1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
//! NihDB
//!
//! ```
//! use nihdb::Store;
//! let dir = "./testdir-nihdb/";
//! Store::create(dir).unwrap();
//! {
//!     let mut store: Store = Store::open(dir, 2000000).unwrap();
//!
//!     store.put("some_key".as_bytes(), "Some Value".as_bytes()).unwrap();
//!     match store.get("some_key".as_bytes()).unwrap() {
//!         None => {
//!             println!("Not found!");
//!         },
//!         Some(v) => {
//!             println!("The value is {}", String::from_utf8(v).unwrap());
//!         },
//!     };
//! }
//!
//! std::fs::remove_dir_all(dir).unwrap();
//! ```

use std::collections::Bound;
use std::iter::*;

extern crate owning_ref;
extern crate rand;
extern crate libc;
extern crate fnv;

mod disk;
use disk::*;
mod encoding;
mod error;
use error::*;
mod iter;
use iter::*;
mod memstore;
use memstore::*;
mod toc;
use toc::*;
mod util;
use util::*;

pub struct Store {
    // Never empty
    memstores: Vec<MemStore>,
    threshold: usize,
    directory: String,
    toc_file: std::fs::File,
    toc: Toc,
}

pub struct StoreIter<'a> {
    interval: Interval<Buf>,
    iters: MergeIterator<'a>,
    direction: Direction,
}

impl Store {
    /// Creates a new store in a new directory.
    pub fn create(dir: &str) -> Result<()> {
        // NOTE: We'll want directory locking and such.
        std::fs::create_dir(dir)?;
        create_toc(dir)?;
        return Ok(());
    }

    /// Opens the store.
    ///
    /// `threshold` is an upper bound on the size of unflushed data.
    pub fn open(dir: &str, threshold: usize) -> Result<Store> {
        let (toc_file, toc) = read_toc(dir)?;
        return Ok(Store::make_existing(threshold, dir.to_string(), toc_file, toc, MemStore::new()));
    }

    fn make_existing(threshold: usize, directory: String, toc_file: std::fs::File, toc: Toc, ms: MemStore) -> Store {
        return Store{
            memstores: vec![MemStore::new(), ms],
            threshold: threshold,

            directory: directory,
            toc_file: toc_file,
            toc: toc,
        }
    }

    /// Inserts a key/value pair into the store if the key is not already present.
    /// Returns true if an insertion happened.
    pub fn insert(&mut self, key: &[u8], val: &[u8]) -> Result<bool> {
        if !self.exists(key)? {
            self.put(key, val)?;
            return Ok(true);
        }
        return Ok(false);
    }

    /// Replaces an existing key/value pair in the store.  If the key is not present,
    /// does nothing and returns false.
    pub fn replace(&mut self, key: &[u8], val: &[u8]) -> Result<bool> {
        if self.exists(key)? {
            self.put(key, val)?;
            return Ok(true);
        }
        return Ok(false);
    }

    /// Puts a key/value pair into the store, replacing the value if the key is
    /// already present.  Compare to `insert` or `replace`.
    pub fn put(&mut self, key: &[u8], val: &[u8]) -> Result<()> {
        self.memstores[0].apply(key.to_vec(), Mutation::Set(val.to_vec()));
        return self.consider_split();
    }

    /// Removes a key/value pair from the store. Returns true if the key was present.
    pub fn remove(&mut self, key: &[u8]) -> Result<bool> {
        if self.exists(key)? {
            self.memstores[0].apply(key.to_vec(), Mutation::Delete);
            self.consider_split()?;
            return Ok(true);
        }
        return Ok(false);
    }

    /// Ensures that all preceding write operations have been written
    /// to disk (if you trust your kernel and your disk).
    pub fn sync(&mut self) -> Result<()> {
        // NOTE: We could, instead, sync file by file.
        use libc;
        self.flush()?;
        unsafe {
            libc::sync();
        }
        return Ok(());
    }

    /// Flushes any buffered write operations to disk.
    pub fn flush(&mut self) -> Result<()> {
        let ms: MemStore = self.memstores.remove(0);

