1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
//! Struct and methods corresponding to NI-hardware channels. See [`BaseChannel`] for
//! implementation details.
//!
//! Channels constitute the fundamental unit of interaction with NI devices, and between NI
//! devices and controlled hardware. A `Channel` instance, trivially implementing the [`BaseChannel`]
//! trait, corresponds to a physical channel on a NI device and, by extension,
//! a controllable physical quantity (e.g. laser on/off, coil current).
//!
//! ## Editing behavior
//! During editing, the user effectively adds [`InstrBook`] instances (instructions with associated
//! intervals) into the `instr_list` field through wrapper methods.
//! The `instr_list` field functions as an edit cache and  maintains a sorted list of newly added instruction books.
//!
//! ## Compilation behavior
//! Compilation is analogous to "flushing" the edit cache of an experiment.
//! During compilation, instructions within the edit cache via `instr_list` — which could
//! be disjointed — are expanded according to their `keep_val` property and combined to
//! produce a continuous stream of [`Instruction`], which is stored in `instr_end` and `instr_val`.
//!
//! Properties of a channel include:
//! - `samp_rate`: The sampling rate at which the parent device operates.
//! - `name`: Denotes the channel's identifier as seen by the NI driver. For instance,
//!    this could be 'ao0' or 'port0/line0'. This name can be viewed using tools like NI-MAX on
//!    Windows or the NI hardware configuration utilities on Linux.
//!  - `instr_list`: An edit-cache for the channel. Internally, this uses a `BTreeSet` to guarantee
//!    the sorted ordering of non-overlapping instruction intervals.
//!  - `task_type`: Specifies the task type associated with the channel. This affects the behavior
//!    of certain methods within the channel.
//!  - `fresh_compiled`: An internal boolean value that indicates whether the compiled results
//!    (stored in `instr_end` and `instr_val`) are up-to-date with the content of the edit cache.
//!
//! ## Channel property: "editable" and "streamable"
//!
//! For AO (Analog Output) channels, each edited channel corresponds directly to a NI-DAQmx channel.
//! However, the situation becomes nuanced when we consider DO (Digital Output) channels.
//! In DAQmx, digital channels can be of type "line" or "port".
//!
//! - Learn more about [lines and ports](https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/linesports.html).
//! - Dive deeper into their [corresponding data organization](https://www.ni.com/docs/en-US/bundle/ni-daqmx/page/mxcncpts/dataformats.html).
//!
//! A single port can encompass anywhere from 8 to 32 lines.
//! Importantly, each of these lines can produce an arbitrary output.
//! In this library, the unit of independent digital triggers, which users interact with,
//! corresponds to DAQmx "lines". These lines accept boolean values for individual writes.
//!
//! However, DAQmx offers a more efficient mechanism: writing integers to "ports".
//! In this method, each significant binary bit in the sequence corresponds to a line's output.
//! This port-based approach provides a substantial efficiency gain, making it indispensable for
//! successful digital output streaming.
//!
//! As a result, while library users interact with "line channels" (with names in the format like
//! `"port0/line0"`), the library internally aggregates lines from the same port during compilation.
//! This aggregation merges their instructions for streamlined execution.
//!
//! For instance, if `line0/port0` is high between `t=1~3` and `line0/port4` is high between `t=2~4`,
//! the parent device compilation will produce an auxiliary port channel named `port0`.
//!  This channel has compiled instructions as follows:
//! `(0, t=0~1), (1, t=1~2), (17, t=2~3), (16, t=3~4), (0, t=4~5)`.
//!
//! Channels generated in this manner are labeled as `streamable`, meaning directly used during experiment
//! streaming to generate driver-write signals. Channels which users directly interact with are labeled as `editable`.
//!
//! AO channels are both streamable and editable. DO line channels are editable but not streamable, and DO port
//! channels are non-editable yet streamable.

use ndarray::{array, s, Array1};
use std::collections::BTreeSet;

use crate::instruction::*;

/// Enum type for NI tasks. Channels are associated
/// with a unique task type, which affects their behavior.
/// Currently supported types: `AO` (analogue output), `DO` (digital output)
#[derive(PartialEq, Clone, Copy)]
pub enum TaskType {
    AO,
    DO,
}

