1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
use super::db::{LeafWithHash, Node, PreimageDb};
use super::error::RangeProofError;
use super::proof::Proof;
use super::utils::{compute_num_left_siblings, compute_tree_size};
use crate::maybestd::{boxed::Box, fmt::Debug, hash::Hash, ops::Range, vec::Vec};
/// Manually implement the method we need from #[feature(slice_take)] to
/// allow building with stable;
trait TakeLast<T> {
fn slice_take_last<'a>(self: &mut &'a Self) -> Option<&'a T>;
}
impl<T> TakeLast<T> for [T] {
fn slice_take_last<'a>(self: &mut &'a Self) -> Option<&'a T> {
let (last, rem) = self.split_last()?;
*self = rem;
Some(last)
}
}
type BoxedVisitor<M> = Box<dyn Fn(&<M as MerkleHash>::Output)>;
/// Implements an RFC 6962 compatible merkle tree over an in-memory data store which maps preimages to hashes.
pub struct MerkleTree<Db, M>
where
M: MerkleHash,
{
leaves: Vec<LeafWithHash<M>>,
db: Db,
root: Option<M::Output>,
visitor: BoxedVisitor<M>,
hasher: M,
}
impl<Db: PreimageDb<<M as MerkleHash>::Output>, M: MerkleHash + Default> Default
for MerkleTree<Db, M>
{
fn default() -> Self {
Self {
leaves: Default::default(),
db: Default::default(),
root: Default::default(),
visitor: Box::new(|_| {}),
hasher: Default::default(),
}
}
}
/// A trait for hashing data into a merkle tree
pub trait MerkleHash {
// --- no-std
/// The output of this hasher.
#[cfg(all(not(feature = "serde"), not(feature = "borsh"), not(feature = "std")))]
type Output: Debug + PartialEq + Eq + Clone + Default + Hash;
/// The output of this hasher.
#[cfg(all(feature = "serde", not(feature = "borsh"), not(feature = "std")))]
type Output: Debug
+ PartialEq
+ Eq
+ Clone
+ Default
+ Hash
+ serde::Serialize
+ serde::de::DeserializeOwned;
/// The output of this hasher.
#[cfg(all(feature = "borsh", not(feature = "serde"), not(feature = "std")))]
type Output: Debug
+ PartialEq
+ Eq
+ Clone
+ Default
+ Hash
+ borsh::BorshSerialize
+ borsh::BorshDeserialize;
/// The output of this hasher.
#[cfg(all(feature = "borsh", feature = "serde", not(feature = "std")))]
type Output: Debug
+ PartialEq
+ Eq
+ Clone
+ Default
+ Hash
+ borsh::BorshSerialize
+ borsh::BorshDeserialize
+ serde::Serialize
+ serde::de::DeserializeOwned;
// --- std
/// The output of this hasher.
#[cfg(all(not(feature = "serde"), not(feature = "borsh"), feature = "std"))]
type Output: Debug + PartialEq + Eq + Clone + Default + Hash + Ord;
/// The output of this hasher.
#[cfg(all(feature = "serde", not(feature = "borsh"), feature = "std"))]
type Output: Debug
+ PartialEq
+ Eq
+ Clone
+ Default
+ Hash
+ Ord
+ serde::Serialize
+ serde::de::DeserializeOwned;
/// The output of this hasher.
#[cfg(all(not(feature = "serde"), feature = "borsh", feature = "std"))]
type Output: Debug
+ PartialEq
+ Eq
+ Clone
+ Default
+ Hash
+ Ord
+ borsh::BorshSerialize
+ borsh::BorshDeserialize;
/// The output of this hasher.
#[cfg(all(feature = "serde", feature = "borsh", feature = "std"))]
type Output: Debug
+ PartialEq
+ Eq
+ Clone
+ Default
+ Hash
+ Ord
+ serde::Serialize
+ serde::de::DeserializeOwned
+ borsh::BorshSerialize
+ borsh::BorshDeserialize;
/// The hash of the empty tree. This is often defined as the hash of the empty string.
const EMPTY_ROOT: Self::Output;
/// Hashes data as a "leaf" of the tree. This operation *should* be domain separated.
fn hash_leaf(&self, data: &[u8]) -> Self::Output;
/// Hashes two digests into one. This operation *should* be domain separated.