        // NOTE: Instead of flushing and compacting, we could, you know, do a
        // flush into the compaction.
        self.flush_and_record(0, &ms)?;
        self.rebalance()?;

        self.memstores.insert(0, MemStore::new());
        return Ok(());
    }

    fn rebalance(&mut self) -> Result<()> {
        if self.toc.level_infos.get(&0).map_or(false, |lz| lz.len() > 4) {
            // Do a releveling with all but the latest (highest numbered) table.
            let table_ids: Vec<TableId>
                = self.toc.level_infos.get(&0).unwrap().iter().rev().skip(1).map(|&x| x).collect();
            self.relevel(0, table_ids)?;
            // Exit.  Don't do more than one releveling per "rebalance"
            // operation.  Just to spread the work out, barely.
            return Ok(());
        }

        // NOTE: We might want to spread out pending necessary relevelings
        // instead of doing them all in a row.  We might need to do more than
        // one releveling at a time, in order to keep up with writes, though.
        // Basically, expect each releveling at level 0 to kick off a bunch of
        // relevelings at level 1, 2, 3, 4, ...

        // NOTE: Maybe relevel a batch of N consecutive files at once, instead
        // of just 1 at a time.  This will minimize overhead of dealing with
        // edges.  We'd probably have to relevel 4 at a time, no?

        let max_level: LevelNumber
            = self.toc.level_infos.iter().map(|(&level, _)| level).max().expect("at least one level");

        for level in 1..max_level {
            let to_relevel: (LevelNumber, TableId);
            if let Some(table_ids) = self.toc.level_infos.get(&level) {
                // NOTE: Icky conversion -- change LevelNumber to u32?
                // NOTE: Should use total file size instead.
                if table_ids.len() <= 4 * 10usize.pow(level as u32 - 1) {
                    continue;
                }
                // Now what?  We want to kick out one table for this level.  The
                // one which overlaps the fewest child tables.
                // NOTE: A data structure for this would be nice.
                let mut smallest_overlap = usize::max_value();
                let mut smallest_overlap_table_id: TableId = TableId(0);

                for &id in table_ids.iter() {
                    // NOTE: Pass a slice to single TableInfo element without cloning.
                    let infos: [TableInfo; 1]
                        = [self.toc.table_infos.get(&id).expect("toc valid in rebalance").clone()];
                    // NOTE: Would be nice not to allocate this vec.  Just count number of overlapping.
                    let lower_overlapping_ids: Vec<_> = Store::get_overlapping_tables(&self.toc, &infos, level + 1);
                    let overlap = lower_overlapping_ids.len();
                    // NOTE: We're biased towards releveling left-most tables given equal overlap.
                    if overlap < smallest_overlap {
                        smallest_overlap = overlap;
                        smallest_overlap_table_id = id;
                    }
                }

                assert!(smallest_overlap != usize::max_value());
                to_relevel = (level, smallest_overlap_table_id);
            } else {
                continue;
            }
            self.relevel(to_relevel.0, vec![to_relevel.1])?;
        }

        return Ok(());
    }

    // 'tables' is in order of precedence, such that frontmost tables supercede
    // later tables when merged.  (They're in reverse order by table number, if
    // in level zero.  In other levels, there's only one table, and even if there
    // was more than one, they'd have non-overlapping key ranges.)
    fn relevel<'a>(&'a mut self, level: LevelNumber, tables: Vec<TableId>) -> Result<()> {
        assert!(if level == 0 { tables.len() > 0 } else { tables.len() == 1 });

        // What to do:  Go to the next level, find which tables overlap.
        let table_infos: Vec<TableInfo>
            = tables.iter().map(|id| self.toc.table_infos.get(id).expect("toc valid in relevel").clone()).collect();
        let lower_overlapping_ids: Vec<TableId> = Store::get_overlapping_tables(&self.toc, &table_infos, level + 1);

        // NOTE: When releveling 0 -> 1, it's possible there are no overlapping tables.
        if lower_overlapping_ids.is_empty() && !Store::self_overlaps(&table_infos) {
            let additions: Vec<TableInfo>
                = table_infos.into_iter().map(|x: TableInfo| TableInfo{level: level, .. x}).collect();
            let entry = Entry{
                removals: tables,
                additions: additions,
            };

            append_toc(&mut self.toc, &mut self.toc_file, entry)?;
            return Ok(());
        } else {
            let mut iters: Vec<Box<MutationIterator + 'a>> = Vec::new();
            // NOTE: We might want a smarter iterator for the lower level --
            // open only one table file at a time, instead of generically
            // merging the non-overlapping tables together.

