1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
//! This module contains multiple types defined by the standard.
//! At the moment, not all of them are used internally (`NiftiType`
//! makes the exception, which also provides a safe means of
//! reading voxel values). However, primitive integer values can be
//! converted to these types and vice-versa.

use crate::error::{NiftiError, Result};
use crate::volume::element::{DataElement, LinearTransform};
use byteordered::{Endian, Endianness};
use num_derive::FromPrimitive;
use std::io::Read;
use std::ops::{Add, Mul};

/// Data type for representing a NIFTI value type in a volume.
/// Methods for reading values of that type from a source are also included.
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy, FromPrimitive)]
#[repr(u16)]
pub enum NiftiType {
    /// unsigned char.
    // NIFTI_TYPE_UINT8           2
    Uint8 = 2,
    /// signed short.
    // NIFTI_TYPE_INT16           4
    Int16 = 4,
    /// signed int.
    // NIFTI_TYPE_INT32           8
    Int32 = 8,
    /// 32 bit float.
    // NIFTI_TYPE_FLOAT32        16
    Float32 = 16,
    /// 64 bit complex = 2 32 bit floats.
    // NIFTI_TYPE_COMPLEX64      32
    Complex64 = 32,
    /// 64 bit float = double.
    // NIFTI_TYPE_FLOAT64        64
    Float64 = 64,
    /// 3 8 bit bytes.
    // NIFTI_TYPE_RGB24         128
    Rgb24 = 128,
    /// signed char.
    // NIFTI_TYPE_INT8          256
    Int8 = 256,
    /// unsigned short.
    // NIFTI_TYPE_UINT16        512
    Uint16 = 512,
    /// unsigned int.
    // NIFTI_TYPE_UINT32        768
    Uint32 = 768,
    /// signed long long.
    // NIFTI_TYPE_INT64        1024
    Int64 = 1024,
    /// unsigned long long.
    // NIFTI_TYPE_UINT64       1280
    Uint64 = 1280,
    /// 128 bit float = long double.
    // NIFTI_TYPE_FLOAT128     1536
    Float128 = 1536,
    /// 128 bit complex = 2 64 bit floats.
    // NIFTI_TYPE_COMPLEX128   1792
    Complex128 = 1792,
    /// 256 bit complex = 2 128 bit floats
    // NIFTI_TYPE_COMPLEX256   2048
    Complex256 = 2048,
    /// 4 8 bit bytes.
    // NIFTI_TYPE_RGBA32       2304
    Rgba32 = 2304,
}

impl NiftiType {
    /// Retrieve the size of an element of this data type, in bytes.
    pub fn size_of(self) -> usize {
        use NiftiType::*;
        match self {
            Int8 | Uint8 => 1,
            Int16 | Uint16 => 2,
            Rgb24 => 3,
            Int32 | Uint32 | Float32 | Rgba32 => 4,
            Int64 | Uint64 | Float64 | Complex64 => 8,
            Float128 | Complex128 => 16,
            Complex256 => 32,
        }
    }
}

impl NiftiType {
    /// Read a primitive voxel value from a source.
    pub fn read_primitive_value<S, T>(
        self,
        source: S,
        endianness: Endianness,
        slope: f32,
        inter: f32,
    ) -> Result<T>
    where
        S: Read,
        T: Mul<Output = T>,
        T: Add<Output = T>,
        T: DataElement,
    {
        match self {
            NiftiType::Uint8 => {
                let raw = u8::from_raw(source, endianness)?;
                Ok(<u8 as DataElement>::Transform::linear_transform(
                    T::from_u8(raw),
                    slope,
                    inter,
                ))
            }
            NiftiType::Int8 => {
                let raw = i8::from_raw(source, endianness)?;
                Ok(<i8 as DataElement>::Transform::linear_transform(
                    T::from_i8(raw),
                    slope,
                    inter,
                ))
            }
            NiftiType::Uint16 => {
                let raw = endianness.read_u16(source)?;
                Ok(<u16 as DataElement>::Transform::linear_transform(
                    T::from_u16(raw),
                    slope,
                    inter,
                ))
            }
            NiftiType::Int16 => {
                let raw = endianness.read_i16(source)?;
                Ok(<i16 as DataElement>::Transform::linear_transform(
                    T::from_i16(raw),
                    slope,
                    inter,
                ))
            }
            NiftiType::Uint32 => {
                let raw = endianness.read_u32(source)?;
                Ok(<u32 as DataElement>::Transform::linear_transform(
                    T::from_u32(raw),
                    slope,
                    inter,
                ))
            }
            NiftiType::Int32 => {
                let raw = endianness.read_i32(source)?;
                Ok(<i32 as DataElement>::Transform::linear_transform(
                    T::from_i32(raw),
                    slope,
                    inter,
                ))
            }
            NiftiType::Uint64 => {
                let raw = endianness.read_u64(source)?;
                Ok(<u64 as DataElement>::Transform::linear_transform(
                    T::from_u64(raw),
                    slope,
                    inter,
                ))
            }
            NiftiType::Int64 => {
                let raw = endianness.read_i64(source)?;
                Ok(<i64 as DataElement>::Transform::linear_transform(
                    T::from_i64(raw),
                    slope,
                    inter,
                ))
            }
            NiftiType::Float32 => {
                let raw = endianness.read_f32(source)?;
                Ok(<f32 as DataElement>::Transform::linear_transform(
                    T::from_f32(raw),
                    slope,
                    inter,
                ))
            }
            NiftiType::Float64 => {
                let raw = endianness.read_f64(source)?;
                Ok(<f64 as DataElement>::Transform::linear_transform(
                    T::from_f64(raw),
                    slope,
                    inter,
                ))
            }
            // TODO(#3) add support for more data types
            _ => Err(NiftiError::UnsupportedDataType(self)),
        }
    }
}

