1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
//! # NoProto Data Format Documentaion
//! 
//! NoProto buffers are built out of pointers and data.  
//! 
//! They are designed to hold a variable amount of data that is parsed based on a schema provided by the client.
//! 
//! 
//! ## Pointers
//! 
//! Pointers contain one or more addresses depending on the pointer type.  The addresses will point to data or other pointers.
//! 
//! There is only one address size, u32.  Addresses are always stored in big endian format and addresses are always zero based from the beginning of the buffer.  In other words, address `23` always means 23 bytes from the beginning of the buffer.
//! 
//! | Pointer Kind | u32 size (bytes) |
//! |--------------|------------------|
//! | Standard     | 4                | 
//! | Map Item     | 12               | 
//! | List Item    | 10               |
//!  
//! 
//! The first byte of every buffer is a flag to show if the buffer is packed with it's schema or not.  Packed buffers start with a "1", non packed buffers start with a "0".
//! 
//! The second byte of every buffer is a version/size number to be used by later version of NoProto.  The next 2 bytes of every buffer is the root pointer, these bytes should contain the address of the root object in the buffer.
//! 
//! Most of the time these bytes will point to the data immediately following them, but it's possible to clear the root object causing these bytes to be zero, or to update the root data which would cause this address to update to something else.
//! 
//! For example, here is a buffer with u32 address size that contains the string `hello`, it's schema is just `{type: "string"}`.
//! 
//! ```text
//! [0,0,   0, 0, 0, 6,    0, 0, 0, 5, 104, 101, 108, 108, 111]
//! [     root pointer, string length,   h,   e,   l,   l,   o]
//! ```
//! 
//! It should be noted that a schema is *required* to parse a buffer, otherwise you don't know the difference between pointers, data and what data types beyond the root.
//! 
//! Let's look at the different pointer types you will encounter in a buffer.
//! 
//! ### Standard Pointer
//! This is used for any scalar or collection data types.  The standard pointer is just a single u32.
//! 
//! ### Map Item Pointer
//! 
//! Used by items in a map object.  Contains the following:
//! ```text
//! | address of data | next map item pointer address | address of bytes for this key |
//! |        u32      |               u32             |            u32                |
//! ```
//! 
//! Map collections represent a linked list of these pointers.  There should only be map item pointers for items in the map that have data.
//! 
//! The last map item pointer in a map should have a zero in the next item address for no further map items.
//! 
//! The `key` is always stored as a variable sequence of bytes provided by the client.  If you go to the address of the key you should find a length byte (u8) followed by a sequence of bytes that represents the key.
//! 
//! 
//! ### List Item Pointer
//! 
//! Used by items in a list object.  Contains the following:
//! ```text
//! | address of data | next list item pointer address | item index |
//! |      u32        |             u32                |    u16     |
//! ```
//! 
//! Unlike tables and maps, the order of the list items point to eachother should be kept so that the index is the correct sequence.
//! 
//! You can have gaps in the sequence, but the index should always be in order.  So if you have 3 item pointers with indexes 2, 8 and 20 they should point to each other in this order: 2 -> 8 -> 20.  This doesn't mean they have to be in order in the buffer, they just have to point to eachother in order.
//! 
//! There should be list item pointers only for indexes that have data in the list.
//! 
//! The last list item pointer in a list should have a zero in the next item address for no further list items.
//! 
//! 
//! ## Data
//! 
//! Data is stored in a specific format based on the data type in the schema.  The schema should determine how bytes at a sepcific address are treated.
//! 
//! When a pointer's address "points" to a location in the buffer, you should be able to parse the bytes at the designated location following the rules for the given data type below.
//! 
//! Most data types have a known size ahead of time, some don't, and some have a size dependent on the schema.
//! 
//! 
//! ### Struct (Collection)
//! 
//! The struct data type stores one or more vtables for field values.  Each vtable is 20 bytes and contains:
//! - 4 address (u32) pointers for the field values
//! - a trailing address(u32) of the next vtable (should be zero if no more vtables)
//! 