            // Add upper level's tables in 'tables' existing order (which is in order of precedence).
            // Order of lower level's tables doesn't matter, since they're non-overlapping.
            for table_id in tables.iter().chain(lower_overlapping_ids.iter()) {
                let interval = Interval{lower: Bound::Unbounded, upper: Bound::Unbounded};
                self.add_table_iter_to_iters(&mut iters, *table_id, &interval, Direction::Forward)?;
            }

            let mut iter = MergeIterator::make(iters, Direction::Forward)?;

            // Now we've got a store iter.  Iterate the store iter, building a set of tables.

            let mut additions: Vec<TableInfo> = Vec::new();

            'outer: loop {
                let mut builder = TableBuilder::new();
                'inner: loop {
                    // NOTE: It would be nice to avoid cloning the key here.
                    if let Some(key) = iter.current_key()?.map(|x| x.to_vec()) {
                        let mutation = iter.current_value()?;
                        builder.add_mutation(&key, &mutation);
                        iter.step()?;
                        if builder.lowerbound_file_size() > self.threshold {
                            break 'inner;
                        }
                    } else {
                        if builder.is_empty() {
                            break 'outer;
                        } else {
                            break 'inner;
                        }
                    }
                }

                // We've got a non-empty builder.  Flush it to disk.
                let table_id = TableId(self.toc.next_table_id);
                self.toc.next_table_id += 1;

                let mut f = std::fs::File::create(table_filepath(&self.directory, table_id))?;
                let (keys_offset, file_size, smallest, biggest) = builder.finish(&mut f)?;
                additions.push(TableInfo{
                    id: table_id,
                    level: level + 1,
                    keys_offset: keys_offset,
                    file_size: file_size,
                    smallest_key: smallest,
                    biggest_key: biggest,
                });
            }

            let removals: Vec<TableId>
                = tables.iter().chain(lower_overlapping_ids.iter()).map(|&x| x).collect();

            let entry = Entry{
                additions: additions,
                removals: removals,
            };

            // to_delete will be the same as 'removals' defined above, but this
            // is more robust against tweaks to our logic (such as fine-grained
            // treatment of non-overlapping tables in level 0).
            let to_delete = append_toc(&mut self.toc, &mut self.toc_file, entry)?;
            for table_id in to_delete {
                std::fs::remove_file(table_filepath(&self.directory, table_id))?;
            }

            return Ok(());
        }
    }

    fn table_overlaps_interval(x: &TableInfo, y: &Interval<Buf>) -> bool {
        return !(!above_lower_bound(&x.biggest_key, &y.lower) || !below_upper_bound(&x.smallest_key, &y.upper));
    }

    fn self_overlaps(xs: &[TableInfo]) -> bool {
        for i in 0..xs.len() {
            for j in i+1..xs.len() {
                if Store::tables_overlap(&xs[i], &xs[j]) {
                    return true;
                }
            }
        }
        return false;
    }

    fn tables_overlap(x: &TableInfo, y: &TableInfo) -> bool {
        return !(x.biggest_key < y.smallest_key || y.biggest_key < x.smallest_key);
    }

    // NOTE: We'd like a better data structure for organizing a level's table by keys.
    fn get_overlapping_tables(toc: &Toc, tables: &[TableInfo], level: LevelNumber) -> Vec<TableId> {
        if let Some(level_tables) = toc.level_infos.get(&level) {
            let mut ret: Vec<TableId> = Vec::new();
            for id in level_tables {
                for info in tables {
                    if Store::tables_overlap(toc.table_infos.get(id).expect("toc valid in get_overlapping_tables"), info) {
                        ret.push(*id);
                        break;
                    }
                }
            }
            return ret;
        } else {
            return Vec::new();
        }
    }

    fn consider_split(&mut self) -> Result<()> {
        if self.memstores[0].mem_usage >= self.threshold {
            self.flush()?;
        }
        return Ok(());
    }

    fn flush_and_record(&mut self, level: LevelNumber, ms: &MemStore) -> Result<()> {
        if ms.entries.is_empty() {
            return Ok(());
        }
        let table_id = TableId(self.toc.next_table_id);
        self.toc.next_table_id += 1;
        let (keys_offset, file_size, smallest, biggest) = flush_to_disk(&self.directory, table_id, &ms)?;
        let ti = TableInfo{
            id: table_id,
            level: level,
            keys_offset: keys_offset,
            file_size: file_size,
            smallest_key: smallest,
            biggest_key: biggest,
        };
        append_toc(&mut self.toc, &mut self.toc_file, Entry{additions: vec![ti], removals: vec![]})?;
        return Ok(());
    }