fn hash_nodes(&self, l: &Self::Output, r: &Self::Output) -> Self::Output;
}
impl<Db, M> MerkleTree<Db, M>
where
Db: PreimageDb<M::Output>,
M: MerkleHash + Default,
{
/// Constructs an empty merkle tree with a default hasher
pub fn new() -> Self {
Self::with_hasher(Default::default())
}
}
impl<Db, M> MerkleTree<Db, M>
where
Db: PreimageDb<M::Output>,
M: MerkleHash,
{
/// Constructs an empty merkle tree with the given hasher
pub fn with_hasher(hasher: M) -> Self {
Self {
leaves: Vec::new(),
db: Default::default(),
root: Some(M::EMPTY_ROOT),
visitor: Box::new(|_| {}),
hasher,
}
}
/// Appends the given leaf to the tree
pub fn push_raw_leaf(&mut self, raw_leaf: &[u8]) {
let leaf = LeafWithHash::with_hasher(raw_leaf.to_vec(), &self.hasher);
self.push_leaf_with_hash(leaf);
}
/// Appends a pre-hashed leaf to the tree
pub fn push_leaf_with_hash(&mut self, leaf_with_hash: LeafWithHash<M>) {
self.root = None;
self.leaves.push(leaf_with_hash);
}
/// Returns the root of the tree, computing it if necessary. Repeated queries return a cached result.
pub fn root(&mut self) -> M::Output {
if let Some(inner) = &self.root {
return inner.clone();
}
let inner = self.compute_root(0..self.leaves.len());
self.root = Some(inner.clone());
inner
}
/// Returns the requested range of leaves
pub fn get_leaves(&self, range: Range<usize>) -> Vec<Vec<u8>> {
let leaves = &self.leaves[range];
leaves.iter().map(|leaf| leaf.data().to_vec()).collect()
}
/// Returns all leaves in the tree
pub fn leaves(&self) -> &[LeafWithHash<M>] {
&self.leaves[..]
}
fn compute_root(&mut self, leaf_range: Range<usize>) -> M::Output {
match leaf_range.len() {
0 => {
let root = M::EMPTY_ROOT;
(self.visitor)(&root);
root
}
1 => {
let leaf_with_hash = &self.leaves[leaf_range.start];
let root = leaf_with_hash.hash().clone();
(self.visitor)(&root);
self.db
.put(root.clone(), Node::Leaf(leaf_with_hash.data().to_vec()));
root
}
_ => {
let split_point = next_smaller_po2(leaf_range.len()) + leaf_range.start;
let left = self.compute_root(leaf_range.start..split_point);
let right = self.compute_root(split_point..leaf_range.end);
let root = self.hasher.hash_nodes(&left, &right);
(self.visitor)(&root);
self.db.put(root.clone(), Node::Inner(left, right));
root
}
}
}
fn build_range_proof_inner(
&self,
range_to_prove: Range<usize>,
subtrie_root: M::Output,
subtrie_range: Range<usize>,
out: &mut Vec<M::Output>,
) {
if let Some(inner_node) = self.db.get(&subtrie_root) {
match inner_node {
// If we've bottomed out, return the leaf hash
Node::Leaf(_) => {
if !range_to_prove.contains(&subtrie_range.start) {
out.push(subtrie_root.clone())
}
}
Node::Inner(l, r) => {
let split_point = next_smaller_po2(subtrie_range.len()) + subtrie_range.start;
// If the range to prove, doesn't overlap with the left subtrie, add the left subtrie root to the proof.
// We're now done with the left subtrie
if range_to_prove.start >= split_point {
out.push(l.clone())
// If the range of nodes to prove completely contains the left subtrie, then we don't need to recurse.
} else if range_to_prove.start > subtrie_range.start
|| range_to_prove.end < split_point
{
self.build_range_proof_inner(
range_to_prove.clone(),
l.clone(),
subtrie_range.start..split_point,
out,
);
}
// Similarly, if the range to prove, doesn't overlap with the right subtrie, add the right subtrie root to the proof and return
if range_to_prove.end <= split_point {
out.push(r.clone())
} else if range_to_prove.start > split_point
|| range_to_prove.end < subtrie_range.end
{
self.build_range_proof_inner(
range_to_prove,
r.clone(),
split_point..subtrie_range.end,
out,
);
}
}
}
} else {
assert_eq!(&subtrie_root, &M::EMPTY_ROOT);
out.push(subtrie_root)
}
}
fn check_range_proof_inner(
&self,
leaves: &mut &[M::Output],
proof: &mut &[M::Output],
leaves_start_idx: usize,
subtrie_size: usize,
offset: usize,
) -> Result<M::Output, RangeProofError> {
let split_point = next_smaller_po2(subtrie_size);
let leaves_end_idx = (leaves.len() + leaves_start_idx) - 1;
// If the leaf range overlaps with the right subtree
let right = if leaves_end_idx >= (split_point + offset) {
let right_subtrie_size = subtrie_size - split_point;
// If the right subtree contains only a single node, it must be the last remaining leaf
if right_subtrie_size == 1 {
leaves
.slice_take_last()
.ok_or(RangeProofError::MissingLeaf)?