/// The [`BaseChannel`] trait defines the core methods required for a channel's interaction with
/// NI devices. It encapsulates both editing and compilation behaviors of a channel.
///
/// Implementing this trait allows a type to represent a channel on a NI device, providing methods
/// to access and modify essential properties such as the sampling rate, physical name, and type of task.
/// Additionally, it provides methods to access and edit the underlying instruction list and compiled
/// instructions, enabling the creation, modification, and execution of tasks on the hardware.
///
/// # Required Methods
///
/// Implementors of this trait must provide implementations for a set of methods that allow:
/// - Accessing immutable properties of the channel.
/// - Mutating certain properties and states of the channel.
///
/// This trait ensures that any type representing a channel offers the necessary functionality
/// to interact with NI devices, ensuring consistency and safety in channel operations.
pub trait BaseChannel {
    // Immutable field methods
    fn samp_rate(&self) -> f64;
    fn name(&self) -> &str;
    fn task_type(&self) -> TaskType;
    /// The `fresh_compiled` field is set to true by each [`BaseChannel::compile`] call and
    /// `false` by each [`BaseChannel::add_instr`].  
    fn is_fresh_compiled(&self) -> bool;
    /// Provies a reference to the edit cache of instrbook list.
    fn instr_list(&self) -> &BTreeSet<InstrBook>;
    /// Returns the ending points of compiled instructions.
    fn instr_end(&self) -> &Vec<usize>;
    /// Retrieves the values of compiled instructions.
    fn instr_val(&self) -> &Vec<Instruction>;
    // Mutable field methods
    /// Mutable access to the `fresh_compiled` status.
    fn fresh_compiled_(&mut self) -> &mut bool;
    /// Mutable access to the instruction list.
    fn instr_list_(&mut self) -> &mut BTreeSet<InstrBook>;
    /// Mutable access to the ending points of compiled instructions.
    fn instr_end_(&mut self) -> &mut Vec<usize>;
    /// Mutable access to the values of compiled instructions.
    fn instr_val_(&mut self) -> &mut Vec<Instruction>;

    /// Channel is marked as compiled if its compilation-data field `instr_end` is nonempty
    fn is_compiled(&self) -> bool {
        !self.instr_end().is_empty()
    }
    /// Channel is marked as edited if its edit-cache field `instr_list` is nonempty
    fn is_edited(&self) -> bool {
        !self.instr_list().is_empty()
    }
    /// Channel is marked as editable if it is a AO channel or DO line channel (name contains "line")
    fn editable(&self) -> bool {
        match self.task_type() {
            TaskType::AO => true,
            TaskType::DO => self.name().contains("line"),
        }
    }
    /// Channel is marked as streamable if it is a AO channel or DO port channel (name does not contain "line")
    fn streamable(&self) -> bool {
        match self.task_type() {
            TaskType::AO => true,
            // for DODevice, only port channels are streamable
            TaskType::DO => !self.name().contains("line"),
        }
    }

    /// Compiles the instructions in the channel up to the specified `stop_pos`.
    ///
    /// The `compile` method processes the instruction list (`instr_list`) to generate a compiled
    /// list of end positions (`instr_end`) and corresponding values (`instr_val`). During compilation,
    /// it ensures that instructions are contiguous, adding padding as necessary. If two consecutive
    /// instructions have the same value, they are merged into a single instruction.
    ///
    /// # Arguments
    ///
    /// * `stop_pos`: The position up to which the instructions should be compiled. This is used
    /// to determine if padding is required at the end of the compiled instruction list.
    ///
    /// # Panics
    ///
    /// This method will panic in the following scenarios:
    /// * If the last instruction's end position in the `instr_list` exceeds the specified `stop_pos`.
    /// * If the channel is being recompiled but the previously compiled end position matches `stop_pos`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use nicompiler_backend::channel::*;
    /// # use nicompiler_backend::instruction::*;
    /// let mut channel = Channel::new(TaskType::DO, "port0/line0", 1e7);
    ///
    /// // Add some instructions to the channel.
    /// channel.add_instr(Instruction::new_const(1.), 0., 1., false);
    /// channel.add_instr(Instruction::new_const(0.), 1., 1., false);
    ///
    /// // Compile the instructions up to a specified stop position.
    /// channel.compile(3e7 as usize); // Compile up to 3 seconds (given a sampling rate of 10^7)
    /// ```
    fn compile(&mut self, stop_pos: usize) {
        if self.instr_list().len() == 0 {
            return;
        }
        // Ignore double compiles
        if self.is_fresh_compiled() && *self.instr_end().last().unwrap() == stop_pos {
            return;
        }
        self.clear_compile_cache();
        *self.fresh_compiled_() = true;

        if self.instr_list().last().unwrap().end_pos > stop_pos {
            panic!(
                "Attempting to compile channel {} with stop_pos {} while instructions end at {}",
                self.name(),
                stop_pos,
                self.instr_list().last().unwrap().end_pos
            );
        }

        let mut last_val = 0.;
        let mut last_end = 0;
        let mut instr_val: Vec<Instruction> = Vec::new();
        let mut instr_end: Vec<usize> = Vec::new();

