display::fmt(&self.value, f)
    }
}

impl<F: Float + fmt::LowerExp, C: FloatChecker<F>> fmt::LowerExp for NoisyFloat<F, C> {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        fmt::LowerExp::fmt(&self.value, f)
    }
}

impl<F: Float + fmt::UpperExp, C: FloatChecker<F>> fmt::UpperExp for NoisyFloat<F, C> {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        fmt::UpperExp::fmt(&self.value, f)
    }
}

#[cfg(feature = "serde")]
impl<F: Float + Serialize, C: FloatChecker<F>> Serialize for NoisyFloat<F, C> {
    fn serialize<S: Serializer>(&self, ser: S) -> Result<S::Ok, S::Error> {
        self.value.serialize(ser)
    }
}

#[cfg(feature = "serde")]
impl<'de, F: Float + Deserialize<'de>, C: FloatChecker<F>> Deserialize<'de> for NoisyFloat<F, C> {
    fn deserialize<D: Deserializer<'de>>(de: D) -> Result<Self, D::Error> {
        let value = F::deserialize(de)?;
        Self::try_new(value).ok_or_else(|| D::Error::custom("invalid NoisyFloat"))
    }
}

#[cfg(test)]
mod tests {
    extern crate std;
    use std::prelude::v1::*;

    use crate::prelude::*;
    #[cfg(feature = "serde")]
    use serde_derive::{Deserialize, Serialize};
    #[cfg(feature = "serde")]
    use serde_json;
    use std::{
        f32,
        f64::{self, consts},
        hash::{Hash, Hasher},
        mem::{align_of, size_of},
    };

    #[test]
    fn smoke_test() {
        assert_eq!(n64(1.0) + 2.0, 3.0);
        assert_ne!(n64(3.0), n64(2.9));
        assert!(r64(1.0) < 2.0);
        let mut value = n64(18.0);
        value %= n64(5.0);
        assert_eq!(-value, n64(-3.0));
        assert_eq!(r64(1.0).exp(), consts::E);
        assert_eq!((N64::try_new(1.0).unwrap() / N64::infinity()), 0.0);
        assert_eq!(N64::from_f32(f32::INFINITY), N64::from_f64(f64::INFINITY));
        assert_eq!(R64::try_new(f64::NEG_INFINITY), None);
        assert_eq!(N64::try_new(f64::NAN), None);
        assert_eq!(R64::try_new(f64::NAN), None);
        assert_eq!(N64::try_borrowed(&f64::NAN), None);
        let mut nan = f64::NAN;
        assert_eq!(N64::try_borrowed_mut(&mut nan), None);
    }

    #[test]
    fn ensure_layout() {
        assert_eq!(size_of::<N32>(), size_of::<f32>());
        assert_eq!(align_of::<N32>(), align_of::<f32>());

        assert_eq!(size_of::<N64>(), size_of::<f64>());
        assert_eq!(align_of::<N64>(), align_of::<f64>());
    }

    #[test]
    fn borrowed_casts() {
        assert_eq!(R64::borrowed(&3.14), &3.14);
        assert_eq!(N64::borrowed(&[f64::INFINITY; 2][0]), &f64::INFINITY);
        assert_eq!(N64::borrowed_mut(&mut 2.72), &mut 2.72);
    }

    #[test]
    fn test_convert() {
        assert_eq!(f32::from(r32(3.0)), 3.0f32);
        assert_eq!(f64::from(r32(5.0)), 5.0f64);
        assert_eq!(f64::from(r64(7.0)), 7.0f64);
    }

    #[test]
    #[cfg(debug_assertions)]
    #[should_panic]
    fn n64_nan() {
        let _ = n64(0.0) / n64(0.0);
    }

    #[test]
    #[cfg(debug_assertions)]
    #[should_panic]
    fn r64_nan() {
        let _ = r64(0.0) / r64(0.0);
    }

    #[test]
    #[cfg(debug_assertions)]
    #[should_panic]
    fn r64_infinity() {
        let _ = r64(1.0) / r64(0.0);
    }

    #[test]
    fn resolves_min_max() {
        assert_eq!(r64(1.0).min(r64(3.0)), r64(1.0));
        assert_eq!(r64(1.0).max(r64(3.0)), r64(3.0));
    }

    #[test]
    fn epsilon() {
        assert_eq!(R32::epsilon(), f32::EPSILON);
        assert_eq!(R64::epsilon(), f64::EPSILON);
    }