//! Each vtable can address up to 4 fields, so if there are 30 fields in a schema there may be as many as 8 vtables in the buffer: `30 / 4 = 7.5`
//! 
//! Vtables are created as needed,  For example if there are 100 fields in the schema but the client only ever sets values to the first 4 fields there will only ever be 1 vtable in the buffer.
//! 
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!     "type": "struct",
//!     "fields": [
//!         ["age",  {"type": "u8"}]
//!     ]
//! }"#)?;
//!
//! let mut new_buffer = factory.new_buffer(None);
//! new_buffer.set(&["age"], 20u8)?;
//!
//! assert_eq!(vec![0, 0, 0, 0, 0, 6, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20], new_buffer.finish().bytes());
//! 
//! // [0, 0, 0, 0, 0, 6, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,    20]
//! // [        root ptr,                                                      vtable,  data]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### List (Collection)
//! 
//! The list type stores two addresses (u32), one to the first `ListItem` pointer (head) and one to the last `ListItem` pointer (tail).
//! 
//! If there is only one list item pointer in the list, the head and tail addresses should be identical.
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!     "type": "list",
//!     "of": {"type": "u8"}
//! }"#)?;
//!
//! let mut new_buffer = factory.new_buffer(None);
//! new_buffer.set(&["4"], 20u8)?;
//! assert_eq!(vec![0, 0, 0, 0, 0, 6, 0, 0, 0, 14, 0, 0, 0, 14, 0, 0, 0, 24, 0, 0, 0, 0, 0, 4, 20], new_buffer.finish().bytes());
//! 
//! // [0,0,   0, 0, 0, 6,  0, 0, 0, 14, 0, 0, 0, 14, 0, 0, 0, 24, 0, 0, 0, 0, 0, 4,    20]
//! // [         root ptr,         head,        tail,                 list item ptr,  data]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### Map (Collection)
//! 
//! The map type stores a single address (u32) to the first `MapItem` pointer.
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!     "type": "map",
//!     "value": {"type": "u8"}
//! }"#)?;
//!
//! let mut new_buffer = factory.new_buffer(None);
//! new_buffer.set(&["age"], 20u8)?;
//! assert_eq!(vec![0, 0, 0, 0, 0, 6, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0, 18, 3, 97, 103, 101, 20], new_buffer.finish().bytes());
//! 
//! // [0,0,  0, 0, 0, 6,   0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0, 18,  3, 97, 103, 101,     20]
//! // [        root ptr,                           map item ptr,      a,   g,   e,   data]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### Tuple (Collection)
//! 
//! Tuples are stored by packing the types next to eachother.
//! 
//! Before each type is a byte that is either 1 or 0.  It should be zero if the value has not been set, otherwise it should be one.
//! 
//! If a child type is flexible in size, a pointer address is put in the tuple.
//! If a child type is fixed in size, it is placed inline in the tuple.
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "tuple",
//!    "values": [
//!        {"type": "u8"},
//!        {"type": "string"},
//!        {"type": "u32"}
//!    ]
//! }"#)?;
//! 
//!
//! let mut new_buffer = factory.new_buffer(None);
//! new_buffer.set(&["0"], 20u8)?;
//! new_buffer.set(&["1"], "hello")?;
//! assert_eq!(vec![0, 0, 0, 0, 0, 6, 1, 20, 1, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 5, 104, 101, 108, 108, 111], new_buffer.finish().bytes());
//! 
//! // [0, 0, 0, 0, 0, 6,   1, 20, 1, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 5, 104, 101, 108, 108, 111]
//! // [        root ptr,      u8,        str ptr,           u32,               h,   e,   l,   l,   o]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### int8, int16, int32, int64 (Scalar)
//! 
//! Signed integers should be converted to unsigned values, then saved in big endian format.
//! 
//! The size of the integer should determine how many bytes are used.  For example, i8 is 1 byte, i16 is 2 bytes, etc.
//! 
//! For example, an i8 of value -20 should be converted to 108, then saved as 108.
//! 
//! When it's requested by the client, it should be converted back to signed before being passed to the client.