        // Padding, instructions are already sorted
        let samp_rate = self.samp_rate();
        for instr_book in self.instr_list().iter() {
            if last_end != instr_book.start_pos {
                // Add padding instruction
                instr_val.push(Instruction::new_const(last_val));
                instr_end.push(instr_book.start_pos);
            }
            // Add original instruction
            instr_val.push(instr_book.instr.clone());
            instr_end.push(instr_book.end_pos);

            if instr_book.keep_val {
                last_val = match instr_book.instr.instr_type {
                    // Constant instruction: just retrieve its value for future padding
                    InstrType::CONST => *instr_book.instr.args.get("value").unwrap(),
                    // Other instructions: simulate end_pos
                    _ => {
                        let t_end = (instr_book.end_pos as f64) / samp_rate;
                        let mut t_arr = array![t_end];
                        instr_book.instr.eval_inplace(&mut t_arr.view_mut());
                        t_arr[0]
                    }
                };
            } else {
                last_val = 0.;
            }
            last_end = instr_book.end_pos;
        }
        // Pad the last instruction
        if self.instr_list().last().unwrap().end_pos != stop_pos {
            instr_val.push(Instruction::new_const(last_val));
            instr_end.push(stop_pos);
        }

        // Merge instructions, if possible
        for i in 0..instr_end.len() {
            if self.instr_val().is_empty() || instr_val[i] != *self.instr_val().last().unwrap() {
                self.instr_val_().push(instr_val[i].clone());
                self.instr_end_().push(instr_end[i]);
            } else {
                *self.instr_end_().last_mut().unwrap() = instr_end[i];
            }
        }
    }

    /// Utility function for signal sampling.
    ///
    /// Assuming a compiled channel (does not check), this utility function uses a binary search
    /// to efficiently determine the index of the first instruction whose end position is no less than
    /// the given `start_pos`.
    ///
    /// Note: This function assumes that `instr_end` is sorted in ascending order. It does not perform
    /// any checks for this condition.
    ///
    /// # Arguments
    ///
    /// * `start_pos` - The starting position for which to find the intersecting instruction.
    ///
    /// # Returns
    ///
    /// Returns the index `i` of the first instruction such that `self.instr_end[i] >= pos`
    /// If no such instruction is found, the function returns an index pointing to where
    /// the `pos` would be inserted to maintain the sorted order.
    ///
    /// # Examples
    ///
    /// ```
    /// # use nicompiler_backend::channel::*;
    /// let mut channel = Channel::new(TaskType::DO, "port0/line0", 1e7);
    /// channel.instr_end_().extend([10, 20, 30, 40, 50].iter());
    ///
    /// assert_eq!(channel.binfind_first_intersect_instr(15), 1);
    /// assert_eq!(channel.binfind_first_intersect_instr(20), 1);
    /// assert_eq!(channel.binfind_first_intersect_instr(25), 2);
    /// assert_eq!(channel.binfind_first_intersect_instr(55), 5);
    /// assert_eq!(channel.binfind_first_intersect_instr(5), 0);
    /// ```
    fn binfind_first_intersect_instr(&self, start_pos: usize) -> usize {
        let mut low: i32 = 0;
        let mut high: i32 = self.instr_end().len() as i32 - 1;
        while low <= high {
            let mid = ((low + high) / 2) as usize;
            if self.instr_end()[mid] < start_pos {
                low = mid as i32 + 1;
            } else if self.instr_end()[mid] > start_pos {
                high = mid as i32 - 1;
            } else {
                return mid as usize;
            }
        }
        low as usize
    }

    /// Clears the `instr_list` field of the channel.
    ///
    /// If the compiled cache is empty, it also sets the `fresh_compiled` field to `true`.
    fn clear_edit_cache(&mut self) {
        *self.fresh_compiled_() = self.instr_end().len() == 0;
        self.instr_list_().clear();
    }