    #[test]
    fn test_try_into() {
        use std::convert::{TryFrom, TryInto};
        let _: R64 = 1.0.try_into().unwrap();
        let _ = R64::try_from(f64::INFINITY).unwrap_err();
    }

    struct TestHasher {
        bytes: Vec<u8>,
    }

    impl Hasher for TestHasher {
        fn finish(&self) -> u64 {
            panic!("unexpected Hasher.finish invocation")
        }
        fn write(&mut self, bytes: &[u8]) {
            self.bytes.extend_from_slice(bytes)
        }
    }

    fn hash_bytes<T: Hash>(value: T) -> Vec<u8> {
        let mut hasher = TestHasher { bytes: Vec::new() };
        value.hash(&mut hasher);
        hasher.bytes
    }

    #[test]
    fn test_hash() {
        assert_eq!(hash_bytes(r64(10.3)), hash_bytes(10.3f64.to_bits()));
        assert_ne!(hash_bytes(r64(10.3)), hash_bytes(10.4f64.to_bits()));
        assert_eq!(hash_bytes(r32(10.3)), hash_bytes(10.3f32.to_bits()));
        assert_ne!(hash_bytes(r32(10.3)), hash_bytes(10.4f32.to_bits()));

        assert_eq!(
            hash_bytes(N64::infinity()),
            hash_bytes(f64::INFINITY.to_bits())
        );
        assert_eq!(
            hash_bytes(N64::neg_infinity()),
            hash_bytes(f64::NEG_INFINITY.to_bits())
        );

        // positive and negative zero should have the same hashes
        assert_eq!(hash_bytes(r64(0.0)), hash_bytes(0.0f64.to_bits()));
        assert_eq!(hash_bytes(r64(-0.0)), hash_bytes(0.0f64.to_bits()));
        assert_eq!(hash_bytes(r32(0.0)), hash_bytes(0.0f32.to_bits()));
        assert_eq!(hash_bytes(r32(-0.0)), hash_bytes(0.0f32.to_bits()));
    }

    #[cfg(feature = "serde")]
    #[test]
    fn serialize_transparently_as_float() {
        let num = R32::new(3.14);
        let should_be = "3.14";

        let got = serde_json::to_string(&num).unwrap();
        assert_eq!(got, should_be);
    }

    #[cfg(feature = "serde")]
    #[test]
    fn deserialize_transparently_as_float() {
        let src = "3.14";
        let should_be = R32::new(3.14);

        let got: R32 = serde_json::from_str(src).unwrap();
        assert_eq!(got, should_be);
    }

    #[cfg(feature = "serde")]
    #[test]
    fn deserialize_invalid_float() {
        use crate::{FloatChecker, NoisyFloat};
        struct PositiveChecker;
        impl FloatChecker<f64> for PositiveChecker {
            fn check(value: f64) -> bool {
                value > 0.
            }
            fn assert(value: f64) {
                debug_assert!(Self::check(value))
            }
        }

        let src = "-1.0";
        let got: Result<NoisyFloat<f64, PositiveChecker>, _> = serde_json::from_str(src);
        assert!(got.is_err());
    }

    // Make sure you can use serde_derive with noisy floats.
    #[cfg(feature = "serde")]
    #[derive(Debug, PartialEq, Serialize, Deserialize)]
    struct Dummy {
        value: N64,
    }

    #[cfg(feature = "serde")]
    #[test]
    fn deserialize_struct_containing_n64() {
        let src = r#"{ "value": 3.14 }"#;
        let should_be = Dummy { value: n64(3.14) };

        let got: Dummy = serde_json::from_str(src).unwrap();
        assert_eq!(got, should_be);
    }

    #[cfg(feature = "serde")]
    #[test]
    fn serialize_struct_containing_n64() {
        let src = Dummy { value: n64(3.14) };
        let should_be = r#"{"value":3.14}"#;

        let got = serde_json::to_string(&src).unwrap();
        assert_eq!(got, should_be);
    }

    #[cfg(feature = "approx")]
    #[test]
    fn approx_assert_eq() {
        use approx::{assert_abs_diff_eq, assert_relative_eq, assert_ulps_eq};

        let lhs = r64(0.1000000000000001);
        let rhs = r64(0.1);

        assert_abs_diff_eq!(lhs, rhs);
        assert_relative_eq!(lhs, rhs);
        assert_ulps_eq!(lhs, rhs);
    }

    #[test]
    fn const_functions() {
        const A: N32 = N32::unchecked_new(1.0);
        const B: N64 = N64::unchecked_new(2.0);
        const C: R32 = R32::unchecked_new(3.0);
        const D: R64 = R64::unchecked_new(4.0);

        const A_RAW: f32 = A.const_raw();
        const B_RAW: f64 = B.const_raw();
        const C_RAW: f32 = C.const_raw();
        const D_RAW: f64 = D.const_raw();

        assert_eq!(A_RAW, 1.0);
        assert_eq!(B_RAW, 2.0);
        assert_eq!(C_RAW, 3.0);
        assert_eq!(D_RAW, 4.0);
    }
}