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "i32"
//! }"#)?;
//!
//! let mut new_buffer = factory.new_buffer(None);
//! new_buffer.set(&[], -2023830i32)?;
//! assert_eq!(vec![0, 0, 0, 0, 0, 6, 127, 225, 30, 106], new_buffer.finish().bytes());
//! 
//! // [0,0,   0, 0, 0, 6, 127, 225, 30, 106]
//! // [         root ptr,              data]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### uint8, uint16, uint32, uint64 (Scalar)
//! 
//! Unsigned integers should be converted to big endian format, then saved to the buffer.
//! 
//! The size of the integer should determine how many bytes are used.  For example, u8 is 1 byte, u32 is 2 bytes, etc.
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "u32"
//! }"#)?;
//!
//! let mut new_buffer = factory.new_buffer(None);
//! new_buffer.set(&[], 28378u32)?;
//! assert_eq!(vec![0, 0, 0, 0, 0, 6, 0, 0, 110, 218], new_buffer.finish().bytes());
//! 
//! // [0,0,  0, 0, 0, 6, 0, 0, 110, 218]
//! // [        root ptr,           data]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### float, double (Scalar)
//! 
//! Floating point vales should be converted to big endian format, then saved to the buffer.
//! 
//! The size of the floating point value should determine how many bytes are used.  `float` is `f32` (4 bytes) and `double` is `f64` (8 bytes)
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "f32"
//! }"#)?;
//!
//! let mut new_buffer = factory.new_buffer(None);
//! new_buffer.set(&[], 2.389988f32)?;
//! assert_eq!(vec![0, 0, 0, 0, 0, 6, 64, 24, 245, 144], new_buffer.finish().bytes());
//! 
//! // [0,0,  0, 0, 0, 6, 64, 24, 245, 144]
//! // [        root ptr,             data]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### option (Scalar)
//! 
//! Option values are stored as a single `u8` value.  The value should represent the zero based location in the choice set.
//! 
//! For example if the schema has `choices: ["red", "blue", "yellow"]` and the user selects `yellow`, this value should be `2`.
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! use no_proto::pointer::option::NP_Enum;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "option",
//!    "choices": ["blue", "orange", "red"]
//! }"#)?;
//!
//! let mut new_buffer = factory.new_buffer(None);
//! new_buffer.set(&[], NP_Enum::new("red"))?;
//! assert_eq!(vec![0, 0, 0, 0, 0, 6, 2], new_buffer.finish().bytes());
//! 
//! // [0,0,  0, 0, 0, 6,      2]
//! // [        root ptr,   data]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### bool (Scalar)
//! 
//! A single `u8` byte.  `1` for `true`, `0` for `false`.
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "bool"
//! }"#)?;
//!
//! let mut new_buffer = factory.new_buffer(None);
//! new_buffer.set(&[], true)?;
//! assert_eq!(vec![0, 0, 0, 0, 0, 6, 1], new_buffer.finish().bytes());
//! 
//! // [0,0,  0, 0, 0, 6,      1]
//! // [        root ptr,   data]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### decimal (Scalar)
//! 
//! Stored the same as an i64 value (including converting to unsigned format described above).
//! 
//! The `i64` number should be devided by `10 ^ exp` to get the true value.  The `exp` value is provided in the schema.
//! 
//! For example, if you pull a `293` i64 value from the buffer and the `exp` value in the schema is `2`, the value is actually `293 / 100` or 2.93.
//! 
//! You should avoid converting the number to floating point values except for display purposes.  Study the source code for the `NP_Dec` type to see how to preserve the internal i64 value correctly.
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! use no_proto::pointer::dec::NP_Dec;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "decimal",
//!    "exp": 2
//! }"#)?;
//!
//! let mut new_buffer = factory.new_buffer(None);
//! new_buffer.set(&[], NP_Dec::new(200, 0))?;
//! assert_eq!(vec![0, 0, 0, 0, 0, 6, 128, 0, 0, 0, 0, 0, 78, 32], new_buffer.finish().bytes());
//! 