    /// Clears the compiled cache of the channel.
    ///
    /// Specifically, the method clears the `instr_end` and `instr_val` fields.
    /// If the edit cache is empty, it also sets the `fresh_compiled` field to `true`.
    fn clear_compile_cache(&mut self) {
        *self.fresh_compiled_() = self.instr_list().len() == 0;
        self.instr_end_().clear();
        self.instr_val_().clear();
    }

    /// Returns the stop time of the compiled instructions.
    ///
    /// If the channel is not compiled, it returns `0`. Otherwise, it retrieves the last end position
    /// from the compiled cache and converts it to a time value using the sampling rate.
    fn compiled_stop_time(&self) -> f64 {
        *self.instr_end().last().unwrap_or(&0) as f64 / self.samp_rate()
    }

    /// Returns the stop time of the edited instructions.
    ///
    /// Retrieves the last instruction from the edit cache and converts its end position
    /// to a time value using the sampling rate. If the edit cache is empty, it returns `0`.
    fn edit_stop_time(&self) -> f64 {
        self.instr_list()
            .last()
            .map_or(0., |instr| instr.end_pos as f64 / self.samp_rate())
    }

    /// Adds an instruction to the channel.
    ///
    /// This is the primary method for adding instructions. It computes the discrete position
    /// interval associated with the given instruction, updates the `fresh_compiled` field,
    /// and inserts the instruction if it does not overlap with existing ones.
    ///
    /// # Arguments
    ///
    /// * `instr`: The instruction to be added.
    /// * `t`: The start time for the instruction.
    /// * `duration`: The duration of the instruction.
    /// * `keep_val`: Boolean value indicating whether to keep the instruction value after its end time.
    ///
    /// # Panics
    ///
    /// This method will panic if the new instruction overlaps with any existing instruction.
    ///
    /// # Example
    ///
    /// ```
    /// # use nicompiler_backend::channel::*;
    /// # use nicompiler_backend::instruction::*;
    /// let mut channel = Channel::new(TaskType::DO, "port0/line0", 1e7);
    ///
    /// // Ask the DO channel to go high at t=1 for 0.5 seconds, then return to default value (0)
    /// channel.add_instr(Instruction::new_const(1.), 1., 0.5, false);
    ///
    /// // Asks the DO channel to go high at t=0.5 for 0.001 seconds and keep its value.
    /// // This will be merged with the instruction above during compilation.
    /// channel.add_instr(Instruction::new_const(1.), 0.5, 0.001, true);
    ///
    /// // The following line is effectively the same as the two lines above after compilation.
    /// // However, adding it immediately after the previous instructions will cause an overlap panic.
    /// // Uncommenting the line below will trigger the panic.
    /// // channel.add_instr(Instruction::new_const(1.), 0.5, 1., false);
    /// ```
    ///
    /// Expected failure:
    ///
    /// ```should_panic
    /// # use nicompiler_backend::channel::*;
    /// # use nicompiler_backend::instruction::*;
    /// let mut channel = Channel::new(TaskType::DO, "port0/line0", 1e7);
    /// channel.add_instr(Instruction::new_const(1.), 1., 0.5, false);
    /// channel.add_instr(Instruction::new_const(1.), 0.5, 0.001, true);
    /// channel.add_instr(Instruction::new_const(1.), 0.5, 1., false); // This will panic
    /// ```
    ///
    /// The panic message will be:
    /// ```text
    /// "Channel port0/line0
    ///  Instruction InstrBook([CONST, {value: 1}], 5000000-15000000, false) overlaps with the next instruction InstrBook([CONST, {value: 1}], 5000000-5010000, true)"
    /// ```
    fn add_instr(&mut self, instr: Instruction, t: f64, duration: f64, keep_val: bool) {
        let start_pos = (t * self.samp_rate()) as usize;
        let end_pos = ((t * self.samp_rate()) as usize) + ((duration * self.samp_rate()) as usize);
        let new_instrbook = InstrBook::new(start_pos, end_pos, keep_val, instr);
        // Upon adding an instruction, the channel is not freshly compiled anymore
        *self.fresh_compiled_() = false;

        // Check for overlaps
        let name = self.name();
        if let Some(next) = self.instr_list().range(&new_instrbook..).next() {
            if next.start_pos < new_instrbook.end_pos {
                panic!(
                    "Channel {}\n Instruction {} overlaps with the next instruction {}\n",
                    name, new_instrbook, next
                );
            }
        }
        if let Some(prev) = self.instr_list().range(..&new_instrbook).next_back() {
            if prev.end_pos > new_instrbook.start_pos {
                panic!(
                    "Channel {}\n Instruction {} overlaps with the previous instruction {}",
                    name, new_instrbook, prev
                );
            }
        }

        self.instr_list_().insert(new_instrbook);
    }

    /// Utility function to add a constant instruction to the channel
    fn constant(&mut self, value: f64, t: f64, duration: f64, keep_val: bool) {
        self.add_instr(Instruction::new_const(value), t, duration, keep_val);
    }