    /// Returns true if a key/value pair is present, for the given key.
    pub fn exists(&mut self, key: &[u8]) -> Result<bool> {
        for store in self.memstores.iter() {
            if let Some(m) = store.lookup(key) {
                return Ok(match m {
                    &Mutation::Set(_) => true,
                    &Mutation::Delete => false,
                });
            }
        }

        for (_level, table_ids) in self.toc.level_infos.iter() {
            // For level zero, we want to iterate tables in reverse order.
            for table_id in table_ids.iter().rev() {
                let ti: &TableInfo = self.toc.table_infos.get(table_id).expect("invalid toc");
                if key >= &ti.smallest_key && key <= &ti.biggest_key {
                    // NOTE: We'll want to use exists_table.
                    let opt_mut = lookup_table(&self.directory, ti, key)?;
                    if let Some(m) = opt_mut {
                        return Ok(match m {
                            Mutation::Set(_) => true,
                            Mutation::Delete => false,
                        });
                    }
                }

            }
        }

        return Ok(false);
    }

    /// Gets the value for the specified key/value pair, or `None` if the key
    /// does not exist.
    pub fn get(&mut self, key: &[u8]) -> Result<Option<Buf>> {
        // NOTE: This doesn't need to be &_mut_ self, because using a StoreIter isn't.
        for store in self.memstores.iter() {
            if let Some(m) = store.lookup(key) {
                return Ok(match m {
                    &Mutation::Set(ref x) => Some(x.clone()),
                    &Mutation::Delete => None,
                });
            }
        }

        for (_level, table_ids) in self.toc.level_infos.iter() {
            // For level zero, we want to iterate tables in reverse order.
            // NOTE: For other levels, we don't want to iterate at all.  Too much CPU.
            for table_id in table_ids.iter().rev() {
                let ti: &TableInfo = self.toc.table_infos.get(table_id).expect("invalid toc");
                if key >= &ti.smallest_key && key <= &ti.biggest_key {
                    let opt_mut = lookup_table(&self.directory, ti, key)?;
                    if let Some(m) = opt_mut {
                        return Ok(match m {
                            Mutation::Set(x) => Some(x),
                            Mutation::Delete => None,
                        });
                    }
                }
            }
        }

        return Ok(None);
    }

    fn add_table_iter_to_iters<'a>(
        &self, iters: &mut Vec<Box<MutationIterator + 'a>>, table_id: TableId, interval: &Interval<Buf>,
        direction: Direction
    ) -> Result<()> {
        let ti: &TableInfo = self.toc.table_infos.get(&table_id).expect("invalid toc");
        let iter = TableIterator::make(&self.directory, ti, interval, direction)?;
        iters.push(Box::new(iter));
        return Ok(());
    }

    // NOTE: We could also add un-ordered range queries.

    /// Produces a store iterator for iterating the store over the given interval,
    /// in the given direction.
    pub fn range_directed<'a>(&'a self, interval: &Interval<Buf>, direction: Direction
    ) -> Result<StoreIter<'a>> {
        // NOTE: Could short-circuit for empty/one-key interval.
        let mut iters: Vec<Box<MutationIterator + 'a>> = Vec::new();
        for store in self.memstores.iter() {
            iters.push(Box::new(MemStoreIterator::<'a>::make(store, interval, direction)));
        }

        for (level, table_ids) in self.toc.level_infos.iter() {
            if *level == 0 {
                // Tables overlap, add them in reverse order.
                for table_id in table_ids.iter().rev() {
                    // NOTE: We could check if the intervals actually overlap.
                    self.add_table_iter_to_iters(&mut iters, *table_id, &interval, direction)?;
                }
            } else {
                let mut table_infos: Vec<&'a TableInfo> = Vec::new();