//! // [0,0,   0, 0, 0, 6, 128, 0, 0, 0, 0, 0, 78, 32]
//! // [         root ptr,                       data]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### geo4, geo8, geo16 (Scalar)
//! Each geo size uses two signed integers right next to eachother in the buffer.  i16/i16 for geo4, i32/i32 for geo8 and i64/i64 for geo16
//! 
//! The two signed integers are converted to unsigned values before being saved into big endian format. 
//! 
//! Depending on the size, the floating point value of each geographic coordinate is multiplied by a specific value before being saved as an integer.
//! 
//! | Size | Bytes      | Factor     |
//! |------|------------|------------|
//! | 4    | i16 \| i16 | 100        |
//! | 8    | i32 \| i32 | 10000000   |
//! | 16   | i64 \| i64 | 1000000000 |
//! 
//! For example, if a user provides these coordinates: 41.303921, -81.901693
//! 
//! To save into buffer:<br/>
//! <br/>
//! geo4: <br/>
//! 1 - Multiply by 100: (4130.3921, -8190.1693) <br/>
//! 2 - Make i16 (4130, -8190)<br/>
//! 3 - Save/convert as unsigned in big endian format<br/>
//! <br/>
//! geo8: <br/>
//! 1 - Multiply by 10000000: (413039210, -819016930)<br/>
//! 2 - Make i32 (413039210, -819016930)<br/>
//! 3 - Save/convert as unsigned in big endian format<br/>
//! <br/>
//! geo16: ....
//! 
//! This process is reversed when the client requests the geo data from the buffer.
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! use no_proto::pointer::geo::NP_Geo;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "geo8"
//! }"#)?;
//!
//! let mut new_buffer = factory.new_buffer(None);
//! new_buffer.set(&[], NP_Geo::new(8, 41.303921, -81.901693))?;
//! assert_eq!(vec![0, 0, 0, 0, 0, 6, 152, 158, 122, 106, 79, 46, 203, 30], new_buffer.finish().bytes());
//! 
//! // [0,0,   0, 0, 0, 6, 152, 158, 122, 106, 79, 46, 203, 30]
//! // [         root ptr,           latitude,       longitude]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### ulid, uuid (Scalar)
//! 
//! Saved as 16 bytes following the respective formats for each data type.
//! 
//! ULIDs store the date in the first 6 bytes, then the random bytes in the last 10.
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! use no_proto::pointer::uuid::NP_UUID;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "uuid"
//! }"#)?;
//!
//! let mut new_buffer = factory.new_buffer(None);
//! let uuid = NP_UUID::generate(32);
//! new_buffer.set(&[], &uuid)?;
//! assert_eq!(vec![0, 0, 0, 0, 0, 6, 202, 230, 170, 176, 127, 103, 66, 13, 89, 65, 221, 4, 153, 160, 117, 252], new_buffer.finish().bytes());
//! 
//! // [0,0,   0, 0, 0, 6, 202, 230, 170, 176, 127, 103, 66, 13, 89, 65, 221, 4, 153, 160, 117, 252]
//! // [         root ptr,                              UUID                                       ]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### bytes, string (Scalar)
//! 
//! If there is a `size` property in the schema, store the provided data and pad the remainder of the space with zeros (for bytes) or 32 (for strings).
//! 
//! If the provided data is too large, truncate it.
//! 
//! For example, if the user provideds a single byte `[22]` and the size is `3`, this should be in the buffer:
//! ```text
//! [22, 0, 0]
//! ```
//! 
//! If there is no fixed `size` in the schema, store a size (u32) followed by the actual data.
//! 
//! If it's a string, the data should be utf-8 encoded when it's saved into the buffer and utf-8 decoded when it's retrieved.
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "string"
//! }"#)?;
//!
//! let mut new_buffer = factory.new_buffer(None);
//! new_buffer.set(&[], "hello, world!")?;
//! assert_eq!(vec![0, 0, 0, 0, 0, 6, 0, 0, 0, 13, 104, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33], new_buffer.finish().bytes());
//! 