    /// Fills a buffer (1D view of array) with the signal samples derived from a channel's instructions.
    ///
    /// This method samples the float-point signal from channel's compile cache
    /// between the positions `start_pos` and `end_pos`, and replaces the contents of the buffer with results.
    /// The number of samples is given by `num_samps`. Time-dependent instructions assume that
    /// the buffer is already populated with correctly sampled time values.
    ///
    /// # Arguments
    ///
    /// * `start_pos` - The starting position in the channel's instructions to begin sampling.
    /// * `end_pos` - The ending position in the channel's instructions to stop sampling.
    /// * `num_samps` - The number of samples required.
    /// * `buffer` - A mutable reference to an `ndarray::ArrayViewMut1<f64>` that will hold the sampled signal values.
    ///
    /// # Panics
    ///
    /// * If the channel is not compiled.
    /// * If `end_pos` is not greater than `start_pos`.
    /// * If `end_pos` exceeds the duration of the channel's compiled instructions.
    ///
    /// # Example
    ///
    /// ```
    /// # use nicompiler_backend::channel::*;
    /// # use nicompiler_backend::instruction::*;
    /// let mut channel = Channel::new(TaskType::AO, "ao0", 1e6);
    /// // Sample 100 samples from t=0 to t=10s
    /// let (start_pos, end_pos, num_samps) = (0, 1e7 as usize, 100);
    ///
    /// // Add an sine instruction sig=sin(2*pi*t*7.5) + 1 from t=0.5~9.5 which keeps its value
    /// let sine_instr = Instruction::new_sine(7.5, None, None, Some(1.0));
    /// channel.add_instr(sine_instr, 0.5, 9., true);
    /// channel.compile(1e7 as usize); // Compile the channel to stop at 10s (1e7 samples)
    ///
    /// let mut buffer = ndarray::Array1::<f64>::zeros(num_samps);
    /// channel.fill_signal_nsamps(start_pos, end_pos, num_samps, &mut buffer.view_mut());
    ///
    /// assert_eq!(buffer[0], 0.);
    /// assert_eq!(buffer[99], 2.);
    /// ```
    ///
    /// # Notes
    ///
    /// The method uses binary search to find the starting and ending instruction indices that intersect
    /// with the provided interval `[start_pos, end_pos]`. It then iterates over these instructions
    /// to sample the signal and populate the buffer. Time conversion is done internally to map
    /// between the position indices and the buffer's time values.
    fn fill_signal_nsamps(
        &self,
        start_pos: usize,
        end_pos: usize,
        num_samps: usize,
        buffer: &mut ndarray::ArrayViewMut1<f64>,
    ) {
        assert!(
            self.is_compiled(),
            "Attempting to calculate signal on not-compiled channel {}",
            self.name()
        );
        assert!(
            end_pos > start_pos,
            "Channel {} attempting to calculate signal for invalid interval {}-{}",
            self.name(),
            start_pos,
            end_pos
        );
        assert!(
            end_pos <= (self.compiled_stop_time() * self.samp_rate()) as usize,
            "Attempting to calculate signal interval {}-{} for channel {}, which ends at {}",
            start_pos,
            end_pos,
            self.name(),
            (self.compiled_stop_time() * self.samp_rate()) as usize
        );

        let start_instr_idx: usize = self.binfind_first_intersect_instr(start_pos);
        let end_instr_idx: usize = self.binfind_first_intersect_instr(end_pos);
        // Function for converting position idx (unit of start_pos, end_pos) to buffer offset
        // Linear function: start_pos |-> 0, end_pos |-> num_samps
        let cvt_idx = |pos| {
            ((pos - start_pos) as f64 / (end_pos - start_pos) as f64 * (num_samps as f64)) as usize
        };

        let mut cur_pos: usize = start_pos as usize;
        for i in start_instr_idx..=end_instr_idx {
            let instr_signal_length = std::cmp::min(end_pos, self.instr_end()[i]) - cur_pos;
            let slice =
                &mut buffer.slice_mut(s![cvt_idx(cur_pos)..cvt_idx(cur_pos + instr_signal_length)]);
            self.instr_val()[i].eval_inplace(slice);
            cur_pos += instr_signal_length;
        }
    }