                // NOTE: Would be nice to have a data structure ordered by key.
                for table_id in table_ids.iter() {
                    let table_info: &TableInfo = self.toc.table_infos.get(table_id).expect("valid toc in range");
                    if Store::table_overlaps_interval(table_info, interval) {
                        table_infos.push(table_info);
                    }
                }

                table_infos.sort_unstable_by(|x, y| {
                    let res = x.smallest_key.cmp(&y.smallest_key);
                    match direction { Direction::Forward => res, Direction::Backward => res.reverse() }
                });

                let interval = interval.clone();
                let mut ti_index = 0;
                iters.push(Box::new(ConcatIterator::<'a>::make(Box::new(move || {
                    Ok(if ti_index == table_infos.len() {
                        None
                    } else {
                        let ti: &TableInfo = table_infos[ti_index];
                        ti_index += 1;
                        Some(Box::new(TableIterator::make(&self.directory, ti, &interval, direction)?))
                    })
                }))?));
            }
        }

        return Ok(StoreIter{
            interval: interval.clone(),
            iters: MergeIterator::make(iters, direction)?,
            direction: direction,
        });
    }

    // NOTE: If the StoreIter keeps self borrowed, it should hold a reference to self that we can use
    // to iterate.

    /// Creates a StoreIter for iterating forwards through the interval.
    pub fn range<'a>(&'a self, interval: &Interval<Buf>) -> Result<StoreIter<'a>> {
        return self.range_directed(interval, Direction::Forward);
    }

    /// Creates a StoreIter for iterating backwards through the interval.
    pub fn range_descending<'a>(&'a self, interval: &Interval<Buf>) -> Result<StoreIter<'a>> {
        return self.range_directed(interval, Direction::Backward);
    }

    /// Produces the next key/value pair from the StoreIter.  Returns None
    /// to mark the end of iteration.
    pub fn next(&self, iter: &mut StoreIter) -> Result<Option<(Buf, Buf)>> {
        loop {
            let keyvec: Vec<u8>;
            if let Some(key) = iter.iters.current_key()? {
                let abandon = match iter.direction {
                    Direction::Forward => !below_upper_bound(key, &iter.interval.upper),
                    Direction::Backward => !above_lower_bound(key, &iter.interval.lower),
                };
                if abandon {
                    return Ok(None);
                }
                keyvec = key.to_vec();
            } else {
                return Ok(None);
            }
            let mutation: Mutation = iter.iters.current_value()?;
            iter.iters.step()?;
            match mutation {
                Mutation::Set(value) => {
                    return Ok(Some((keyvec, value)));
                },
                Mutation::Delete => {
                    continue;
                }
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use std::collections::Bound;
    use super::*;

    use rand::*;

    struct TestStore {
        // In an option so we can drop it before deleting directory.
        store: Option<Store>,
        directory: String,
    }

    fn random_testdir() -> String {
        let mut rng = rand::thread_rng();
        let mut x: u32 = rng.gen();
        let mut ret = "testdir-".to_string();
        for _ in 0..6 {
            ret.push(std::char::from_u32(97 + (x % 26)).unwrap());
            x /= 26;
        }
        return ret;
    }

    impl Drop for TestStore {
        fn drop(&mut self) {
            // Cleanup the Store before we delete the directory.
            self.close();
            std::fs::remove_dir_all(&self.directory).expect("remove_dir_all");
        }
    }

    impl TestStore {
        fn create(threshold: usize) -> TestStore {
            let dir: String = random_testdir();
            Store::create(&dir).unwrap();
            let mut ts = TestStore{store: None, directory: dir};
            ts.open(threshold);
            return ts;
        }
        fn open(&mut self, threshold: usize) {
            assert!(self.store.is_none());
            let store: Store = Store::open(&self.directory, threshold).unwrap();
            self.store = Some(store);
        }
        fn close(&mut self) -> Option<()> {
            return self.store.take().map(|_| ());
        }
        fn kv(&mut self) -> &mut Store {
            return self.store.as_mut().unwrap();
        }
    }

    fn b(s: &str) -> &[u8] {
        return s.as_bytes();
    }

    #[test]
    fn putget() {
        let mut ts = TestStore::create(100);
        let kv = ts.kv();
        kv.put(b("foo"), b("Hey")).unwrap();
        let x: Option<Buf> = kv.get(b("foo")).unwrap();
        assert_eq!(Some(b("Hey").to_vec()), x);
        assert!(kv.exists(b("foo")).unwrap());
        assert_eq!(None, kv.get(b("bar")).unwrap());
        assert!(!kv.exists(b("bar")).unwrap());
    }