.clone()
} else {
// Recurse right
self.check_range_proof_inner(
leaves,
proof,
leaves_start_idx,
right_subtrie_size,
offset + split_point,
)?
}
} else {
// Otherwise (if the leaf range doesn't overlap with the right subtree),
// the sibling node must have been included in the range proof
proof
.slice_take_last()
.ok_or(RangeProofError::MissingProofNode)?
.clone()
};
// Similarly, // If the leaf range overlaps with the left subtree
let left = if leaves_start_idx < (split_point + offset) {
let left_subtrie_size = split_point;
// If the right subtree contains only a single node, it must be the last remaining leaf
if left_subtrie_size == 1 {
leaves
.slice_take_last()
.ok_or(RangeProofError::MissingLeaf)?
.clone()
} else {
// Recurse left
self.check_range_proof_inner(
leaves,
proof,
leaves_start_idx,
left_subtrie_size,
offset,
)?
}
} else {
// Otherwise (if the leaf range doesn't overlap with the right subtree),
// the sibling node must have been included in the range proof
proof
.slice_take_last()
.ok_or(RangeProofError::MissingProofNode)?
.clone()
};
Ok(self.hasher.hash_nodes(&left, &right))
}
/// Checks a given range proof
pub fn check_range_proof(
&self,
root: &M::Output,
leaves: &[M::Output],
proof: &[M::Output],
leaves_start_idx: usize,
) -> Result<(), RangeProofError> {
// As an optimization, the internal call doesn't recurse into subtrees of size smaller than 2
// so we need to ensure that the root has size 2 or greater.
match leaves.len() {
0 => {
if root == &M::EMPTY_ROOT && proof.is_empty() {
return Ok(());
}
return Err(RangeProofError::NoLeavesProvided);
}
1 => {
if proof.is_empty() {
if &leaves[0] == root && leaves_start_idx == 0 {
return Ok(());
}
return Err(RangeProofError::TreeDoesNotContainLeaf);
}
}
_ => {}
};
let num_left_siblings = compute_num_left_siblings(leaves_start_idx);
let num_right_siblings = proof
.len()
.checked_sub(num_left_siblings)
.ok_or(RangeProofError::MissingProofNode)?;
let tree_size = compute_tree_size(num_right_siblings, leaves_start_idx + leaves.len() - 1)?;
let computed_root = self.check_range_proof_inner(
&mut &leaves[..],
&mut &proof[..],
leaves_start_idx,
tree_size,
0,
)?;
if &computed_root == root {
return Ok(());
}
Err(RangeProofError::InvalidRoot)
}
/// Creates a range proof providing the sibling hashes required to show that a set of values really does occur in
/// the merkle tree at some half-open range of indices. Intermediate hashes are identified by an in-order traversal
/// and are returned in that same order. Panics if the range to prove is larger than the tree's leaf array.
///
/// Example: consider the following merkle tree with leaves [C, D, E, F]
/// ```ascii
/// root
/// / \
/// A B
/// / \ / \
/// C D E F
///
/// ```
///
/// A range proof of build_range_proof(1..3) would return the vector [C, F], since those two hashes, together
/// with the two leaves in the range, are sufficient to reconstruct the tree
pub fn build_range_proof(&mut self, leaf_range: Range<usize>) -> Proof<M> {
// Calculate the root to ensure that the preimage db is populated
let root = self.root();
let mut proof = Vec::new();
let start = leaf_range.start as u32;
let end = leaf_range.end as u32;
if leaf_range.end > self.leaves.len() {
panic!(
"Index out of range: cannot access leaf {} in leaves array of size {}",
leaf_range.end,
self.leaves.len()
)
}
self.build_range_proof_inner(leaf_range, root, 0..self.leaves.len(), &mut proof);
Proof {
siblings: proof,
range: start..end,
}
}
/// Fetches the requested range of leaves, along with a proof of correctness.
pub fn get_range_with_proof(&mut self, leaf_range: Range<usize>) -> (Vec<Vec<u8>>, Proof<M>) {
let leaves = &self.leaves[leaf_range.clone()];
let leaves = leaves.iter().map(|leaf| leaf.data().to_vec()).collect();
(leaves, self.build_range_proof(leaf_range))
}
/// Fetches the leaf at the given index, along with a proof of inclusion.
pub fn get_index_with_proof(&mut self, idx: usize) -> (Vec<u8>, Proof<M>) {
(
self.leaves[idx].data().to_vec(),
self.build_range_proof(idx..idx + 1),
)
}
}
/// Calculates the largest power of two which is strictly less than the argument
fn next_smaller_po2(int: usize) -> usize {
// Calculate the first power of two which is greater than or equal to the argument, then divide by two.
int.next_power_of_two() >> 1
}