//! // [0,0,   0, 0, 0, 6,   0, 0, 0, 13, 104, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33]
//! // [         root ptr,        length,   h,   e,   l,   l,   o,  ,,   ,   w,   o,   r,   l,   d,  !]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### date (Scalar)
//! This is stored the same as a uint64 value, should be unix timestamp in milliseconds.
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! use no_proto::pointer::date::NP_Date;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "date"
//! }"#)?;
//!
//! let mut new_buffer = factory.new_buffer(None);
//! new_buffer.set(&[], NP_Date::new(1598490738507))?;
//! assert_eq!(vec![0, 0, 0, 0, 0, 6, 0, 0, 1, 116, 45, 120, 255, 75], new_buffer.finish().bytes());
//! 
//! // [0,0,   0, 0, 0, 6, 0, 0, 1, 116, 45, 120, 255, 75]
//! // [         root ptr,           timestamp           ]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! 
//! # NoProto Schema Format Documentation
//! 
//! NoProto JSON schemas are compiled into a byte array as part of the parsing process.
//! 
//! The compiled byte array is a significantly more compact and efficient way to store the schema.  It also takes almost no time to parse a byte schema, where parsing a JSON schema can be a comparitively expensive operation.
//! 
//! You can use the runtime to parse JSON schemas into byte array schemas at any time, and the JSON/byte array schemas can be used interchangebly.
//! 
//! The byte array schema store default values and all other supported schema properties.
//! 
//! Schema data is stored in a recursive format, each nested schema contains at least one byte that describes the data type.  The single data type byte is usually but not always followed by schema data specific to that data type.  The document below describes all of the data types and their specifics.
//! 
//! 
//! ### int8, int16, int32, int64, uint8, uint16, uint32, uint64, float, double (Scalar)
//! 
//! Integer values store the data type followed by wether there is a default value or not, followed optionally by the default value
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "i32",
//!    "default": 56
//! }"#)?;
//!
//! assert_eq!(&[6, 1, 0, 0, 0, 56], factory.export_schema_bytes());
//! 
//! // [       6,           1,      0, 0, 0, 56]
//! // [i32 type, has default,    default value]
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "i32"
//! }"#)?;
//!
//! assert_eq!(&[6, 0], factory.export_schema_bytes());
//! 
//! // [       6,           0]
//! // [i32 type,  no default]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### option (Scalar)
//! 
//! Option types will store the list of options and the index of the default value, if there is one.
//! 
//! The second byte is `0` if there is no default, otherwise it contains the default index + 1.
//! 
//! The third byte contains a `u8` that is the number of options available.
//! 
//! The remaining bytes go on a loop for each option, with each loop containing 1 u8 byte at the begining describing the length of the string option, followed by the string value itself.
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! use no_proto::pointer::option::NP_Enum;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "option",
//!    "choices": ["blue", "orange", "red"],
//!    "default": "red"
//! }"#)?;
//!
//! assert_eq!(&[20, 3, 3, 4, 98, 108, 117, 101, 6, 111, 114, 97, 110, 103, 101, 3, 114, 101, 100], factory.export_schema_bytes());
//! 
//! // [       20,                        3,            3, 4, 98, 108, 117, 101, 6, 111, 114, 97, 110, 103, 101, 3, 114, 101, 100]
//! // [data type, 1 based index of default, # of options,     b,   l,   u,   e,      o,   r,  a,   n,   g,   e,      r,   e,   d]  
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "option",
//!    "choices": ["blue", "orange", "red"]
//! }"#)?;
//!
//! assert_eq!(&[20, 0, 3, 4, 98, 108, 117, 101, 6, 111, 114, 97, 110, 103, 101, 3, 114, 101, 100], factory.export_schema_bytes());
//! 
//! // [       20,          0,             3, 4, 98, 108, 117, 101, 6, 111, 114, 97, 110, 103, 101, 3, 114, 101, 100]
//! // [data type, no default,  # of options,     b,   l,   u,   e,      o,   r,  a,   n,   g,   e,      r,   e,   d]  
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! 