    #[test]
    fn range() {
        let mut ts = TestStore::create(100);
        let kv = ts.kv();
        kv.put(b("a"), b("alpha")).unwrap();
        kv.put(b("b"), b("beta")).unwrap();
        kv.put(b("c"), b("charlie")).unwrap();
        kv.put(b("d"), b("delta")).unwrap();
        let interval = Interval::<Buf>{lower: Bound::Unbounded, upper: Bound::Excluded(b("d").to_vec())};
        {
            let mut it: StoreIter = kv.range(&interval).expect("range");
            assert_eq!(Some((b("a").to_vec(), b("alpha").to_vec())), kv.next(&mut it).unwrap());
            assert_eq!(Some((b("b").to_vec(), b("beta").to_vec())), kv.next(&mut it).unwrap());
            assert_eq!(Some((b("c").to_vec(), b("charlie").to_vec())), kv.next(&mut it).unwrap());
            assert_eq!(None, kv.next(&mut it).unwrap());
        }
        {
            let mut it: StoreIter = kv.range_descending(&interval).expect("range");
            assert_eq!(Some((b("c").to_vec(), b("charlie").to_vec())), kv.next(&mut it).unwrap());
            assert_eq!(Some((b("b").to_vec(), b("beta").to_vec())), kv.next(&mut it).unwrap());
            assert_eq!(Some((b("a").to_vec(), b("alpha").to_vec())), kv.next(&mut it).unwrap());
            assert_eq!(None, kv.next(&mut it).unwrap());
        }
    }

    #[test]
    fn overwrite() {
        let mut ts = TestStore::create(100);
        let kv = ts.kv();

        kv.put(b("a"), b("alpha")).unwrap();
        kv.put(b("a"), b("alpha-2")).unwrap();
        assert_eq!(Some(b("alpha-2").to_vec()), kv.get(b("a")).unwrap());
        let inserted: bool = kv.insert(b("a"), b("alpha-3")).unwrap();
        assert!(!inserted);
        let overwrote: bool = kv.replace(b("a"), b("alpha-4")).unwrap();
        assert!(overwrote);
        assert_eq!(Some(b("alpha-4").to_vec()), kv.get(b("a")).unwrap());
    }

    fn write_basic_kv(ts: &mut TestStore) {
        let kv = ts.kv();
        for i in (0..102).rev() {
            kv.put(b(&i.to_string()), b(&format!("value-{}", i.to_string()))).unwrap();
        }
        // Remove one, so that we test Delete entries really do override Set entries.
        let removed: bool = kv.remove(b("11")).unwrap();
        assert!(removed);
        assert!(1 < kv.memstores.len());
    }

    fn verify_basic_kv(ts: &mut TestStore) {
        let kv = ts.kv();
        {
            let interval = Interval::<Buf>{lower: Bound::Excluded(b("1").to_vec()), upper: Bound::Unbounded};
            let mut it: StoreIter = kv.range(&interval).expect("range");
            assert_eq!(Some((b("10").to_vec(), b("value-10").to_vec())), kv.next(&mut it).unwrap());
            assert_eq!(Some((b("100").to_vec(), b("value-100").to_vec())), kv.next(&mut it).unwrap());
            assert_eq!(Some((b("101").to_vec(), b("value-101").to_vec())), kv.next(&mut it).unwrap());
            assert_eq!(Some((b("12").to_vec(), b("value-12").to_vec())), kv.next(&mut it).unwrap());
            assert_eq!(Some((b("13").to_vec(), b("value-13").to_vec())), kv.next(&mut it).unwrap());
        }
        {
            let interval = Interval::<Buf>{lower: Bound::Unbounded, upper: Bound::Excluded(b("99").to_vec())};
            let mut it: StoreIter = kv.range_descending(&interval).expect("range descending");
            assert_eq!(Some((b("98").to_vec(), b("value-98").to_vec())), kv.next(&mut it).unwrap());
            assert_eq!(Some((b("97").to_vec(), b("value-97").to_vec())), kv.next(&mut it).unwrap());
        }
    }