/// An enum type which represents a unit type.
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy, FromPrimitive)]
#[repr(u8)]
pub enum Unit {
    /// NIFTI code for unspecified units.
    Unknown = 0,
    /* Space codes are multiples of 1. */
    /// NIFTI code for meters.
    Meter = 1,
    /// NIFTI code for millimeters.
    Mm = 2,
    /// NIFTI code for micrometers.
    Micron = 3,
    /* Time codes are multiples of 8. */
    /// NIFTI code for seconds.
    Sec = 8,
    /// NIFTI code for milliseconds.
    Msec = 16,
    /// NIFTI code for microseconds.
    Usec = 24,
    /* These units are for spectral data: */
    /// NIFTI code for Hertz.
    Hz = 32,
    /// NIFTI code for ppm.
    Ppm = 40,
    /// NIFTI code for radians per second.
    Rads = 48,
}

/// An enum type for representing a NIFTI intent code.
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy, FromPrimitive)]
#[repr(u16)]
pub enum Intent {
    /// default: no intention is indicated in the header.
    None = 0,
    /// nifti1 intent codes, to describe intended meaning of dataset contents
    Correl = 2,
    /// \[C2, chap 28] Student t statistic (1 param): p1 = DOF.
    Ttest = 3,
    /// \[C2, chap 27] Fisher F statistic (2 params):
    /// p1 = numerator DOF, p2 = denominator DOF.
    Ftest = 4,
    /// \[C1, chap 13] Standard normal (0 params): Density = N(0,1).
    Zscore = 5,
    /// \[C1, chap 18] Chi-squared (1 param): p1 = DOF.
    /// Density(x) proportional to `exp(-x/2) * x^(p1/2-1)`.
    Chisq = 6,
    /// \[C2, chap 25] Beta distribution (2 params): p1=a, p2=b.
    /// Density(x) proportional to `x^(a-1) * (1-x)^(b-1)`.
    Beta = 7,
    /// \[U, chap 3] Binomial distribution (2 params):
    /// p1 = number of trials, p2 = probability per trial.
    /// Prob(x) = `(p1 choose x) * p2^x * (1-p2)^(p1-x)`, for `x=0,1,...,p1`.
    Binom = 8,
    /// \[C1, chap 17] Gamma distribution (2 params):
    /// p1 = shape, p2 = scale.
    /// Density(x) proportional to `x^(p1-1) * exp(-p2*x)`.
    Gamma = 9,
    /// \[U, chap 4] Poisson distribution (1 param): p1 = mean.
    /// Prob(x) = `exp(-p1) * p1^x / x!` , for `x=0,1,2,...`.
    Poisson = 10,
    /// \[C1, chap 13] Normal distribution (2 params):
    /// p1 = mean, p2 = standard deviation.
    Normal = 11,
    /// \[C2, chap 30] Noncentral F statistic (3 params):
    /// p1 = numerator DOF, p2 = denominator DOF,
    /// p3 = numerator noncentrality parameter.
    FtestNonc = 12,
    /// \[C2, chap 29] Noncentral chi-squared statistic (2 params):
    /// p1 = DOF, p2 = noncentrality parameter.
    ChisqNonc = 13,
    /// \[C2, chap 23] Logistic distribution (2 params):
    /// p1 = location, p2 = scale.
    /// Density(x) proportional to `sech^2((x-p1)/(2*p2))`.
    Logistic = 14,
    /// \[C2, chap 24] Laplace distribution (2 params):
    /// p1 = location, p2 = scale.
    /// Density(x) proportional to `exp(-abs(x-p1)/p2)`.
    Laplace = 15,
    /// \[C2, chap 26] Uniform distribution: p1 = lower end, p2 = upper end.
    Uniform = 16,
    /// \[C2, chap 31] Noncentral t statistic (2 params):
    /// p1 = DOF, p2 = noncentrality parameter.
    TtestNonc = 17,
    /// \[C1, chap 21] Weibull distribution (3 params):
    /// p1 = location, p2 = scale, p3 = power.
    /// Density(x) proportional to
    /// `((x-p1)/p2)^(p3-1) * exp(-((x-p1)/p2)^p3)` for `x > p1`.
    Weibull = 18,
    /// \[C1, chap 18] Chi distribution (1 param): p1 = DOF.
    /// Density(x) proportional to `x^(p1-1) * exp(-x^2/2)` for `x > 0`.
    /// p1 = 1 = 'half normal' distribution
    /// p1 = 2 = Rayleigh distribution
    /// p1 = 3 = Maxwell-Boltzmann distribution.
    Chi = 19,
    /// \[C1, chap 15] Inverse Gaussian (2 params):
    /// p1 = mu, p2 = lambda
    /// Density(x) proportional to
    /// `exp(-p2*(x-p1)^2/(2*p1^2*x)) / x^3`  for `x > 0`.
    Invgauss = 20,
    /// \[C2, chap 22] Extreme value type I (2 params):
    /// p1 = location, p2 = scale
    /// `cdf(x) = exp(-exp(-(x-p1)/p2))`.
    Extval = 21,
    /// Data is a 'p-value' (no params).
    Pval = 22,
    /// Data is `ln(p-value)` (no params).
    /// To be safe, a program should compute `p = exp(-abs(this_value))`.
    /// The nifti_stats.c library returns this_value
    /// as positive, so that `this_value = -log(p)`.
    Logpval = 23,
    /// Data is log10(p-value) (no params).
    /// To be safe, a program should compute `p = pow(10.,-abs(this_value))`.
    /// The nifti_stats.c library returns `this_value`
    /// as positive, so that `this_value = -log10(p)`.
    Log10pval = 24,
    /* --- these values aren't for statistics --- */
    /// To signify that the value at each voxel is an estimate
    /// of some parameter, set `intent_code` = `NIFTI_INTENT_ESTIMATE`.