//! ### bool (Scalar)
//! 
//! The second byte of a bool schema is used to store the default value.
//! 
//! If there is no default value, the second byte is 0.<br/>
//! If the default is true, the second byte is 1.<br/>
//! If the default is false, the second byte is 2.<br/>
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! use no_proto::pointer::option::NP_Enum;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "bool",
//!    "default": true
//! }"#)?;
//!
//! assert_eq!(&[15, 1], factory.export_schema_bytes());
//! 
//! // [       15,               1]
//! // [data type, default is true]  
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "bool",
//!    "default": false
//! }"#)?;
//!
//! assert_eq!(&[15, 2], factory.export_schema_bytes());
//! 
//! // [       15,                2]
//! // [data type, default is false]  
//! 
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "bool"
//! }"#)?;
//!
//! assert_eq!(&[15, 0], factory.export_schema_bytes());
//! 
//! // [       15,          0]
//! // [data type, no default]  
//! 
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### decimal (Scalar)
//! 
//! Decimal stores the expontent in the second byte.
//! 
//! The third byte is 0 if there is no default value, otherwise it is 1.
//! 
//! If there is a default value, multiply the default value by (10^exp) and convert it into an i64, then save it in the bytes following the default flag byte.
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! use no_proto::pointer::dec::NP_Dec;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "decimal",
//!    "exp": 2
//! }"#)?;
//!
//! assert_eq!(&[14, 2, 0], factory.export_schema_bytes());
//! 
//! // [       14,         2,                0]
//! // [data type, expontent, no default value]
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "decimal",
//!    "exp": 2,
//!    "default": 521.32
//! }"#)?;
//!
//! assert_eq!(&[14, 2, 1, 0, 0, 0, 0, 0, 0, 203, 164], factory.export_schema_bytes());
//! 
//! // [       14,         2,                 1, 0, 0, 0, 0, 0, 0, 203, 164]
//! // [data type, expontent, has default value,              default value]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### geo4, geo8, geo16 (Scalar)
//! 
//! Geo stores the size of the data type in the second byte.
//! The third byte is 0 if there is no default, and 1 if there is a default.
//! The remaining bytes are the default value (if there is one) parsed in the specific size designated in the second byte.
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! use no_proto::pointer::geo::NP_Geo;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "geo8"
//! }"#)?;
//!
//! assert_eq!(&[16, 8, 0], factory.export_schema_bytes());
//! 
//! // [       16,                 8,                0]
//! // [data type, geo size (4/8/16), no default value]
//! 
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "geo8",
//!    "default": {"lat": 29.2, "lng": -19.2}
//! }"#)?;
//!
//! assert_eq!(&[16, 8, 1, 145, 103, 145, 0, 116, 142, 80, 0], factory.export_schema_bytes());
//! 
//! // [       16,                 8,                 1, 145, 103, 145, 0, 116, 142, 80, 0]
//! // [data type, geo size (4/8/16), has default value,             geo8 value (lat/lng) ]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! 
//! ### ulid, uuid (Scalar)
//! 
//! UUID and ULID do not have default options, so this data type is very simple.
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! use no_proto::pointer::uuid::NP_UUID;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "uuid"
//! }"#)?;
//!
//! assert_eq!(&[17], factory.export_schema_bytes());
//! 
//! // [       17]
//! // [data type]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### bytes, string (Scalar)
//! 
//! The second and third bytes are a u32 of the fixed size.  If there is no fixed size, these two bytes are zero.
//! 
//! Thhe length of the default value follows as a u32, if there is no default value the u32 is zero.  If there is a default value, it follows the length bytes.
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "string"
//! }"#)?;
//!
//! assert_eq!(&[2, 0, 0, 0, 0, 0, 0, 0], factory.export_schema_bytes());
//! 
//! // [        2,                   0,       0, 0, 0, 0,                 0, 0]
//! // [data type, uppercase/lowercase, fixed size (u32),  default size (u16) ]
//!
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "string",
//!    "size": 20
//! }"#)?;
//!