    #[test]
    fn many() {
        let mut ts = TestStore::create(100);
        write_basic_kv(&mut ts);
        verify_basic_kv(&mut ts);
    }

    #[test]
    fn disk() {
        let mut ts = TestStore::create(100);
        write_basic_kv(&mut ts);
        ts.kv().flush().unwrap();
        // Remove (and drop) existing store.
        assert!(ts.close().is_some());
        ts.open(100);
        verify_basic_kv(&mut ts);
    }

    #[test]
    fn disk_missing_key() {
        let mut ts = TestStore::create(100);
        write_basic_kv(&mut ts);
        ts.kv().flush().unwrap();
        // Remove (and drop) existing store.
        assert!(ts.close().is_some());
        ts.open(100);
        // This actually hits the disk, because the key has no reference in the memstores.
        assert_eq!(None, ts.kv().get(b("bogus")).unwrap());
    }

    fn big_key(num: u64) -> Buf { format!("{:08}", num).as_bytes().to_vec() }
    fn big_value(num: u64) -> Buf { format!("value-{}", num).as_bytes().to_vec() }

    fn write_big_kv(ts: &mut TestStore, n: u64) {
        let kv = ts.kv();
        for i in 0..n {
            kv.put(&big_key(i), &big_value(i)).unwrap();
        }
        for j in 0..n/2 {
            let i = j * 2 + 1;
            let removed: bool = kv.remove(&big_key(i)).unwrap();
            assert!(removed);
        }
    }

    fn verify_big_kv_range(kv: &mut Store, low: u64, high: u64) {
        let interval = Interval::<Buf>{
            lower: Bound::Included(big_key(low)),
            upper: Bound::Included(big_key(high)),
        };
        {
            let mut i = low;
            if i % 2 == 1 {
                i += 1;
            }
            let mut it: StoreIter = kv.range(&interval).expect("range");
            while let Some((k, v)) = kv.next(&mut it).expect("next") {
                assert_eq!(&big_key(i), &k);
                assert_eq!(&big_value(i), &v);
                i += 2;
            }
            if high % 2 == 0 {
                assert_eq!(high + 2, i);
            } else {
                assert_eq!(high + 1, i);
            }
        }
        {
            let mut i = high;
            if i % 2 == 1 {
                i -= 1;
            }
            let mut it: StoreIter = kv.range_descending(&interval).expect("range_descending");
            while let Some((k, v)) = kv.next(&mut it).expect("next desc") {
                assert_eq!(&big_key(i), &k);
                assert_eq!(&big_value(i), &v);
                i -= 2;
            }
            if low % 2 == 0 {
                assert_eq!(low - 2, i);
            } else {
                assert_eq!(low - 1, i);
            }
        }
    }

    fn verify_big_kv(ts: &mut TestStore) {
        let kv = ts.kv();
        verify_big_kv_range(kv, 145, 346);
    }

    #[test]
    fn big_many() {
        let mut ts = TestStore::create(100);
        write_big_kv(&mut ts, 1000);
        verify_big_kv(&mut ts);
    }

    #[test]
    fn big_many_disk() {
        let mut ts = TestStore::create(100);
        write_big_kv(&mut ts, 1000);
        ts.kv().flush().unwrap();
        // Remove (and drop) existing store.
        assert!(ts.close().is_some());
        ts.open(100);
        verify_big_kv(&mut ts);
    }

    #[test]
    fn big_many_threshold() {
        let mut ts = TestStore::create(2000000);
        write_big_kv(&mut ts, 1000);
        ts.kv().flush().unwrap();
        // Remove (and drop) existing store.
        assert!(ts.close().is_some());
        ts.open(100);
        verify_big_kv(&mut ts);
    }

    #[test]
    fn sync() {
        // Tests that sync generally works.
        let mut ts = TestStore::create(100);
        write_basic_kv(&mut ts);
        ts.kv().sync().expect("sync to succeed");
    }
}