    /// The name of the parameter may be stored in `intent_name`.
    Estimate = 1001,
    /// To signify that the value at each voxel is an index into
    /// some set of labels, set `intent_code` = `NIFTI_INTENT_LABEL`.
    /// The filename with the labels may stored in `aux_file`.
    Label = 1002,
    /// To signify that the value at each voxel is an index into the
    /// NeuroNames labels set, set `intent_code` = `NIFTI_INTENT_NEURONAME`.
    Neuroname = 1003,
    /// To store an M x N matrix at each voxel:
    ///    - dataset must have a 5th dimension (`dim[0]=5` and `dim[5]>1`)
    ///    - `intent_code` must be `NIFTI_INTENT_GENMATRIX`
    ///    - `dim[5]` must be `M*N`
    ///    - `intent_p1` must be `M` (in float format)
    ///    - `intent_p2` must be `N` (ditto)
    ///    - the matrix values `A[i][j]` are stored in row-order:
    ///       - `A[0][0] A[0][1] ... A[0][N-1]`
    ///       - `A[1][0] A[1][1] ... A[1][N-1]`
    ///       - etc., until
    ///       - `A[M-1][0] A[M-1][1] ... A[M-1][N-1]`
    Genmatrix = 1004,
    /// To store an `NxN` symmetric matrix at each voxel:
    ///    - dataset must have a 5th dimension
    ///    - `intent_code` must be `NIFTI_INTENT_SYMMATRIX`
    ///    - `dim[5]` must be `N*(N+1)/2`
    ///    - `intent_p1` must be `N` (in float format)
    ///    - the matrix values `A[i][j]` are stored in row-order:
    ///       - `A[0][0]`
    ///       - `A[1][0] A[1][1]`
    ///       - `A[2][0] A[2][1] A[2][2]`
    ///       - etc.: row-by-row
    Symmatrix = 1005,
    /// To signify that the vector value at each voxel is to be taken
    /// as a displacement field or vector:
    ///   - dataset must have a 5th dimension
    ///   - `intent_code` must be `NIFTI_INTENT_DISPVECT`
    ///   - `dim[5]` must be the dimensionality of the displacment
    ///     vector (e.g., 3 for spatial displacement, 2 for in-plane)
    ///
    /// (specifically for displacements)
    Dispvect = 1006,
    /// (for any other type of vector)
    Vector = 1007,
    /// To signify that the vector value at each voxel is really a
    /// spatial coordinate (e.g., the vertices or nodes of a surface mesh):
    ///    - dataset must have a 5th dimension
    ///    - `intent_code` must be `NIFTI_INTENT_POINTSET`
    ///    - `dim[0]` = 5
    ///    - `dim[1]` = number of points
    ///    - `dim[2]` = `dim[3]` = `dim[4]` = 1
    ///    - `dim[5]` must be the dimensionality of space (e.g., 3 => 3D space).
    ///    - `intent_name` may describe the object these points come from
    ///      (e.g., "pial", "gray/white" , "EEG", "MEG").
    Pointset = 1008,
    /// To signify that the vector value at each voxel is really a triple
    /// of indexes (e.g., forming a triangle) from a pointset dataset:
    ///    - dataset must have a 5th dimension
    ///    - `intent_code` must be `NIFTI_INTENT_TRIANGLE`
    ///    - `dim[0]` = 5
    ///    - `dim[1]` = number of triangles
    ///    - `dim[2]` = `dim[3]` = `dim[4]` = 1
    ///    - `dim[5]` = 3
    ///    - `datatype` should be an integer type (preferably `NiftiType::Int32`)
    ///    - the data values are indexes (0,1,...) into a pointset dataset.
    Triangle = 1009,
    /// To signify that the vector value at each voxel is a quaternion:
    ///    - dataset must have a 5th dimension
    ///    - `intent_code` must be `NIFTI_INTENT_QUATERNION`
    ///    - `dim[0]` = 5
    ///    - `dim[5]` = 4
    ///    - `datatype` should be a floating point type
    Quaternion = 1010,
    /// Dimensionless value - no params - although, as in `_ESTIMATE`
    /// the name of the parameter may be stored in `intent_name`.
    Dimless = 1011,
    /* --- these values apply to GIFTI datasets --- */
    /// To signify that the value at each location is from a time series.
    TimeSeries = 2001,
    /// To signify that the value at each location is a node index, from
    /// a complete surface dataset.
    NodeIndex = 2002,
    /// To signify that the vector value at each location is an RGB triplet,
    /// of whatever type.
    ///    - dataset must have a 5th dimension
    ///    - `dim[0]` = 5
    ///    - `dim[1]` = number of nodes
    ///    - `dim[2]` = `dim[3]` = `dim[4]` = 1
    ///    - `dim[5]` = 3
    RgbVector = 2003,
    /// To signify that the vector value at each location is a 4 valued RGBA
    /// vector, of whatever type.
    ///   - dataset must have a 5th dimension
    ///   - `dim[0]` = 5
    ///   - `dim[1]` = number of nodes
    ///   - `dim[2]` = `dim[3]` = `dim[4]` = 1
    ///   - `dim[5]` = 4
    RgbaVector = 2004,
    /// To signify that the value at each location is a shape value, such
    /// as the curvature.
    Shape = 2005,