    /// Calls `fill_signal_nsamps` with the appropriate buffer and returns signal vector.
    /// The in-place version `fill_signal_nsamps` is preferred to this method for efficiency.
    /// This is mainly a wrapper to expose channel-signal sampling to Python
    fn calc_signal_nsamps(&self, start_time: f64, end_time: f64, num_samps: usize) -> Vec<f64> {
        let mut buffer = Array1::linspace(start_time, end_time, num_samps);
        let start_pos = (start_time * self.samp_rate()) as usize;
        let end_pos = (end_time * self.samp_rate()) as usize;
        self.fill_signal_nsamps(start_pos, end_pos, num_samps, &mut buffer.view_mut());
        buffer.to_vec()
    }
}

/// Represents a physical channel on an NI device.
///
/// `Channel` provides a concrete implementation of the [`BaseChannel`] trait, offering
/// straightforward and direct methods to interact with the NI device channels. Each instance of
/// `Channel` corresponds to a physical channel on an NI device, characterized by its `name`.
///
/// The `Channel` struct ensures that any interactions with the NI devices are consistent with the
/// requirements and behaviors defined by the [`BaseChannel`] trait.
///
/// # Fields
/// - `samp_rate`: The sampling rate of the channel, determining how often the channel updates.
/// - `task_type`: Specifies the type of task associated with this channel.
/// - `fresh_compiled`: A boolean indicating whether the channel's compiled results are up-to-date with the edit cache.
/// - `name`: A string representation of the channel's identifier as recognized by the NI driver.
/// - `instr_list`: The edit-cache for the channel. Maintains a sorted list of instruction books.
/// - `instr_end`: Stores the ending points of compiled instructions.
/// - `instr_val`: Holds the values of the compiled instructions.
pub struct Channel {
    samp_rate: f64,
    fresh_compiled: bool,
    task_type: TaskType,
    name: String,
    instr_list: BTreeSet<InstrBook>,
    instr_end: Vec<usize>,
    instr_val: Vec<Instruction>,
}

impl BaseChannel for Channel {
    fn samp_rate(&self) -> f64 {
        self.samp_rate
    }
    fn is_fresh_compiled(&self) -> bool {
        self.fresh_compiled
    }
    fn name(&self) -> &str {
        &self.name
    }
    fn instr_list(&self) -> &BTreeSet<InstrBook> {
        &self.instr_list
    }
    fn instr_end(&self) -> &Vec<usize> {
        &self.instr_end
    }
    fn instr_val(&self) -> &Vec<Instruction> {
        &self.instr_val
    }
    fn instr_list_(&mut self) -> &mut BTreeSet<InstrBook> {
        &mut self.instr_list
    }
    fn instr_end_(&mut self) -> &mut Vec<usize> {
        &mut self.instr_end
    }
    fn instr_val_(&mut self) -> &mut Vec<Instruction> {
        &mut self.instr_val
    }
    fn fresh_compiled_(&mut self) -> &mut bool {
        &mut self.fresh_compiled
    }
    fn task_type(&self) -> TaskType {
        self.task_type
    }
}

impl Channel {
    /// Constructs a new `Channel` instance.
    ///
    /// Creates a new channel with the specified task type, physical name, and sampling rate.
    ///
    /// # Arguments
    /// * `task_type`: Specifies the type of task associated with this channel.
    ///    It can be either `AO` (analogue output) or `DO` (digital output).
    /// * `name`: The string representation of the channel's identifier as recognized by the NI driver.
    /// * `samp_rate`: The sampling rate for the channel, determining how often the channel updates.
    ///
    /// # Returns
    ///
    /// Returns a new instance of `Channel` initialized with the provided arguments.
    ///
    /// # Example
    ///
    /// ```
    /// # use nicompiler_backend::channel::*;
    /// let do_channel = Channel::new(TaskType::DO, "port0/line0", 1e7);
    /// let ao_channel = Channel::new(TaskType::AO, "ao0", 1e6);
    /// ```
    ///
    pub fn new(task_type: TaskType, name: &str, samp_rate: f64) -> Self {
        Self {
            samp_rate,
            task_type,
            fresh_compiled: true,
            name: name.to_string(),
            instr_list: BTreeSet::new(),
            instr_end: Vec::new(),
            instr_val: Vec::new(),
        }
    }
}