//! assert_eq!(&[2, 0, 0, 0, 0, 20, 0, 0], factory.export_schema_bytes());
//! 
//! // [        2,                   0,      0, 0, 0, 20,                 0, 0]
//! // [data type, uppercase/lowercase, fixed size (u32),  default size (u16) ]
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "string",
//!    "size": 20,
//!    "default": "hello"
//! }"#)?;
//!
//! assert_eq!(&[2, 0, 0, 0, 0, 20, 0, 6, 104, 101, 108, 108, 111], factory.export_schema_bytes());
//! 
//! // [        2,                   0,       0, 0, 0, 20,                0, 6, 104, 101, 108, 108, 111]
//! // [data type, uppercase/lowercase,  fixed size (u32),  default size (u16),   h,   e,   l,   l,   o]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### date (Scalar)
//! 
//! The second byte is a 1 if there is a default value, 0 otherwise.
//! 
//! If there is a default value it follows the second byte.
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! use no_proto::pointer::date::NP_Date;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "date"
//! }"#)?;
//!
//! assert_eq!(&[19, 0], factory.export_schema_bytes());
//! 
//! // [       19,             0]
//! // [data type, default flag ]
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "date",
//!    "default": 1604862252
//! }"#)?;
//!
//! assert_eq!(&[19, 1, 0, 0, 0, 0, 95, 168, 65, 44], factory.export_schema_bytes());
//! 
//! // [       19,            1, 0, 0, 0, 0, 95, 168, 65, 44]
//! // [data type, default flag,        default value       ]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ## Collection Schemas
//! 
//! Collection based schemas nest schemas in a way that allows any type to be the child of any collection, including other collections.
//! 
//! ### Struct (collection)
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!     "type": "struct",
//!     "fields": [
//!         ["age",  {"type": "u8"}],
//!         ["name", {"type": "string"}]
//!     ]
//! }"#)?;
//!
//!
//! assert_eq!(&[21, 2, 3, 97, 103, 101, 0, 2, 8, 0, 4, 110, 97, 109, 101, 0, 8, 2, 0, 0, 0, 0, 0, 0, 0], factory.export_schema_bytes());
//! 
//! // [21, 2, 3, 97, 103, 101, 0, 2, 8, 0, 4, 110, 97, 109, 101, 0, 8, 2, 0, 0, 0, 0, 0, 0, 0]
//! // [data type,  # of fields,     a,   g,   e,  field schema size (u32),   field schema,      n,  a,   m,   e,   field schema size (u32),     field schema  ]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### List (Collection)
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!     "type": "list",
//!     "of": {"type": "u8"}
//! }"#)?;
//!
//! assert_eq!(&[23, 8, 0], factory.export_schema_bytes());
//! 
//! // [       23,        8, 0]
//! // [data type, "of" schema]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### Map (Collection)
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!     "type": "map",
//!     "value": {"type": "u8"}
//! }"#)?;
//! 
//! assert_eq!(&[22, 8, 0], factory.export_schema_bytes());
//! 
//! // [       22,         8, 0]
//! // [data type, value schema]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### Tuple (Collection)
//! 
//! ```
//! use no_proto::error::NP_Error;
//! use no_proto::NP_Factory;
//! 
//! let factory: NP_Factory = NP_Factory::new_json(r#"{
//!    "type": "tuple",
//!    "values": [
//!        {"type": "u8"},
//!        {"type": "string"}
//!    ]
//! }"#)?;
//!
//! assert_eq!(&[24, 0, 2, 0, 2, 8, 0, 0, 8, 2, 0, 0, 0, 0, 0, 0, 0], factory.export_schema_bytes());
//! 
//! // [       24,       0,          2,               0, 2,    8, 0,              0, 8,  2, 0, 0, 0, 0, 0, 0, 0]
//! // [data type, sorted, length (u8),  schema size (u16),  schema, schema size (u16),         schema         ]
//!
//! # Ok::<(), NP_Error>(()) 
//! ```
//! 
//! ### Portal (Collection/Scalar)
//! 
//! ### Union (Collection/Scalar)
//! 
//!