    /// FSL FNIRT Displacement field.
    FslFnirtDisplacementField = 2006,
    /// FSL Cubic spline coefficients.
    FslCubicSplineCoefficients = 2007,
    /// FSL Discrete cosine transform coefficients.
    FslDctCoefficients = 2008,
    /// FSL Quadratic spline coefficients.
    FslQuadraticSplineCoefficients = 2009,

    /// FSL Topup cubic spline coefficients.
    FslTopupCubicSplineCoefficients = 2016,
    /// FSL Topup quadratic spline coefficients.
    FslTopupQuadraticSplineCoefficients = 2017,
    /// FSL Topup field.
    FslTopupField = 2018,
}

impl Intent {
    /// Check whether this intent code is used for statistics.
    pub fn is_statcode(self) -> bool {
        self as i16 >= 2 && self as i16 <= 24
    }
}

/// An enum type for representing a NIFTI XForm.
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy, FromPrimitive)]
#[repr(u16)]
pub enum XForm {
    /// Arbitrary coordinates (Method 1).
    Unknown = 0,
    /// Scanner-based anatomical coordinates
    ScannerAnat = 1,
    /// Coordinates aligned to another file's,
    /// or to anatomical "truth".
    AlignedAnat = 2,
    /// Coordinates aligned to Talairach-Tournoux
    /// Atlas; (0,0,0)=AC, etc.
    Talairach = 3,
    /// MNI 152 normalized coordinates.
    Mni152 = 4,
    /// Normalized coordinates (for any general standard template space).
    TemplateOther = 5,
}

/// An enum type for representing the slice order.
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy, FromPrimitive)]
#[repr(u8)]
pub enum SliceOrder {
    /// NIFTI_SLICE_UNKNOWN
    Unknown = 0,
    /// NIFTI_SLICE_SEQ_INC
    SeqInc = 1,
    /// NIFTI_SLICE_SEQ_DEC
    SeqDec = 2,
    /// NIFTI_SLICE_ALT_INC
    AltInc = 3,
    /// NIFTI_SLICE_ALT_DEC
    AltDec = 4,
    /// NIFTI_SLICE_ALT_INC2
    AltInc2 = 5,
    /// NIFTI_SLICE_ALT_DEC2
    AltDec2 = 6,
}